
A New Approach for Solving Partial Differential

Equations Based on B-splines and Transfinite

Interpolation

Yuanjie Liu
Key Laboratory of Mathematics

Mechanization AMSS
Chinese Academy of Sciences,

100190, Beijing, China
liuyj@mmrc.iss.ac.cn

Hongbo Li
Key Laboratory of Mathematics

Mechanization AMSS
Chinese Academy of Sciences,

100190, Beijing, China
hli@mmrc.iss.ac.cn

ABSTRACT

The objective of this paper is to discuss an approach which combines B-spline patches and transfinite
interpolation to establish a linear algebraic system for solving partial differential equations. We modified
the WEB-spline method developed by Klaus Hollig to derive this new idea. First of all, we replace the R-
function method with transfinite interpolation to build a function which vanishes on boundaries. Secondly,
we simulate the partial differential equation by directly applying differential operators to basis functions,
which is similar to the RBF method rather than Hollig’s method. These new strategies then make the
constructing of bases and the linear system much more straightforward. And as the interpolation is brought
in, the design of schemes for solving practical PDEs can be more flexible.

Keywords: Finite Element Method, B-spline representation, transfinite interpolation, WEB-spline,
RBF.

1 Introduction

While the widely used standard finite element
method is powerful, there are still several defects:
The basis functions are based on meshes, but the
generating of meshes is usually an expensive pro-
cess, especially for domains with complex bound-
aries. Since the basis functions are built according
to the tessellation of the domain, it is difficult to
construct basis functions with high order continuity.
To avoid these problems, massive efforts have been
made to develop meshless methods. We refer the
reader to [1] and the references therein for a survey.

In this paper, we are particularly interested in
two methods: the WEB-spline method [8] and the
Radial Basis Function method [12]. WEB-spline
method uses regular grids and R-functions to es-
tablish basis functions, then build a linear system
through Galerkin’s Method. The Radial Basis Func-
tion method, which is usually called RBF for short,
establishes basis functions based on scattered points
and directly differentiates these bases to build the

linear system.

Our work is mainly inspired by these two schemes.
We developed a meshless method which combines B-
spline and transfinite interpolation techniques to of-
fer a more convenient way of constructing basis func-
tions with arbitrary order of continuity, like what
the WEB-spline method does. Since we have re-
placed the R-functions method with the transfinite
interpolation method, it is appropriate to simulate
the partial differential equation through direct dif-
ferentiation as what the RBF method does.

In this paper, we will take the Poisson equation
on a bounded domain with homogeneous Dirichlet
boundary conditions to illustrate the basic steps.
Section 2 briefly introduces the idea of FEM and ex-
plains what a B-spline patch is. Section 3 shows the
previous work on theWEB-spline method. Section 4
introduces radial basis function method. Then Sec-
tion 5 exhibits the method we develop in this paper
which employs both B-spline patches and transfinite
interpolation to attain an approximation of finite el-
ements. We also discuss about the main difference



between the old and new results in this section. Sec-
tion 6 presents the solution for a simple situation to
illustrate the result of our implementation. Section
7 concludes the main ideas and speculates on possi-
ble future directions.

2 Finite Element Method and
B-spline patches

2.1 Finite Element Method

The finite element method is one of the most widely
used techniques in computational mechanics. The
mathematical origin of the method can be traced
to a paper by Courant in 1943 [2]. We refer the
readers to the article by Oden [3] for the history
of the finite element method and [4] [5] for further
understanding. Here we give a short introduction
for sketch.
The basic principle of finite element method

can be illustrated by solving the Poisson equation
on a bounded domain with homogeneous Dirichlet
boundary conditions:

−∆u = f in D ⊂ Rm, u = 0 on ∂D (1)

u(x) can be considered as the displacement of an
elastic membrane fixed at the boundary under a
transverse load f(x), as shown in Figure 1 (Left).

Figure 1: Left: u(x) is the displacement, f(x) is the
load. Right: φj is the hat-function.

We briefly describe FEM for the model problem
with piecewise linear functions (this part of contents
mainly cited from [6]).
Construct a finite-dimensional subspace Vh ∈ V

as follows, and in what follows, let us assume that
∂D is a polygonal curve. Make a triangulation of D
by subdividing D into a set Th = {K1,K2, ...,Km}
of non-overlapping triangles, such that no vertex of
one triangle lies within the edge of another triangle,

D =
∪

K∈Th

K = K1

∪
K2 · · · .

Th is known as a tessellation of domain D. Let Ni

denote the vertices of these triangles.
Based on this tessellation, we construct a group

of piecewise linear functions F = {φj} so that F
satisfies
1. φi(Ni) = 1.
2. φi is linear on each Kl which has Ni as one of its
vertex.
3. φi is zero outside the area

∪
{Kl, where Ni is one

vertex of Kl}.
Figure 1 (Right) shows the definition of φj clearly.
φj is usually called a hat-function and is considered
as the basis function.
Then, let us define: Vh = {v : v is continuous on

D, v|K is linear for K ∈ Th, v = 0 on ∂D} where v|K
denotes the restriction of v to K (i.e. the function
defined on K agreeing with v on K).
To describe v ∈ Vh, we choose the values v(Ni) at

the nodes Ni, of Th, but exclude the nodes on the
boundary for v = 0 on ∂D.
The space Vh is a linear space of dimension M

with basis {φi}Mi=1.
Then v has the representation: v(x) =∑
ηiϕi(x), x ∈ int(D)

∪
∂D.

A weak solution of this problem can be character-
ized as the minimum of the functional

1

2

∫
D

∇v∇v −
∫
D

fv , v ∈ V, (2)

or equivalently by the equations∫
D

∇v∇v =

∫
D

fv , ∀v ∈ V, (3)

where, V = H0
1 is the Sobolev space of functions

which vanishes on the boundary and has square in-
tegrable first derivatives. Replace V = H0

1 by fi-
nite dimensional spaces Vh, which contains closer
approximations to u as their dimensions increase.
This leads to special cases of the methods of Ritz
and Galerkin, respectively.
Take the Galerkin’s method for example. Let

a(·, ·) denote the operator
∫
D
(∇·,∇·). To find uh ∈

Vh such that a(uh, φi) = (f, φi), i = 1, 2, . . . ,M .
Assume uh=Σηjφj . Since a(·, ·) is a linear func-
tional, a(uh, φi)=a(Σηjφj , φi)=Σηja(φj , φi). We
finally obtain the following linear system of equa-
tions:∑

ηja(φj , φi) = (f, φi), i = 1, 2, . . . ,M (4)

where A = (aij) is the M ×M stiffness matrix with
aij = a(φj , φi), and b = (bi) is the force vector



where bi = (f, φi), and ξ = (ξi) is the solution vector
where ξi = uh(Ni), i = 1, 2, . . . ,M .

2.2 B-spline patches

The B-spline basis is widely used in CAGD [7], and
its rational form, known as NURBS, is the industrial
standard for geometric modeling nowadays [11]. B-
splines are defined in terms of a knot sequence t :=
(tj),

· · · ≤ tj ≤ tj+1 ≤ · · · .

The jth B-spline of order 1 for the knot sequence
t is the characteristic function of the half-open in-
terval [tj , tj + 1), i.e., the function given by the
rule

Bj,1,t(x) =

{
1 : tj ≤ x < tj+1;
0 : otherwise

A B-spline basis is often defined in its iteration
form:

Bj,k,t(x) =
x− tj
tj+k−1

Bj,k−1,t +
tj+k − x

tj+k − tj
Bj+1,k−1,t

The subscript j is the sequence number, k is the or-
der and t indicates the corresponding partition se-
quence. When the order k and partition t are fixed,
we often omit them and only write Bj for short.

Actually, the B-spline basis can be treated as a
piecewise continuous function and its order minus 1
is equal to its order of continuity in the global view.
This can be seen in Figure 2.

Figure 2: B-spline bases with order 2, 3, 4, 5.

Because of this property, it is extraordinarily ap-
propriate to use B-spline as a basis function to con-
struct a solution with any order continuity.

Extending the B-spline basis to dimension 2 di-
rectly, we get the B-spline patch which is the tensor
product of B-spline bases in two directions. It can
be defined as:

Bij(x, y) = Bi(x)Bj(y) (5)

3 WEB-spline method

Weighted extended B-spline method (WEB-spline
method) for boundary value problems are proposed
as a natural generalization of standard B-splines to
address two important issues of exact fulfillment of
the boundary conditions and well conditioning of
the Galerkin system [11]. The development of this
new strategy for the Laplace operator problem is
credited to Hollig et al. in [8].

To approximate the finite element with splines,
one problem must be fixed: the boundary condition.
The basic idea is to construct an auxiliary function
which is zero on the boundary and nonzero in the
interior of the domain, then multiply this function
with B-spline basis. The new basis we get is called
a weighted B-spline basis. We use R-functions to
build the auxiliary function we desire.

3.1 R-functions

First of all, we define the weight function of a do-
main mathematically.

Definition 1. A function w is a weight function
of the domain D, if w(x) > 0 when x ∈ int(D),
w(x) = 0 when x ∈ ∂D, and w(x) < 0 otherwise.

We want to establish a weight function of the des-
ignated domain through the weight functions of its
subsets. R-function is a method to achieve this goal.

Definition 2. A function r : Rk → R is an R-
function, if its sign depends only on the sign of its
arguments.

R-functions are closely related to boolean func-
tions. In fact, for any Boolean set operation ◦ there
exist associatedR-functions r◦, which define the cor-
responding operation on weight functions. In other
words, if wv is a weight function for a set Dv, then

(w1 ◦R w2)(x) := r◦(w1(x), w2(x))

is a weight function for D1 ◦ D2. It is not difficult
to construct these R-functions. And the following
table is a good choice [8].

Set operation Corresponding R-function
D1 ∩D2 r∩ = x1 + x2 −

√
x1

2 + x2
2

D1 ∪D2 r∪ = x1 + x2 +
√
x1

2 + x2
2

Dc rc(X) = −x



To build weight functions on arbitrary domain
with complex boundaries, it will be necessary to ap-
proximate the domain with several kinds of primi-
tives through boolean operations, i.e., union, inter-
section or minus. Such primitives include disk, poly-
gon and other simple elements whose weight func-
tions are not too difficult to identify. Then, we need
to get these functions together through R-functions
of the corresponding boolean operations between
these elementary domains. The weight function we
get through the method of R-functions may be com-
plex.

3.2 WEB-spline method

With the help of R-functions, we get the weight
function w on a particular domain which will be
zero on the boundary. This fact enables us to mul-
tiply B-spline patches with this w and obtain a set of
bases which is always zero on boundary of the same
domain. This set {wBi} is called weighted B-spline
bases and is already suitable to play the role of finite
elements to constitute the solution of PDE. How-
ever, according to Hollig [8], only using weighted
B-spline bases is not a good choice for solving be-
cause it often leads to a large condition number of
the stiffness matrix. To conquer this problem, they
invented the extended B-spline; the concept can be
explained by Figure 3.

Figure 3: Red dot labels outer basis, green dot labels
inner basis, blue dot means the basis has even more
than one cell totally contained in the domain.

In this picture, we take B-spline patches with de-
gree 3 for illustration. We use the low left point
to represent the support of each patch. If there
is at least one lattice (or called cell) of the sup-
port totally contained in the domain, we call it
inner B-spline, like the green ones in the picture.
Those patches whose support intersects with but
has no lattice totally contained in the domain are
called outer B-splines, like the red ones in the pic-
ture. Let us consider the B-spline representation

p(x) =
∑

q(k)Bk(x), x ∈ D. We can represent
the outer ones’ coefficients q(k) through the in-
ner ones’ (see [8] for detail). Then rearrange the
summation and get the new expression p(x) =
Σq(i) [Bi(x) + Σei,jBj(x)], x ∈ D where Bi repre-
sents the inner splines and Bj represents the outer
ones. The Bi(x) + Σei,jBj(x) is treated as the new
basis, known as WEB-splines which means weighted
extended B-splines. Using the WEB-spline basis to
build linear systems can avoid an ill coefficient ma-
trix in most cases.

4 RBF method

4.1 Radial Basis Functions

A function ϕ(rk),where rk=
√
(x− xk)2 + (y − yk)2,

is referred to as a radial function, because it de-
pends only upon the Euclidean distances between
the points (x, y) and (xk, yk). The points (xk, yk)
are referred to as centers or knots. In particular,
the function ϕ(rk) is radially symmetric around the
center (xk, yk) [12].

Initially, RBF is introduced for scattered data in-
terpolation. The solution to the scattered data in-
terpolation problem is obtained by considering a lin-
ear combination of the translates of a suitably cho-
sen radial basis function. Sometimes a polynomial
term is added to the solution, when ϕk is condition-
ally positive definite, or in order to achieve polyno-
mial precision [12].

4.2 RBF for solving partial differen-
tial equation

In this frame, we can consider a form F (x, y) =∑
Akϕ(rk) to represent a solution of a differential

equation. Apply the differential operator σ directly
to F (x, y) and solve for Ak. That is:

A1σ(Φr1)(x1) + · · ·+Anσ(Φrn)(x1) = b1
A1σ(Φr1)(x2) + · · ·+Anσ(Φrn)(x2) = b2
· · · · · ·
A1σ(Φr1)(xn) + · · ·+Anσ(Φrn)(xn) = bn

In another approach, radial basis functions with
compact support were introduced by several re-
searchers such as Schaback [13]. However, radial
basis functions with compact support seem to ex-
hibit inferior convergence properties in comparison
to radial basis functions with global support [14].



5 B-spline with Transfinite In-
terpolation method

Both theWEB-splines method and the RBFmethod
are effective meshless schemes for solving elliptic
equations. Inevitably, there are also disadvantages
for both of them. The R-function method used
in WEB-spline scheme may need huge computation
and the integration is also expensive when assem-
bling the stiffness matrix. The RBF method does
not need to take the computation for integration
since it directly applies the operators to simulate the
differential equation. However, the RBF method is
built on isolated points and often requires a large
number of these points. The representation and
evaluation of RBF finite space is generally difficult.

Compared with the previous methods, we have
conceived a new approach which employs transfinite
interpolation on the boundary to make sure that the
solution will fit the boundary constraints. Like the
B-spline patches, Coons patches are also convenient
to manipulate. We could easily design the order of
continuity and set the values on the boundary. We
prefer to name our approach BTI for short, which
actually means B-spline and Transfinite Interpola-
tion method.

Besides, we are very pleased to see that our idea
has some relationship with the novel area Isogeo-
metric Analysis (IGA) which is gaining more and
more attention. The IGA method employs NURBS
directly as finite elements and develops refinement
schemes to approximate the solution of the PDE.
We refer the readers to [15] for a survey.

5.1 Transfinite interpolation on the
boundary

We use the expression Transfinite Interpolation to
indicate the situation that when continuous curves
are given, we construct a continuous surface to pass
through them. This idea is also known as Coons
patches which was developed by Coons himself [16].
The simplest case is the bilinear Coons patch. It
can be explained as follows.

We are given two pairs of curves
(X(0, u), X(1, u)), (X(v, 0), X(v, 1)) which are
all continuous and intersect in four points
X(0, 0), X(0, 1), X(1, 0), X(1, 1). The Coons

patch is defined as:

X(u, v) =

(1− u)X(0, v) + uX(1, v) + (1− v)X(u, 0) + vX(u, 1)

−
(
1− u u

)(X(0, 0) X(0, 1)
X(1, 0) X(1, 1)

)(
1− v
v

)
This definition can be comprehended as that we
compute linear interpolation on the two pairs of
curves and bilinear interpolation on the four cor-
ner points, and then combine them to construct the
desired surface.
Further more, the coons patch can be generalized

if we replace lines with curves of higher order for in-
terpolation. For example, we can use bi-cubic coons
patches to carry out the cubic Hermite interpola-
tion [17]. The coons patches can also be general-
ized, resulting in a new method based on a blend of
variational principles [18].
In our method, when the ellipse differential equa-

tion with boundary constraints is given(here we as-
sume that the domain is convex and the boundary
curve is C2 for simple), we first convert the initial
problem into a homogeneous form. Then, according
to the boundary which is treated as a pair of curves,
we employ the following idea slightly modified from
Coons’ to construct a patch which passes through
them.

Figure 4: The boundary is cut into two parts, red
curves in perpendicular planes connect correspond-
ing points of the each part.

Figure 4 is an illustration for the idea. In this
sketch map, we cut the boundary into PartI and
PartII. The red curve, which is called bridge, means
the interpolating curve that connects points of these
two parts.
We just consider a simple connected area for

short. Use a line parallel with x-axis, scan it from
the top to the bottom. Label the first point this
line touches the domain as θ1 and the last one as θ2.



So the boundary of our domain is splitted into two
parts: γ1, γ2 which are connected with each other
through θ1 and θ2. Then the two curves are the
data we need to interpolate.

Figure 5: Scan from the top to the bottom, the first
and last points touched by the scan line are labeled
θ1 and θ2 respectively, which are border points of the
two parts.

In the very simple illustration of this paper, we
simply use circular arc as the bridge for interpola-
tion. If more flexible curves are needed, it is not dif-
ficult to extend the bridge curves to Bezier, NURBS
or any other format.

Theorem 1. Let x = γ1(y), x = γ2(y) be the two
parts of designated boundary obtained by the scheme
referred to above. Apply transfinite interpolation to
them using the square of the semi-circle bridge, i.e.
z = r2 − (Ox − x)2, for fixed y and radius r, center
O; and we get a patch expressed as:

( x, y, (γ1(y) + γ2(y))x− x2 − γ1(y)γ2(y) ) (6)

so it is as smooth as the boundary.

Proof. Scan along the direction of y, for a fixed
ȳ, we get x1 on left part of the boundary and x2

on the right. An arbitrary point on the square-arc
bridge connecting the two points (x1, ȳ) and (x2, ȳ)
is (x, y, z), then y = ȳ. The radius of this semi-circle
arc r is x2−x1

2 and the center O is (x1+x2

2 , ȳ, 0), so

z = r2 − (
x1 + x2

2
− x)2 = (

x2 − x1

2
)2 − (

x1 + x2

2

− x)2 = (x1 + x2)x− x2 − x1x2

Therefore, the coordinates (x, y, z) of the surface we
constructed can be expressed as ( x, y, (x1+x2)x1−
x1

2 − x1x2 ), i.e. ( x, y, (γ1(y) + γ2(y))x − x2 −
γ1(y)γ2(y) ).

5.2 Establishing the linear system

Now, it’s time to construct algebraic equations. As-
sume u is the solution of the PDE. The basis func-
tions are B-spline patches ( see eq.(5) ) multiplied
with the smooth function obtained by applying the
transfinite interpolation technique on the boundary:

(γ1(y) + γ2(y))x− x2 − γ1(y)γ2(y)

we write u as the summation of these basis functions
with coefficients cij :

u =
∑

cijBi(x)Bj(y)·

((γ1(y) + γ2(y))x− x2 − γ1(y)γ2(y))

Then apply differential operator δ to u, and get an
expression:

δu =
∑

cijδ(Bi(x)Bj(y)·

((γ1(y) + γ2(y))x− x2 − γ1(y)γ2(y))) (7)

Bi(x)Bj(y)((γ1(y)+γ2(y))x−x2−γ1(y)γ2(y)) is the
BTI basis and we label it Ti. Finally, to get equa-
tions, we need to choose some points in the domain
and evaluate the expression on these points, and set
them equal to their corresponding value determined
by the function on the right side of the differential
equation. The choosing of these data points for test-
ing may be flexible and it can influence the solving
process and result. To avoid the shake of solution
relative to the choice of data points, it is necessary
to construct a coefficient matrix several times and
take their average. Then, we get the linear system:

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2
· · · · · ·
an1x1 + an2x2 + · · ·+ annxn = bn

In the system, als = (δTs)(pl) and xs is the coeffi-
cient of Ts, pl is the data point where we evaluate
u.

5.3 Solving the equations

The numeric method for solving the linear system
can be chosen freely. However, since the B-spline
basis has finite supports, it is more likely to get a
sparse matrix when the number of basis functions
is large. When the order of the coefficient matrix
is not very high, direct methods, such as the sim-
ple Gauss diminishing, are convenient. For a big



matrix, we suggest GMRES [10] as a way to find
a solution although the speed of convergence is not
guaranteed. In our experiment, we adopted a pre-
conditioning method which was developed by several
Chinese mathematicians [9] and successfully accel-
erated the speed of convergence of GMRES.

5.4 Implementation

The whole process of finite element simulation with
B-splines and Transfinite Interpolation consists of
four steps:
1.The preconditioning procedure.
2.Construction of the basis.
3.Assembly of the finite element system;
4.Direct or iterative solving.
In the preconditioning step, we need to trans-

form the differential equation into its homogeneous
form first. Then, divide the boundary for interpola-
tion. The algorithm for partition is just scanning to
find the highest and lowest points and make them
the ends of each part. If the designated domain is
not trivially simple connected, partition it into sim-
ple parts, set the value on additional boundaries to
nonzero and then implement the interpolation.
In the second step, to construct the basis, we cover

the whole domain with regular grids. Define B-
spline patches on these grids. Multiply these tensor
B-spline bases with the function which was obtained
in the previous step to get our new bases Ti.
Next, apply the differential operators δ to the

summation ΣxiTi where xi is the coefficient of corre-
sponding basis Ti. Choose appropriate data points
and evaluate the expression ΣxiδTi on these points.
We get the algebraic linear system ΣxiδTi(pi) =
f(pi) to solve.
Finally, choose an appropriate method to solve

this system: the direct or iterative method.

6 Example and Results

We just take a most simple Poisson equation for
illustration. In

−∆u = f in D ⊂ Rm, u = 0 on ∂D (8)

Let f ≡ −1 and choose a regular Domain {x2+y2 <
1} as D, so that the solution for equation (7) can
be easily written out. It is u = 1

4 (x
2 + y2 − 1). The

diagram of this function is shown in Figure 6.
Use the BTI method to solve this problem; cover

D with the square [−1, 1]×[−1, 1], divide it into 28×

Figure 6: The solution of the equation (8).

28 lattices. Take the same number of data points on
the square uniformly. In order to avoid the twist of
solution caused by the choice of sample points, we
take an average value. To each data point, take 9
points in the neighborhood with radius one third of
the lattice’s width and evaluate the expression (7)
on them. Average these evaluations as one equation
in the linear system. Then, solve this system, we
can get a perfect solution as shown in Figure 7.

Figure 7: The solution resulted from our method.

7 Conclusion and further work

The idea of our BTI method is basically similar to
the WEB-spline method, both of which consist of
two principal steps to construct the basis. We use
transfinite interpolation to construct the aid func-
tion instead of using the R-function method. We
also modified the process of assembling the linear
system by applying the operator to the summation
directly rather than trying to minimize a functional.
In this way, the computation of integration can be
avoided and the whole process becomes more con-
venient and intuitional.



Obviously, further work needs to be done about
theBTImethod. The convergence of this algorithm
should be verified when we increase the number of
bases in a fixed domain. We will also analyze the
stability of this method in the next step, and partic-
ularly focus on the choice of data points for getting
equations and how it influences the final result.

Furthermore, from my point of view, this BTI
approach is likely to be paralleled. The GMRES
method can be designed to run under CUDA. If we
are able to design a proper scheme to divide our
domain to parallel the interpolation, the entire BTI
approach will become a parallel algorithm.

References

[1] T. Belyschko, Y. Krongauz, D. Organ, M.
Fleming, and P. Krysl, Meshless methods:
An overview and recent developments, Com-
put. Methods Appl. Mech. Enrg., pp.3-47,
139(1996).

[2] Giuseppe Pelosi, The finite-element method,
Part I: R. L. Courant: Historical Corner,
Antennas and Propagation Magazine, IEEE,
pp.180-182, April 2007.

[3] J. Oden, Finite elements: an introduction,
Handbook of Numerical Analysis, vol. II, Ciar-
let PG and Lions JL (eds), North Holland: Am-
sterdam, 3-15, 1991.

[4] Philippe G. Ciarlet, The finite element method
for elliptic problems, North-Holland Pub.Co.,
Amsterdam, 1978.

[5] Douglas H. Norrie and Gerard de Vries, The
finite element method, Academic Press, New
York, 1973.

[6] N. Zabaras, Introduction to the finite
element method for elliptic problems,
http://mpdc.mae.cornell.edu/Courses/

MAEFEM/Lecture1.pdf

[7] C. de Boor, A practical Guide to Splines.
Springer-Verlag, New York, 1978.

[8] Klaus Hollig, Ulrich Reif, and Joachim Wip-
per, Weighted extended b-spline approximation
of Dirichlet problems, Siam J. Numer. Anal.,
Vol.39, No.2, pp.442-462, 2002.

[9] Quan Zhong, Xiang Shuhuang, A GMRES
Based Polynomial Preconditioning Algorithm,
Mathematica Numerica Sinica, Vol.28, No.4.
Nov. 2006.

[10] Richard Barrett, Michael Berry, Tony F. Chan,
James Demmel, June M. Donato, Jack Don-
garra, Victor Eijkhout, Roldan Pozo, Charles
Romine, and Henk Van der Vorst, Templates
for the Solution of Linear Systems: Building
Blocks for Iterative Methods, (http://www.

siam.org/books)

[11] Gerald Farin, Josef Hoschek, Myung-Soo Kim,
Handbook of Computer Aided Geometric De-
sign. Elsevier, 2002.

[12] Suresh K. Lodha and Richard Franke, Scat-
tered Data Interpolation: Radial Basis and
Other Methods, Handbook of Computer Aided
Geometric Design. Elsevier, Elsevier, pp.389-
404. 2002.

[13] R. Schaback and H. Wendland, Characteriza-
tion and construction of radial basis functions,
Multivariate Approximation and Applications,
pp.1-16, ISBN-13: 9780521800235 — ISBN-10:
0521800234.

[14] M. D. Buhmann, Radial Basis Functions, Acta
Numerica, pp.1-38, 2000.

[15] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs,
Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement,
Comput. Methods Appl. Mech. Engrg., pp.4135-
4195, 194 (2005).

[16] S. A. Coons, Surfaces for computer-aided de-
sign of space forms, Technical Report: TR-41,
MIT, 1967.

[17] Farin Gerald, Curves and surfaces for
computer-aided geometric design :a prac-
tical guide, Academic Press, San Diego,
c1997

[18] Gerald Farin and Dianne Hansford, Discrete
Coons patches, Computer Aided Geometric De-
sign 691C700, 16 (1999).


