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ABSTRACT

As outer space image acquisition techniques progress, larger amounts of planetary data sets become available. Impact crater statistics
about planets is an important resource as use of this information reveals geological history. Since manual detection of impact craters
requires substantial human resource, there is a compelling need to investigate automated crater detection algorithms. In this study,
we develop a novel framework to detect Martian impact craters by fusing data obtained from Mars Global Surveyor. In our proposed
method, extracted craters from Mars Digital Image Model (MDIM) are crosschecked by using Mars Digital Elevation Model (MDEM).
Multi population genetic algorithm (MPGA) has been devised to extract craters from scale invariant feature set found by SIFT algorithm.
In order to decrease the number of false positives, extracted from MDIM are validated by detected basins from MDEM. Experimental

results on NASA databases suggest high crater detection rates.

1 INTRODUCTION

Impact craters are formed by collision of two celestial bod-
ies. Planetary science utilizes the impact crater databases
to extract characteristic information about both colliding
bodies. Reliably extracted crater features enable geolo-
gists inspect hydrological processes, and climatic infor-
mation about the planet under consideration. Surface age
prediction also relies on size and frequency distributions
of craters. Quest for geological information about re-
cently scanned planets stimulates the need for impact crater
databases. Impact crater detectors are also utilized in space
exploration. Spacecrafts need to incorporate a crater de-
tector for visual positioning. In order to land on asteroids
autonomously, spacecrafts must calculate the locations of
the impact craters based on 3D model of the space and 2D
images obtained. Both usage area of a crater detector sys-
tem requires highly accurate results.

In order to create credible crater databases, a number of
scientists have manually examined the optical satellite im-
ages and gathered information about crater features. The
most comprehensive data set, known as Barlow catalog,
includes characteristic information for more than 40,000
craters on Mars [Bar88]. Even though visual inspection of
satellite images may reveal key information about impact
craters, this process eventually becomes infeasible upon ar-
rival of large volume sensor data. Recently acquired sensor
data have increased the number of research studies about
automatic impact crater detection.

Significant number of researchers has used optical
images to detect impact craters. These visibility based
methods have limitations with regard to illumination, sur-
face characteristics, and occlusion. Although most impact
craters have obvious circular features, impact angle and
geological deformations severely affect visibility of them.
Significant overlap between craters also degrades accuracy
of automatic crater detectors using optical sensor data
captured at frequently hit areas of the planets. To address
these challenges, we propose a data fusion approach for

impact crater detection. Our algorithm reduces the error
by fusing elevation data and optical data. In this section,
we address previously researched optical image-based and
elevation-based crater detection algorithms.

Existing body of research on crater detection algorithms
generally focus on optical images to produce scalable crater
databases. Most of the proposed frameworks incorporate
either unsupervised or supervised methods to identify fea-
tures and whereabouts of impact craters. Unsupervised
techniques focus on finding rims and merging them to lo-
cate the crater. Hough transform based methods are gen-
erally incorporated in this class of techniques. Supervised
learning methods, on the other hand, involve kernel-based
and neural network based learning methods for training.
Support Vector Machines are usually used as classifiers in
crater detection.

Since high level of accuracy is needed for a crater
database to be utilized by planetary scientists, researchers
have combined several crater detection algorithms in order
to produce more accurate results. Sawabe et al. have
used multiple boundary based approaches and merged the
results obtained [Saw06]. In the first approach they have
used images that are classified considering illumination.
When shady and illuminated pattern is recognized, they
fit a circle to the surrounding edges. Although abrupt
brightness changes may reveal a lot about the surface
under consideration, the presence of sensor data with
correct illumination is often an unrealistic assumption to
make. The second approach they have used tries to find
edge pixels of interest using a vectorized feature extractor
proposed by Sugiyama et al. [Sug97]. Then a roundness
measure is checked for identification of circles. Other
two approaches proposed by Sawabe et al. uses Hilditch’s
thinning algorithm and fuzzy Hough transform in addition
to previously discussed algorithms respectively.

All of the described approaches proposed by Sawabe
et al. up to now suffer from elliptic shape of impact
craters. Depending on geological deformations on the sur-



face, there is a high possibility that craters form degraded
ellipses rather than circles on the surface. In fact, most
craters in the Barlow catalog can hardly be characterized
by circularity features [Bar88].

Machine learning approaches have also been applied in
order to detect and catalog impact craters. Wetzler et al.
have used various supervised learning algorithms, includ-
ing ensemble methods (bagging and AdaBoost with feed-
forward neural networks as base learners), support vector
machines (SVM), and continuously scalable template mod-
els (CSTM) to derive crater detectors from ground-truthed
images [Wet05]. They have noted that the SVM solu-
tion to the problem performs superior on crater detection
and localization compared to boundary-based approaches
such as Hough Transform [Wet05]. However, their imple-
mentation demands huge ground-truth data and computa-
tional resource considering that SVM models they found
involved approximately five thousand support vectors. In
order to overcome large computational demands, they have
proposed using blocked-FFT implementation of the SVM
decision function [BurO4].

A number of researchers have used combination of
supervised and unsupervised techniques to detect impact
craters. Kim et al. propose three staged crater detection
system [Kim05]. In the first stage, they eliminate noise
in the image by extracting region of interest. They also
consider edge direction, and illumination angle at this
stage. In the second stage of their algorithm, which they
call organization stage, primitive arcs are organized by
graph and conic section fitting. Candidate craters are
propagated to the last stage, where they are verified by
a fitness measure and a false crater classifier based on
artificial neural networks.

Honda et al. have also combined machine learning ap-
proaches with boundary based methods [Hon(00]. In the
framework they have proposed, image is first binarized. To
find craters, circular object detection is then applied us-
ing a combination of Hough Transform and Genetic Algo-
rithm. At the last stage, they have utilized Self-Organizing
Maps to categorize candidate craters. The two frameworks
discussed above incorporate both supervised learning tech-
niques and boundary based analysis of optical satellite im-
agery.

Ellipse fitting algorithms are frequently used when re-
searchers model the crater to be detected as an ellipse.
Clustering techniques such as K-means are generally used
for partitioning the feature points into set of candidate
craters. Leroy et al. have employed the same idea to isolate
individual craters [LerO1]. After partitioning, they have fit
an ellipse on the boundary of the craters. Although bound-
ary based methods provide simple yet powerful crater de-
tectors, they noted that illumination angle and noisy sensor
data may obstruct detecting impact craters. In order to alle-
viate these problems, researchers have complicated the fo-
cusing process of crater detection by smoothing and apply-
ing morphological operations to optical images. Marchetti

et al. notes that smoothing image increases robustness to )

noise significantly [Mar04]. However, the information con-
tained in optical data for overlapping craters may be lost
due to smoothed image.

Recently, NASA revealed sufficiently precise and com-
prehensive digital image (DIM), and elevation (DEM) data
on Mars. This advancement lead to more reliable crater ex-
tractors. Researchers have used raw DEM data to detect
impact craters. Bue et al. have discussed limitations of op-
tical image data and outlined an algorithm using solely dig-
ital elevation model [BueO7]. They utilized elevation of the
surface to detect basins. Idea of Bue’s study was to merge
high curvature edges and basins of elevation model to de-
tect crater rims. Located crater rims are passed through
a set of morphological operations to thin and close the
gaps. They applied Hough Transform to detect craters and
noted significant improvements over optical image based
crater detectors. Their findings are important to us since
this was the first study using DEM to detect impact craters.
Improvements can be promised over their implementation
by incorporating digital image data. Machine learning ap-
proaches can also be included to increase the accuracy of
their craters detector.

In this study, we address inherent challenges in crater de-
tection such as limitations of image acquisition techniques
and deformations of craters. We improve the accuracy of
existing crater detectors by fusing the results obtained from
height data and optical image data. Next section gives an
overview of the framework proposed.

2 OVERVIEW

Our framework can be decomposed into two modules.
These are ellipse detection and basin detection modules.
The two result set obtained are merged at the end to
increase the reliability of the algorithm. In this section,
algorithms involved in both components of the system
are described. Following sections include more detailed
discussion of the methods.

Optical image processing module first computes scale in-
variant feature transform of the image proposed by Lowe
[Low99]. Main reason we have used SIFT features is their
robustness to scale, orientation, and affine distortion. Scale
invariance is especially important considering high scale
variance between craters to be detected on Mars. These
features fed into a multi population genetic algorithm to
find ellipses. Detected ellipses are verified by results of
DEM processing module.

Elevation data processing module smoothes the height
map of the Mars surface. Smoothing the surface increases
the accuracy of the basin extraction process. The basins
are found using drainage network extraction algorithm pro-
posed by Freeman et al. [Fre92]. Sink sources of the height
map are generally craters to be detected. However, Martian
landscape involves non-crater basins as well. Thus, basin
detection module of the framework is generally not enough
to be used as a reliable crater extractor. This is the reason
we fuse the results obtained of basin and crater detection
modules. The flowchart of the system is given in Figure
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Figure 1: Overview of crater detector system

3 CRATER EXTRACTION FROM DIM

As described in the overview section of this document, we
employ scale invariant feature transform and multi popula-
tion genetic algorithm to find impact craters from optical
data. In this section, we will give a detailed description of
both algorithms involved.

3.1 Scale Invariant Feature Transform

Although the existing body of research on impact crater de-
tection focus on extracted edges, we have also implemented
SIFT algorithm which aims to reliably identify scale in-
variant features of an object proposed by Lowe [Low99].
Compared to the edges extracted, SIFT features are well
localized around the rims of the craters as seen in Figure
(2). The method that Lowe has proposed transforms image
into collection of feature vectors that are invariant to scal-
ing, rotation, and illumination changes. SIFT algorithm in-
volves four main stages, which are scale-space extrema de-
tection, keypoint localization, orientation assignment, and
keypoint descriptor. Keypoints are defined as the extrema
points of Difference of Gaussians (DoG) that occur at mul-
tiple scales. The reason of using DoG instead of gaussians
is to gain efficiency. The algorithm eliminates outliers by
discarding low-contrast keypoints and edge responses.

SIFT features have gained popularity in computer vision
domain due to its successful applications in feature match-
ing. Recently, SURF (Speeded Up Robust Features) , a
faster version of the SIFT algorithm has been proposed
which is based on Haar Wavelet responses [Bay08]. Al-
though SURF feature detector is faster than SIFT, a com-
parative study between SURF and SIFT reveals that SURF
features are not stable against rotation and illumination
changes [Jua09]. This is the main reason we have used
SIFT features in our study of a crater detector. High rota-
tion variation between craters and illumination changes are
possible due to the Mars surface, image acquisition equip-
ment used, and the camera parameters involved.
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Figure 2: (A) Optical data obtained from Mars surface (B)
SIFT features highlighted (C) Edges extracted by canny
edge detector

3.2 Genetic Algorithm Variants for Ellipse
Detection

In our implementation of crater extractor from DIM, craters
are assumed to have elliptic shape. Since SIFT features
extracted from previous stage of our system are assumed to
be scale invariant, elliptic assumption of the feature vector
is reasonable.

Most methods to detect ellipses from images can be cate-
gorized into two major groups. These are Hough Transform
(HT) based methods, and stochastic algorithms.

HT based methods perform a mapping from image
space to parameter space. The optima’s of parameters
corresponds to instances of primitives. Although HT is
highly accurate and feasible to use for primitives with
small number of parameters, computational demands of
the method grows exponentially along with the param-
eter number [Yin99]. Since we need to detect ellipses
which have five arbitrary parameters, HT based methods
are infeasible to use because of large parameter space
involved.

Stochastic algorithms have also been applied for geo-
metric primitive extraction on 2D images since primitive
extraction has been shown to be an optimization problem
[Rot93]. Most popular stochastic algorithm used for prim-
itive extraction is genetic algorithm (GA). Inspired by evo-
lutionary biology genetic algorithm tries to find an approxi-
mate solution to optimization problems. Instead of exhaus-
tively searching parameter space as in the case of HT, GA
iteratively refines population to cluster solutions around the
global optima. Moreover, inherently parallel nature of GA
can be exploited on parallel computing architectures to pro-
duce scalable algorithms. A number of researchers have al-
ready used this idea to cope with growing datasets [Deg10].

Although GA based techniques have inherent strengths
over HT based methods, finding multiple instances of a ge-
ometric primitive can’t be directly mapped into problem
space of GA because it approximates a global maximum.
However, in our crater detection implementation, we want
to detect several locally maximum ellipses rather than find-
ing the globally optimal ellipse in the image. This is the
reason we have implemented a multi population genetic al-
gorithm that is able to find several locally optimal ellipses
in the given image.
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Figure 3: One iteration of Multi-Population Genetic Algo-
rithm

The classical genetic algorithm implementation may also
suffer from premature convergence. The term is used for
harmfully fast convergence of a population to a subopti-
mal solution. The two commonly used solutions to this
problem are fitness sharing and replacement of similar in-
dividuals. Both of the proposed modifications to genetic
algorithm maintains the diversification of the population in
order not to converge directly to a premature solution. The
former, also called Sharing Genetic Algorithm (SGA), is
proposed by Lutton et al. [Lut94]. SGA shares the fitness
of similar individuals to decrease clustering around a sin-
gle solution. The later, on the other hand, simply replaces
the similar individuals with randomly generated ones to in-
crease the diversity of the population. Although the re-
placement is necessary as the fittest individuals dominate
the population, replacing with random individuals degrades
the performance of the genetic algorithm since it may lead
the population to an already searched space. Thus, SGA
has inherent strengths over replacement of similar individ-
uals method. Note that, SGA can also be used for the local
optima search problem since it reduces the fitness values of
individuals clustered around single optima.

The multi-population genetic algorithm (MPGA) is an-
other variant of GA that can be used for multiple local
optima detection. A number of subpopulations are gener-
ated and evolved in order to find several optima’s. These
subpopulations can be thought as islands where individuals
can travel in between and create their own one. This adap-
tive clustering mechanism both concentrates the solutions
around optimal points and diversifies the population across
the search space. A research study conducted by Yao et al.
investigates the use of both MPGA and SGA over the el-
lipse detection problem [Yao05]. Results of their study re-
veals that MPGA outperforms SGA in terms of both accu-
racy and performance. Following section of this document,
describes the multi-population genetic algorithm used for
ellipse detection on SIFT keypoints.

3.3 MPGA for Ellipse Detection

In the ellipse detection context, multi-population genetic

algorithm evolves several populations aimed to represent 4

Figure 4: A chromosome that defines an ellipse over five
keypoints

ellipses from keypoints extracted. Figure (3) shows one it-
eration of MPGA where a number of populations evolve in
parallel. Communication between subpopulations are per-
formed through migration of individuals from one subpop-
ulation to another. Creation of a new population is also
possible when an individual does not exhibit an affinity
with any existing populations. As the number of epochs
increase, subpopulations can possibly replicate each other
which would decrease the performance. To prevent this
danger, our MPGA algorithm considers the merging the
similar subpopulations.

In the convergence case of a subpopulation, the keypoints
of detected ellipse is removed from the image, and the indi-
viduals are deported. Note that, as the number of subpop-
ulations decrease the number of individuals per population
will increase. Thus, search will accelerate as the number of
ellipses in the image decreases.

As seen in the Figure (3), MPGA can be characterized
by a set of operations on individuals; crossover, mutation,
fitness evaluation, and orientation. Orientation of an in-
dividual requires a set of operations for habitat selection,
which are merging, migration, and new subpopulation gen-
eration. This section describes all stages of MPGA in the
context of ellipse detection.

Individual Representation Individuals, also referred as
chromosomes, are candidate ellipse parameters. As seen in
Eq. (1), an ellipse can be represented with it’s five arbitrary
parameters.

pox? +2p1xy+ pay* +2p3x+2psy+1=0 (1)

where (x,y) denotes the x and y coordinates of the feature
points, and pg._4 are parameters of the ellipse.

Given any five points (x;,y;) where i € Z: 0 <i < 4, pa-
rameters of an ellipse passing through them can be com-
puted by solving five linear equations given in Eq. (2).
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Using this fact, the chromosome of an individual can

be composed of five keypoints. In the literature, there
are other individual representations for ellipse detection.
Mainzer represents an individual directly by five parame-
ters of the ellipse [Man02]. That is the parameters pg. 4 are
encoded in the chromosomes of population. However, as
Yao et al. noted that this representation generates a larger
search space since the solutions may not even represent
an existing ellipse. In our implementation, on the other
hand, search is focussed on existing ellipses since chromo-
somes encode real keypoints extracted from optical images
of Mars. In our implementation minimal point representa-
tion have been used for chromosome encoding. Figure (4)
depicts an individual chromosome that is represented by
a dashed ellipse over five keypoints extracted. Blue stars
on the image shows the keypoints extracted by SIFT algo-
rithm.
Fitness Evaluation In order to evaluate how fit the in-
dividual is, genetic algorithm requires a fitness function
that returns a comparable value given a chromosome. El-
lipse detection algorithms that involve the GA have widely
match template around the ellipse represented by an indi-
vidual. Mainzer et al. suggests fitness function at Eq. (3)
that punishes edge pixels far from the ellipse [Man02] for
each pixel (x,y) on the candidate ellipse.

1
fi=Ymax(ECcriy i) - (41 @)
xy VbJ ¢

1 if Image(x,y) is an edge pixel
0 Otherwise

Considering that this operation has to be performed
whenever a fitness of an individual has to be calculated, ef-
ficiency should be optimized. Distance map data structure
stores the closest distance to an edge for each pixel in the
original image. An approximation to a distance map can
be realized by a set of morphological operations.

The research studies that aim to extract ellipses from 2D
images rely on detected edges [Yao05]. However, imagery
data obtained from the surface of the Mars exhibits high
illumination variances and outlier edges. Instead of using
only edge responses for evaluating the fitness of an individ-
ual, the keypoints extracted by SIFT algorithm have also
been utilized. The distance map for SIFT features and the
edges have been computed using morphological dilation
with structuring image as 4x4 normal distribution. The fit-
ness is then calculated as given in Eq. (4) that matches an
ellipse around the set of feature points.
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Figure 5: Uniform crossover operation over two individuals
Py and P, which produces the offspring O

where E(x,y) and f; are as in Eq. (3), w; and w; are
weights determining the importance of edge response and
SIFT features respectively. The equation for S(x,y) is given
in Eq. (5).

[ 1 ifImage(x,y) a SIFT keypoint
S(x.y) = { 0 Otherwise )

Merging of Subpopulations As subpopulations evolve,
converging ones may replicate in the population. In this
case, all subpopulations evolve through a one globally op-
timal crater. To prevent replication, close subpopulations
should be merged. Euclidean distance between cluster
means can be used as closeness measure of two subpop-
ulations. In literature, researchers have applied an empiri-
cal threshold over cluster distances to determine whether a
merging operation should occur or not [ Yao05]. However,
scale variant distance measurements are not stable for small
number of subpopulations. In our implementation, Maha-
lanobis distance is measured to check the merging condi-
tion.

While merge operations are begin performed, half of the
fittest individuals are selected for a new subpopulation as
suggested by Yao et al. [Yao05]. However, this imple-
mentation of merging operation causes the population to
decrease. If a population undergo many merging opera-
tions, premature convergence problem may arise since the
size would not be adequate to find all optima’s. To prevent
this side effect, size of each subpopulation is increased to
compensate for the loss. The chromosomes of the intro-
duced individuals are randomly generated from the set of
keypoints.

Migration & Splitting On each evolution iteration of the
population, chromosomes select the subpopulation with the
least Mahalanobis distance. If a chromosome is not suffi-
ciently close to any subpopulation, it creates a new subpop-
ulation center of which is itself.



Crossover  Uniform crossover has been implemented
to produce offsprings. Since the individuals are repre-
sented by five feature points, the uniform crossover oper-
ation merely swaps the points of one parent with the other
to produce an offspring. The offspring bares the subset of
parents keypoints. Figure (5) shows the uniform crossover
operation over two chromosomes.

Mutation The mutation operation is defined as randomly
changing a gene of the chromosome and reassigning it to
a new value. The operation is required to lead search to-
wards uninhabitant areas. However changing one keypoint
randomly generally results in degraded ellipse if the indi-
vidual to be mutated is sufficiently fit. Therefore, mutation
operation has to be enhanced to change more than one key-
points of the chromosome. In our implementation, a ran-
dom number of keypoints have been replaced by mutated
ones.

4 BASIN EXTRACTION FROM DEM

When two celestial bodies collide, a basin is usually formed
at the larger colliding body. The abrupt height variation on
the surface of planets survive longer than the rims of the
basins which are degraded due to erosional processes. The
optical data obtained does not carry any information about
the height of the surface. Therefore, elevation data obtained
from Mars surface have been utilized to find the basin lo-
cations. Researchers have proposed several approaches to
find sink sources in elevation data. Most of the algorithms
developed can be classified as either hydrological or mor-
phological approach. The former approach uses the flood-
ing algorithm of a water to detect sink sources, while the
later recognize basins by their shape.

Since the impact craters on the Mars surface form to-
pographic basins, hydrological algorithms outperform on
basin location extraction. The survey of sink point extrac-
tors shows that the algorithm proposed by Callagnan et al.
is being used commonly [Kis04]. In Callagnan’s algorithm
a rain drop is assumed in each cell of the elevation model
with eight possible flowing directions [Cal84]. Due to pre-
determined flow direction for each cell, the algorithm is
also called "Deterministic 8" (D8). The cell that the rain
drop will flow into is determined by the slope of the eight
possible flow directions.

Although Callagnan’s algorithm provide simple and re-
alistic flow simulation, the method fails on planar surfaces
where surface runoffs are prevalent. To increase the relia-
bility of the method, Freeman proposed multiple flow di-
rection model that can find divergent flow drainage points
by favoring water flow to several adjacent cells of lower el-
evation [Fre92]. The amount of water distributed from a
higher elevation rain drop, d;,is given in Eq. (6).

max0,S}

d; (6)

~
Y max0,s¥
j=1

where S; is the slope of adjacent cells, and w is a constant
factor determining the divergence of the flow.
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Figure 6: Sink source detection on Mars Digital Elevation
Model

The distribution of the water drop is proportional to the
slope of adjacent cells as Eq. (6) suggests. We have ap-
plied the multiple flow direction model to calculate the lo-
cations of the sink sources. Since the elevation data of
the Mars surface is highly vibratile, the DEM data is first
smoothed before the drainage networks are extracted. Fig-
ure (6) shows a rain drop with the flow directions on the
Mars digital elevation data. Once the flow of water is stabi-
lized, the resulting image of rain drop catchments is propa-
gated to the last stage of our algorithm where the results of
DEM and DIM data is fused.

S MERGING RESULTS

The framework proposed have operated on two data set
with two different algorithms. The result set is composed
of the most fit ellipses extracted from DIM & DEM data
and the image of basin locations obtained from DEM data.
The figure (7) shows the set of ellipses extracted from op-
tical and elevation data. The complementary nature of the
results increases the robustness of the algorithm. Note that
a portion of the ellipses extracted do not correspond to the
craters. To decrease number of false positives, the basins
extracted should be used to verify the ellipses.

To finalize the decision about the existence of impact
craters, for each ellipse the ratio of the ellipse area and the
catchment area under the ellipse is calculated. This metric
is thresholded with fixed constant determined by our empir-
ical studies. Finally the fittest ellipses extracted from DEM
& DIM data are merged to compose candidate craters. To
eliminate duplicate ellipses, the overlapping area is com-
pared with the area of the bigger ellipse for each pair of
ellipses. If the duplication is detected, the result of DEM
data is output since ellipses obtained from DEM data have
shown higher accuracies.

6 EXPERIMENTS & RESULTS

The test site we have selected for our experiments contains
heavily cratered area that includes famous Herschel crater.
The digital elevation and optical data is obtained from web
map server (WMS) of NASA. Mars Digital Image Mosaic
(MDIM) and Mars Orbital Laser Altimeter (MOLA) down-
loaded from WMS have the approximate bounding box as
7.42°,—18.42°,172.02°, —7.58°. The terrain chosen con-

6 tains large number of degraded craters as well as non-crater



basins and other topographic structures. Another reason for
choosing this area is the significant overlap over Barlow
Catalog and the test sites previously chosen by researchers
[BueO7].

The data retrieved from WMS is partitioned into 113 im-
ages of size 720x360 and overlapping ratio 1/4. The perfor-
mance of the algorithm is measured by the metrics at Eq.
(7-9). These metrics are proposed by Shufelt [Shu99] and
have been used to measure the performance of crater detec-
tors by a number of researchers [Bar04], [KimO5], [Bue07].

. 100TP
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In Eq. (7-9), TP, FP, and FN are abbreviations for True
Positives, False Positives, and False Negatives respectively.
The Detection metric measures the crater detection perfor-
mance. The Branching metric measures the delineation
performance. And Quality can be thought as measure of
overall performance of the algorithm.

The researchers who have proposed crater detection al-
gorithms have chosen different test sites. Some of them
have even chosen test sites that do not include degraded
craters [Kim05]. In order to test for reliability, we have se-
lected a challenging terrain that includes highly degraded
craters as in [Bue07]. The results are compared with
both manually detected Barlow crater database and auto-
matic crater detection algorithms proposed by researchers
[KimO5], [Bue07], [BarO4]. The table 6 shows their find-
ings. The D,B, and Q represents the metrics given in Eq.
(7-9). Nontrivial test sites includes terrains where heav-
ily degraded craters are common. The trivial test site used
by Kim et al. includes only well-formed craters since they
have noted that the algorithm is not capable of detecting the
degraded craters [KimO05].

Our test site has more than 1/3 overlap with nontrivial
test sites. The algorithm developed in this document had
detected 621 craters in 113 segments. The number of non
craters that were detected is 127. Thus, the Branching fac-
tor of our study is approximately 0.26. This is the lowest
branching factor in the literature of impact crater detectors
test on nontrivial test sites (see Table 6). Most false pos-
itives correspond to degraded rims of large impact craters
with diameter > 20 km. The second best performing algo-
rithm in terms of branching factor includes curvature pro-
file calculation, basin detection, and hough transformation
[BueO7]. Although Bue et al. have proposed a confirmation
algorithm to verify the candidate craters found by Hough
Transform, their verification strategy did not rely on sepa-
rate set of calculations as in our case.

The algorithm we have proposed failed to detect 182 im-
pact craters that are listed on Barlow Catalog. Most of the
craters that our algorithm has failed to detect shows sub-

stantial deformations due to erosional processes. The de- 7

D B Q Test Site | Ref.
Bue 74% | 0.29 | 61% | Nontrivial | [BueQ7]
Barlow | 75%| 0.00 | 75% | Nontrivial | [Bar88]
Barata | 64% | 1.65| 31% | Nontrivial | [BarO4]
Kim 88% | 0.15| 78% | Trivial [KimO5]

Table 1: Detection, Branching, and Quality metrics for dif-
ferent crater-detection algorithms

tection rate is approximately 73% in our nontrivial test site.
The rate of detection accomplished by this research is close
to the best performing automatic crater detection algorithm
in the literature [Bue0O7] and to the human detection rate
[Bar88]. The overall quality metric of our algorithm is also
approximately equal to the Bue’s study with 61%.

The comparisons in this section are made between simi-
lar test sites. The study of Kim et al. has not been compared
to our study because of their simple test site selection. The
metrics of the algorithm proposed in this document sug-
gests higher quality when the test site is chosen not to in-
clude degraded craters.

7 CONCLUSION

This document describes an algorithm for Martian impact
crater detection on Mars digital image and elevation data.
Data fusion approach for the DEM and DIM is a contri-
bution that improved the reliability of existing crater de-
tectors. The use of Scale-Invariant Features and Multi-
Population Genetic Algorithm is also novel for the litera-
ture of the crater detectors. The experimental results sug-
gest a high detection rates close to the best performing al-
gorithm and the most comprehensive crater catalog pre-
pared manually. The improvements over the framework
proposed are possible since the fitness evaluation procedure
of MPGA can be complicated with other measures such as
curvature profiles and heuristics. The adaptation of MPGA
certainly introduces the flexibility that the current set of al-
gorithms proposed lack. The complexity of fitness function
can be traded with accuracy. It remains a future work for
the authors to experiment with different fitness functions
to optimize the performance of the algorithm. The aim of
this study is to introduce a novel framework that is extensi-
ble and reliable to the literature of Hough Transform based
algorithms.
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