
Gaalet Tutorial
Florian Seybold

High Performance Computing Center
University of Stuttgart, Germany

seybold@hlrs.de

ABSTRACT

Geometric algebra algorithm expression templates (Gaalet) is a C++ Expression Templates Library allowing for an easy imple-
mentation of Geometric Algebra (GA) expressions in C++, offering reasonable speed for the numerical expression evaluation.
In this tutorial the usage of Gaalet is exemplarily shown, for both microprocessor and CUDA architectures. An insight into
Gaalet’s functioning is delivered, and some evaluation speed comparisons between Gaalet and handwritten implementations
are given.

Keywords: tutorial, gaalet, geometric algebra, expression templates, C++, library.

a u t o S = (e1 ^ e2) ∗ (0 . 5 ∗M_PI) ;
a u t o R = exp (−0.5∗S) ;

a u t o a = 1∗ e1 + 2∗ e2 + 3∗ e3 ;
a u t o b = e v a l (grade <1 >(R∗a ∗ (~R))) ;

Figure 1: Example code for Gaalet usage. Vector a
is rotated using rotor R resulting in vector b. Rotor R
is determined by bivector S, defining a rotation in the
e1 ∧ e2-plane with an angle of 1

2 π (M_PI denotes π).

1 GAALET
1.1 Compact expressions -

compact implementation
Due to the possibility of overloading operators in C++,
Gaalet offers a concise way of writing GA expressions
in an implementation. Figure 1 shows a simple example
of code which a vector a is rotated in using a rotor R,
resulting into a vector b.
Rotor R is generated with a bivector S defining a rota-
tion in the e1 ∧ e2-plane with an angle of 1

2 π . Vec-
tor a is initialized with coefficients scaling the three
basis vectors e1, e2 and e3. Vector b is determined
using a sandwich operation, multiplying rotor R, vec-
tor a and the reverse of rotor R, the latter expressed by
the overloaded, unary C++ ~-operator in Gaalet. An-
other example for an operator overload is the geometric
product, expressed in Gaalet with the binary C++ *-
operator, often used in the code snippet of figure 1.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Note that the implementation in this example makes us-
age of the new type inference functionality (keyword
auto) of the upcoming C++0x standard. With latter
the C++ language will be enhanced to important new
features, especially concerning the usage of templates
in C++. For this reason Gaalet internally maintains two
versions, one for the upcoming C++0x standard and a
restricted version in terms of implementation comfort
for the current C++ standard. While the C++0x ver-
sion of Gaalet at this time is only compilable using the
GNU Compiler Collection from version 4.5 upwards,
the Gaalet version for the current C++ standard can be
compiled using any modern C++-compiler (e.g. GNU
Compiler Collection, Microsoft Visual C++, Intel C++,
NVIDIA CUDA Compiler Driver).
Gaalet supports any algebra with a nondegenerate met-
ric tensor signature of up to 64 dimensions (including
Conformal Geometric Algebra).

1.2 Runtime performance
Expression templates build up an expression tree at
compile time. This enables Gaalet to determine the re-
sulting multivector type of an expression, if the mul-
tivector types of the operands are known. With this
knowledge at compile time, no code is generated eval-
uating multivector elements which aren’t part of the re-
sulting multivector, thus reducing the basis operations
of an expression evaluation notedly. Because the types
of multivectors are supposed to be known, Gaalet uses
compressed multivectors in general, thus reducing also
the amount of memory needed to store multivectors.
Another important aspect of Gaalet as an expression
templates library is the lazy evaluations of expressions.
Expressions are evaluated when needed, but not nec-
essarily when defined. Looking at the example of fig-
ure 1, in every line an expression is defined, but only
the expression in the last line is evaluated to a multivec-
tor (vector b) by using the eval()function. A bene-
fit is the possible reduction of temporary multivectors

in expressions defined over several lines. In general,
expression templates can avoid computations of tem-
porary results when evaluating an expression, in order
to reduce expansive store- and fetch-operations, hence
enabling optimized evaluations with respect to the pro-
cessor cache.
Note that no symbolic optimizations are conducted on
expressions by Gaalet, unlike Gaalop (Geometric Al-
gebra Algorithms Optimizer) [Hildenbrand et al., 2008,
2010] does.

2 TUTORIAL PRESENTATION
As an introduction Gaalet’s purpose and general
functioning is overviewed, including aspects of meta-
programming in C++, expression templates and lazy
evaluation. For clarification simple examples are
discussed and the basic usage of Gaalet is explained.
A comparison of the evaluation speed of Gaalet
examples and handwritten implementations of corre-
sponding coordinate-based expressions is given, with
fully and symbolic simplified coordinate-based expres-
sions. Comparison results are discussed, especially
concerning the lazy evaluation principle.
Limits of the C++ version in comparison to the C++0x
version with regard to the implementation aspects are
shown.
GPU programming with CUDA and Gaalet is discussed
and an example is given.
If time allows, a larger example might be presented.
The tutorial takes about 45 minutes.

3 PRESENTER
Dipl.-Ing. Florian Seybold is the author of Gaalet and
works at the High Performance Computing Center
Stuttgart (HLRS), University of Stuttgart. The visual-
ization department operates a driving simulation, for
which Florian Seybold developed a vehicle dynamics
simulation using Geometric Algebra and implemented
it with Gaalet. In collaboration with Dr. Dietmar
Hildenbrand, TU Darmstadt, research on classical
molecular dynamics simulation algorithms using con-
formal geometric algebra is underway, and respective
implementations are done with Gaalet and Gaalop.

4 USAGE OVERVIEW
as of Gaalet release 0.1.
Sources at http://sourceforge.net/projects/gaalet

Definition of algebra G (p,q):
typedef

gaalet::algebra<gaalet::signature<p,q> >

algebra;

Definition of a multivector A:
algebra::mv<b1, b2, ...>::type A;

following Daniel Fontijne’s bitmap representation:
(b1, b2, . . ., are bitmaps denoting basis blades.)

1 b = 002 = 0
e1 b = 012 = 1
e2 b = 102 = 2

e1∧ e2 b = 112 = 3
.

Accessing multivector elements:
by index i A[i]

by bitmap b A.element()

Unary operators:
grade: 〈E〉n grade<n>(E)

part: b1,b2, . . . ∈ E part<b1, b2, ...>(E)
reverse: Ẽ Ẽ

inverse of E−1 !E
exponential: eE exp(E)

Binary operators: (Inner product after Hestenes)
addition: L+R L+R

subtraction: L−R L-R
geometric product: LR L*R

inner product: L ·R (L&R)
outer product: L∧R (L^R)

Expression evaluation:
evaluate E and eval(E)

return multivector
evaluate E and A = E;
copy result into
multivector A

assign evaluated A.assign(E);
basis blades of

expression E directly
to multivector A

