
Metaphorical Visualizations of Graph Structures

uboš UkropĽ Martin Jakubéci Peter Kapec

Faculty of Informatics and Information Technologies

Slovak University of Technology

Ilkovi ova 3, 842 16, Bratislava, Slovakiač

{lukrop, matko.jaka}@gmail.com, kapec@fiit.stuba.sk

ABSTRACT
Data visualization of large abstract data sets and complicated relations is a complex research area with different
problems and constraints. Often simple shapes and structures are not very eye-pleasing. Visualization metaphors,
which create a mapping between a well-known problem domain and a new complicated problem domain, can
produce interesting visualizations. In this paper we propose two metaphorical visualizations of graphs and
multidimensional data: we propose a metaphor of soap bubble clusters to visualize graphs and a nebulae (sky)
metaphor, which uses nebulae and stars to visualize graphs and multidimensional data.

Keywords
soap bubbles, nebulae, visualization metaphor, graph visualization, hypergraph

1. INTRODUCTION
Complex data structures in their raw or pure textual
form are unnatural for human perception system and
can be very difficult to understand. To enhance
comprehensibility, such data are often presented in
visual form, represented by abstract geometrical
shapes. This idea is further extended by metaphoric
visualizations that use the analogy with real world
objects. Visualization is often divided into scientific
and information visualization, however there is
a potential overlap, especially when considering
metaphorical visualizations. In this paper we present
two metaphorical visualizations of graph structures
and multidimensional data.

In Section 2 we outline basic information from the
data visualization fields. Section 3 describes
proposed technique of graph visualization using soap
bubbles metaphor and Section 4 introduces
a metaphoric visualization that uses visual syntax of
stars and nebulae to create unconventional
presentations of graphs and multidimensional data.
The proposed visualization metaphors are illustrated
by visualizations of real data sets. Section 5 discusses
related works and is followed by conclusions.

2. DATA VISUALIZATION
Data is the main object of interest in the visualization.
The goal of information visualization is to display
abstract entities and relations to provide better insight
and easier understanding of information. Important
data types that are used in many areas are graphs and
multidimensional data. Both require specific
approaches for visualization.

Graph visualization
Data, which are decomposable to elements and
relations between them, can naturally be represented
by graphs. Human understanding of graphs is
enhanced by its visualizations. Graph visualization
deals with creating, presenting and navigating
through graphical representations of graphs.
Numerous graph visualization algorithms have been
developed (see [Her00] for survey in this area). Most
of them are specialized according to the type of input
graph – there are algorithms for visualization of trees,
oriented graphs, hypergraphs etc. Problems and
issues of graph visualization are mostly related to the
size of input graph. While trying to visualize large
graphs, we have to deal not only with the limits of
displaying platform, but also with the limits of human
perception system.

First step toward successful visualization is layouting
of graph elements. Graph nodes and edges are usually
placed in two dimensions, though the usage of 3D or
even non-Euclidean geometry is becoming also
common. To produce comprehensible output, the
layout process has to follow certain aesthetic criteria
[Pur00]. Popular methods to solve this task are force
directed layout algorithms that employ a physical
model built according to the graph structure. Starting
from random initial node placement, simulated forces

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

acting between graph's nodes transforms the layout
toward a state with minimal energy. This method was
originally proposed by Eades [Ead84], but there are
also many other popular variations, e.g. by
Fruchterman and Reingold [Fru91]. After the layout
is determined, nodes and edges are replaced with
their graphical representations usually with the
respect to the conventions accepted in this area.

Visualization of multidimensional data
Visualizing multidimensional data (data with more
than three dimensions) is complicated, because the
human eye is only able to recognize three
dimensions. The best examples of multidimensional
data are database tables that may contain millions of
rows (records) and hundreds of columns
(dimensions).

Many different methods to visualize
multidimensional data in two or three dimensions
have been developed, overview can be found in
[Spe99]. Most approaches use some type of mapping
attributes to visual and/or structural properties e.g.
size, length, color, angle, shape etc. [Sii07]. Very
popular are various projection methods that use
different kinds of projections from higher dimensions
into lower, e.g. Grand tour [Weg92] or SOM [Lat07].

Relatively new approaches use different high-
dimensional clustering methods [Ber02]. An
interesting approach, related to graphs, is based on
clustering using a hypergraph model. During the first
step, a weighted hypergraph is constructed to
represent the relations among different items, and
during the second step, a hypergraph partitioning
algorithm is used to find k partitions such that the
items in each partition are highly related [Han97].

Visualization metaphors
The world of computers is full of associations and
descriptions that are based on appearance similarity,
which help us to understand the nature of the
problems. Metaphor is a tool, which enables us to do
this. Metaphors help us to understand one problem
area using another problem area. In general we can
say that a metaphor is a projection between the
source problem domain and the destination problem
domain and we want to understand the destination
area by comparison to the source area [Ave08].

Visualization metaphors use this metaphorical
projection to visualize data. There are different
examples of visualization metaphors: a solar system
metaphor that uses stars and planets [Gra04], a city
metaphor with buildings [Chi05], desktop metaphor
[Lar09] or molecule metaphor, which is typical in
graph visualization [Ave08]. Others can be also
mentioned, e.g. dashboard metaphor, address
metaphor etc.

3. SOAP BUBBLES METAPHOR
Soap bubbles are spherical structures made of thin
soap fluid film that encloses certain volume of air.
Their visual attractiveness and clustering dispositions
led us to the idea to utilize them as a visual syntax
used for visualization of simple graphs. In this
visualization metaphor the graphs are presented as
soap bubble clusters with their nodes represented by
individual bubbles and edges displayed as cross
connections of bubbles that represent the incident
nodes. Since the structure of the cluster could be
quite dense, connection between not adjacent bubbles
will likely occur. Therefore we decided to enhance
this visual representation with conventional graphical
links used to indicate edges. Textual data attached to
graph nodes can be displayed inside the bubbles.

To realize proposed visualization technique three
main problems have to be solved: how to layout
graph elements, how to represent soap bubble cluster
geometry and how to simulate its optical properties to
achieve realistic appearance.

Graph layout
To ensure that layout process will produce 3D
structures similar to soap bubble clusters, couple of
requirements have to be met. For a pair of adjacent
nodes (i.e. bubbles), distance of their centers has to
be approximately equal to the radius of the larger
bubble. On the other hand, a pair of not adjacent
bubbles has to be in maximal correlative distance,
while preserving connections with adjacent nodes.

For this purpose, we utilized a custom iterative force
directed layout algorithm. Each iteration starts with
force accumulation. Force acting is defined between
each pair of nodes. Let i and j be two different nodes,
d distance between their centers and dir unit direction
vector from i to j. Then the force acting between them
is calculated as follows:

 force = 0
 IF i and j are adjacent THEN
 delta = d – max (i.radius, j.radius)
 force = dir * springStiff * delta
 IF delta > 0.0 THEN
 force = force * springCoef
 ELSE:
 delta = d – (i.radius + j.radius)
 IF delta <= repelThreshold THEN
 force = – dir * repelCoef * exp(– delta)
 i.force = i.force + force
 j.force = j.force – force

Simplified interpretation of this is that adjacent nodes
are connected by springs with natural length equal to
node’s larger radius and repulsive forces act between
not adjacent nodes. Default values of parameters of
the simulated spring (springStiff, springCoef), and
repulsing forces (repelThreshold, repelCoef) were
determined experimentally based on observed
behavior. With the mass of nodes assigned
proportionally to their radius, accumulated forces are

applied1, resulting in transition to next spatial
configuration. To bring in variability of bubble sizes,
which is typical for real clusters, radius is defined
proportionally to the node degree using the arcus
tangent function.

Cluster geometry
For the purpose of layout it was sufficient to
characterize each bubble only by its position and
radius. However, the rendering process requires more
detailed description of the bubble surface. Isolated
bubbles tend to have regular spherical shape. With
bubbles included inside a cluster, situation is more
complicated. Their surface is deformed according to
cluster structure. In our solution, the structure of
bubble cluster is a direct consequence of graph
layout. Since the graph layout may change very
frequently, we needed a solution that is able to adapt
geometrical representation dynamically in shortest
possible time. The approach presented by Sunkel et
al. [Sun04] is very suitable for dynamic changes.

Bubbles are initially represented by spherical
polygonal meshes. In each rendered frame their shape
is modified in two steps:

1. For each bubble, bubbles with which it collides
are identified. Based on that, list of intersection
planes is built. By intersection plane we mean
a plane that separates a part of the bubble
surface, which is exceeding into another bubble.

2. Vertex shader in GPU accepts the list of
intersection planes that belongs to currently
rendered bubble. Before each vertex is
transformed, it is tested against each intersection
plane. In case it is an exceeding vertex, it is
projected onto the intersection plane along the
normal. This process is illustrated in Fig.1 -
vertex P and all other exceeding vertices are
shifted to form the junctions.

Figure 1. Bubble collisions resolving.

Soap bubble clusters produced with this method will
not embrace all the geometric properties of a real
cluster. However, such realism was not even our
intention.

Visual properties
When the light hits the surface of a soap bubble,
several optical effects are observable. Characteristic
rainbow-like color toning is caused by interfering
light waves. The most distinguished interference

1 We utilized Bullet physical engine for this purpose -
http://bulletphysics.org.

occurs between the wave reflected from outer soap
film boundary and wave once reflected from inner
boundary leaving the film with the same incidence
angle. Resulting light intensity Ir is given by
following equation:

I r=4Ii Rθ sin2 2π
λ

wη cos θ t (1)

Where Ii is incoming light intensity, θ is incidence
angle, θt is transmitted angle, R(θ) is reflectance, λ is
wave length, w is film thickness and η stands for soap
water index of refraction [Gla00]. Because of Snell’s
law, the refraction of light also occurs. But since the
film thickness is extremely small, it is significant only
at the bubble boundaries [Küc02]. Fresnel effect
causes, that with declining light incidence angle
transparency of the surface raises and reflectivity
becomes less obvious.

Photo-realistic rendering could be achieved by
precise simulation of all the mentioned optical effects
and properties with the use of ray-tracing algorithm.
However, since our visualization technique was
intended to function on conventional hardware in
real-time, we utilized less computationally expensive
solutions. Our approach is based mainly on the works
of Glassner [Gla00] and Iwasaki et al. [Iwa04]. Using
Equation 1 with constant light color (in spectral
representation), and similarly to Iwasaki we
precompute the interference effect and save it into
a 2D texture (see Fig.2a) with vertical coordinate
interpreted as the film thickness and horizontal as
cosine of incidence angle. Alpha channel contains
Fresnel reflectivity used by alpha blending
transparency implementation. Film thickness is
preserved in a grayscale texture that is mapped
directly on the bubble surface (see Fig.2b).

Final soap film color calculation takes place in
a fragment shader and involves texels from
interference texture (which are computed based on
film thickness texture and cosine of incident light
angle), texels from environment cube map and diffuse
material color. Reflections of dynamic objects (i.e.
bubbles) and refraction are omitted.

Figure 2. Interference (a) and thickness (b)
texture.

Using the proposed visualization technique we were
able to interactively visualize smaller graphs (approx.
up to 100 nodes). Fig.3 shows visualization of

a graph that exposes relations between scientific
disciplines.

Figure 3. Sample graph visualized by soap
bubbles metaphor.

The soap bubbles metaphor increased visual
attractiveness of visualization, especially comparing
to traditional node-link drawings, though the
readability (especially when presented by static
image) was reduced. To enable user to directly
change the shape of a cluster, mechanism of space
constraints was introduced. Space constraints act as
enclosed barriers that the bubbles do not manage to
cross. Effect of visualization constrained by flatten
box is shown in Fig.4.

Figure 4. Visualization with space constraint.

Fig. 11 demonstrates visualization of concrete data. It
is a part of graph obtained by extraction of software
artifacts from source code of real application2. It
contains all the extracted functions (left part of the
cluster) with one of them represented in detail, with
its parameters and associated comments (right part of
the cluster).

2 LuaDist - http://www.luadist.org

4. NEBULA METAPHOR
Nebulae (or sky) metaphor is used to visualize data
using objects from night sky (from the universe).
Typical objects from the universe are stars, nebulae,
galaxies etc. The main advantage of this metaphor is
that these objects are well known by all people,
including small children.

In this approach, stars are used to represent entities
(nodes of a hypergraph) and nebulae are used to
represent relations (hyperedges of a hypergraph). The
stars can be drawn as 3D shapes, for example spheres
or textured rectangles, called billboards. Nebulae can
be drawn using volumetric rendering or using particle
system. Volumetric rendering gives very realistic
results [Nad00], but its computational complexity
makes it unusable in the case of data visualization.
The reason is that real-time drawing and modification
of many nebulae is needed. Particle systems are
a better solution, but still hard to control in real-time
and to draw hundreds of nebulae. A modification of
particle systems is used, with pre-rendered cloud
particles on a texture, which is mapped on rectangle,
so the nebulae are drawn using billboards as well.

The next problem is how to place the billboards in
space. A hyperedge visits many nodes and the nebula
has to be placed between these nodes. In our
approach, a center of the hyperedge is computed and
the middle of a billboard is placed on the middle of
a line segment, which connects the center of the
hyperedge with a node. Billboards are generated for
every node a hyperedge visits. Fig. 5 shows
a hyperedge with three nodes (circles) and its center
(triangle) and how the corresponding three billboards
are placed (red, green and pink rectangles).

Figure 5. Nebulae billboards placement.

To distinguish between different hyperedges, the
color of the nebulae has to be modified. This is
achieved by setting the color of the rectangle to
a color with alpha channel and then the color of the
rectangle is added to the cloud texture using alpha
blending. The colors of nebulae seen in space are
quite specific, so a set of colors shown in Fig. 6. was
chosen. Also other colors-sets can be used, however
their selection, probably related to data, can produce

familiar e.g. clouds/smoke-like visualizations or
completely unfamiliar visualizations.

Figure 6. Nebulae colors [Fad05].

Now that we prepared a metaphorical drawing
method, we have to prepare a hypergraph layout. The
standard way to do this is to convert hypergraph into
a bipartite graph and then use a graph layout
algorithm. In our approach, the hypergraph is
layouted and drawn in its pure form. We use
a modified Fruchterman-Reingold algorithm [Fru91],
where the nodes of a hypergraph are attracted to the
center of the hyperedge. After the attractive and
repulsive forces are computed and applied, the center
of every hyperedge is recomputed as a center of
mass, by computing the average position of all node
positions, which are connected by the hyperedge.

Fig. 7 shows a hyperedge, which represents calling of
a method in software artifacts data. This hyperedge
connects eight nodes, which represent different
parameters. The hyperedge is visualized using
a snebula with eight billboards with cloud textures
and the nodes are visualized using billboards with
a star texture.

Figure 7. Hyperedge visualized using nebulae
metaphor.

Fig. 8 shows a hypergraph with several hyperedges,
which were obtained from a larger hypergraph (Fig.
12) by filtering. Hyperedges are visualized using
nebulae and stars, but with lines and captions
disabled.

To demonstrate the metaphorical visualization a real
data set was used. Fig. 12. presents a visualization of
software artifacts from a real software system, which
was implemented using Lua scripting language. The
data includes different types of methods, classes,

documentation relations etc. It consists of 1233 nodes
and 459 hyperedges.

Figure 8. Hypergraph visualized using nebulae
metaphor.

Hypergraph based multidimensional
clustering
To visualize multidimensional data a simple
clustering method inspired by the work [Han97] was
implemented. This method utilizes the hypergraph
representation and layout. The multidimensional data
is transformed into hypergraph structure and then the
clusters are automatically created by the layout
algorithm. Transforming multidimensional data (rows
and columns) can be done in different ways; we used
classification of numerical values into ranges or
intervals. The clusterisation process is done in these
steps:

1. Create an empty hypergraph.

2. Create a node for every row.

3. Create intervals for every column.

4. Create a relation between every value of
a row and the corresponding interval.

5. Create a hyperedge for every interval of
every column, which is connected by
a relation from step 4 to at least two rows.
This hyperedge consists of nodes that were
created in step 2 and are connected by
a relation from step 4.

6. Apply the layout algorithm to the
hypergraph.

Fig. 9 shows, how it is done on a sample data set,
with six rows and two columns. One interval is
created for every column (red interval for first
column, green interval for second column); the other
values are too different, so no other intervals are
needed. Graphical representation shows the generated
hypergraph, blue circles are rows, green and red
circle are hyperedges, which represent intervals.

Steps 3, 4 and 5 of the process are a little bit
complicated. Intervals in step 3 can be created by

different methods, we use a simple approach, where
values of the columns are iterated and the minimum
and maximum values are found. Then the range
between these two values is divided into 10 equal
intervals.

Figure 9. Clustering sample.

After that, we have to find out, to which interval
every value of the columns fits. This is done in step 4.
Then we just create a model of this situation by
representing the relation between a value and its
corresponding interval, by creating hyperedges. So
rows with similar values of a column (values in the
same interval) are connected together by a hyperedge
and attracted by applying the layout algorithm. Fig.
10 shows a clustered dataset with different
information about proteins. It consists of 1484
records and 8 columns (dimensions) and in the
clustering process 1484 nodes and 80 hyperedges
(intervals) were created3.

Figure 10. Clustered protein data visualized using
nebulae metaphor.

3 Data-set from http://archive.ics.uci.edu/ml/datasets.html
Machine learning repository of University of Carolina

5. RELATED WORK
There were numerous attempts of computer
simulation and rendering of soap bubble clusters.
Glassner [Gla00] uses a sequence of CSG operations
to create a cluster model considering geometric
properties of real soap bubble clusters. With precise
optical calculations implemented in a fragment
shader he was able to achieve high level of realism,
but his cluster consists of only three bubbles
(analytical solutions exist merely up to this number)
and relatively high computational complexity makes
his solution inappropriate for real-time rendering.
Ďurikovič targeted mainly dynamics of soap bubble
clusters [Ďur05]. He represents each bubble as
a system of particles connected by springs, taking all
significant forces into account, thus simulating
bubble creation, coalescence and bubble-plane
collisions. Ďurikovič did not describe optical
properties. Iwasaki et al. [Iwa04] combined
mentioned works to simulate and render a small
number of bubbles in real-time on conventional
hardware. They reduced computational complexity
mainly using a precomputed interference effect. Kück
et al. [Küc02] developed rendering and simulation
technique for large liquid foam structures. The foam
is represented by set of spherical polygonal meshes
connected by virtual springs. Junctions between
colliding foam bubbles are computed directly inside
the shader for ray tracing based renderer. Sunkel et
al. [Sun04] came with real-time simplified simulation
of large liquid foams: they are creating approximated
planar bubble junctions in vertex shader by shifting
overlapping vertices to the plane of intersection.
Mentioned works were done only with an intention to
handle this natural phenomenon by the means of
computer science, without presenting concrete
practical applications of their results. We applied
simulation of soap bubbles in the area of data
visualization to create a novel graph visualization
technique, while using existing approaches from both
fields (mainly [Gla00], [Iw04] and [Sun04]).

Few works use visualization metaphors similar to the
nebula metaphor. A sky metaphor was used to
visualize self-organizing maps [Lat07]. It displays
data records as stars and the clustering process
creates star clusters. A visual-analytic tool called IN-
SPIRE and its predecessor SPIRE use a galactic
metaphor [Won04]. The visualization is using stars
and star clusters to help in analyzing of large data.
Info-Vis visual explorer is used to interactively
explore large collections of documents, which are
displayed as stars and collections in the hierarchy are
visualized as bounding polygons [Gra07]. All of
these works are using just stars to show data records
and mostly use star clusters to demonstrate similarity.
Our approach is using a similar method when
showing clustered multidimensional data, but is also
able to show complicated relations displayed as
nebulae. It is the only approach, which utilizes 3D
visualization as well.

6. CONCLUSIONS
Metaphoric visualizations use analogy with real
world objects to enhance user understanding of data
and to enrich graphical presentations. In this paper
we presented two visualization metaphors applicable
on structured data. Soap bubbles metaphor was
utilized to create an experimental technique of graph
visualization using 3D soap bubble clusters. Based on
existing methods and approaches for computer
simulation of soap bubbles and custom force directed
layout, it enabled us to interactively visualize smaller
graphs in real-time. Second presented technique uses
nebulae metaphor for visualization of hypergraphs in
3D. With visual syntax of stars and colored nebulae,
it is able to visualize also multidimensional data,
which can be transformed to hypergraph
representations. Both proposed metaphors offer an
interesting and unconventional data presentation.
Future work will be dedicated to verifying practical
usability by the means of user testing, quantitative
evaluation and comparison with standard
visualization techniques. Both presented metaphoric
visualization are suitable for further experiments, e.g.
adding smoke into bubbles or applying solar winds to
nebulae.

7. ACKNOWLEDGMENTS
This work was supported by the grant KEGA 244-
022STU-4/2010: Support for Parallel and Distributed
Computing Education.

8. REFERENCES
[Ave08] Averbukh V.L. et al. Searching and Analysis

of Interface and Visualization Metaphors.
Human-Computer Interaction, New
Developments, Vienna, pp. 49-84, 2008.

[Ber02] Berkhin, P. Survey of clustering data mining
techniques. Technical report, Accrue Software,
San Jose, 2002.

[Chi05] Chiu, P. et al. MediaMetro: browsing
multimedia document collections with a 3D city
metaphor. In: Proc. of the 13th ACM international
conference on Multimedia, pp. 213-214, 2005.

[Ďur05] Ďurikovič, R. Animation of soap bubble
dynamics, cluster formation and collision. Journal
of the Applied Mathematics, Statistics and
Informatics, vol. 1, no. 2, pp. 33-48, 2005.

[Ead84] Eades, P. A heuristic for graph drawing.
Congressus Numerantium, vol. 42, no. 1, pp. 149-
160, 1984.

[Fad05] Fadai, K.: Painting a Nebula. Artistic
tutorial, 2005.

[Fru91] Fruchterman, T., Reingold, E. Graph drawing
by force-directed placement. Software-Practice &
Experience, vol. 21, no. 11, pp. 1129-1164, 1991.

[Gla00] Glassner, A. Soap Bubbles: Part2. IEEE
Computer Graphics and Applications, vol. 20, no.
6, pp. 99-109, 2000.

[Gra04] Graham, Y.H. et al. A solar system metaphor
for 3D visualization of object oriented software
metrics, in Proc. of the Australasian Symposium
on Information Visualisation, Australian
Computer Society, Inc., pp. 53–59, 2004.

[Gra07] Granitzer, Michael et al. InfoSky. InfoVis
Wiki.

[Han97] Han, S. et al. Clustering In A High-
Dimensional Space Using Hypergraph Models.
Technical report, Department of computer
science, University of Minnesota, 1997.

[Her00] Herman, I. et al. Graph Visualization and
Navigation in Information Visualization: A
Survey. IEEE Transactions on Visualization and
Computer Graphics, vol. 6, no. 1, pp. 24-43,
2000.

[Iwa04] Iwasaki, K. et al. Real-time rendering of
soap bubbles taking into account light
interference. In: Proc. of the Computer Graphics
International (CGI’04), pp. 344-348, 2004.

[Küc02] Kück, H. et al. Simulation and Rendering of
Liquid Foams. In: Proceedings of Graphics
Interface, pp. 81-88, 2002.

[Lar09] Lardinois, F.: Bumptop Launches: Make
Your Physical Desktop Virtual. Blog,
ReadWriteWeb, 2009.

[Lat07] Latif, K. and Mayer, R. Sky-Metaphor
Visualisation for Self-Organising Maps. Journal
of Universal Computer Science, Proc. of 7th
International Conference on Knowledge
Management, pp. 400-407, 2007.

[Nad00] Nadeau, D. R. et al. Visualizing Stars and
Emission Nebulas, In: Proc. of Eurographics,
Eurographics Association, 2000.

[Pur00] Purchase, H. C. A study of graph drawing
aesthetics and algorithms. Interacting with
Computers, vol. 13, no. 2, pp. 147-162, 2000.

[Sii07] Siirtola, H. Interactive visualization of
multidimensional data. PhD dissertation,
University of Tampere, 2007.

[Spe99] Spears, W.M.: An Overview of
Multidimensional Visualization Techniques, in
Evolutionary Computation, Morgan Kaufmann,
pp. 104-105, 1999.

[Sun04] Sunkel, M. et al. Rendering and simulation
of liquid foams. In: Proc. of the Vision, Modeling
and Visualization, pp. 285-294, 2004.

[Weg92] Wegman, E.J. The Grand Tour in k-
Dimensions. Computing Science and Statistics,
In: Proc. of the 22nd Symposium on the Interface,
Springer-Verlag, pp. 127-136, 1992.

[Won04] Wong, P.C. et al. IN-SPIRE InfoVis 2004
Contest Entry. In: Proc. of the IEEE Symposium
on Information Visualization, pp. 216–217, 2004.

Figure 11. Software artifacts graph visualized by the soap bubbles metaphor.

Figure 12. Software artifacts hypergraph visualized by the nebula metaphor.

	1. INTRODUCTION
	2. DATA VISUALIZATION
	3. SOAP BUBBLES METAPHOR
	4. NEBULA METAPHOR
	5. RELATED WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

