
Rendering Pipeline Modelled by Category Theory

Jiří Havel
Faculty of Information Technology

Brno University of Technology
ihavel@fit.vutbr.cz

Adam Herout
Faculty of Information Technology

Brno University of Technology
herout@fit.vutbr.cz

ABSTRACT

This paper describes basic concepts from category theory, which are commonly used in functional programming. These con-
cepts are applied to shader programming and to the renderingpipeline and the whole rendering pipeline is formally modelled
using category theory. This model can be used for more abstract and formal approach to shader programming. Mathemat-
ical formalization of the rendering pipeline and its stagescan be helpful in shader compiler design, for proving algorithms,
complexity analysis, and other tasks.

Keywords: Rendering, Shaders, Category Theory

1 INTRODUCTION
Category theory [9, 3] is an abstraction of mathemati-
cal structures and relations between them. It started as a
"generic abstract nonsense", but now it is heavily used
not only in mathematics, but also in computer science
and especially functional programming. Many categor-
ical concepts give rise to common pieces of code used
to combine computations together. >From these ab-
stractions, especially functors and monads are almost
ubiquitous [7].

Although the rendering pipeline is programmable, its
overall structure is basically fixed. The design of pro-
gramming languages for shader programming perfectly
corresponds to the structure. Some experimental shad-
ing languages tried to offer a slightly more abstract
way. Two notable examples are the Gpipe1 library for
Haskell and Sh [5, 4] for C++. Both are, however, lim-
ited to OpenGL 2 or DirectX 8 functionality.

The Sh library views shaders as objects, that can be
combined using two operations – serial and parallel
composition. These two operations, however, perfectly
correspond to a category with products, which will be
described in the next section.

The GPipe library achives the same functionality by
a different approach. It operates on streams of primi-
tives and transforms them by series of functions – using
functors from the category theory.

The rest of the paper will discuss correspondences
between those approaches. Section 2 will introduce a
category-based model of the rendering pipeline stages
and extend programming of pipeline stages to a descrip-
tion of the whole pipeline. Section 3 will raise the ab-
straction of the pipeline description to a composition of
stream transformers. Section 4 summarizes the intro-
duced categories as a model of the rendering pipeline.

1 http://www.haskell.org/haskellwiki/GPipe

2 CATEGORY WITH STREAMS
A category (C) consists of a set of objects (objC) and
a set of arrows or morphisms (arrC) that link these
objects. An arrowf : A → B has a domainA and a
codomainB from objC. The set of arrows fromA to B
is denoted as HomC(A,B). Arrows must be composable
(1a), every object must have one identity arrow (1b)
(1c) and arrow composition must be associative (1d).

∀ f : A → B,g : B →C ∃(g ◦ f) : A →C (1a)

∀O ∈ obj C ∃1O : O → O (1b)

∀ f : A → B,1B ◦ f = f ◦1A = f (1c)

h ◦ (g ◦ f) = (h ◦ g)◦ f (1d)

A classical example is the categorySet, whose objects
are sets and arrows are mappings between those sets.

N-ary functions and tuples are modelled using prod-
ucts – composite objects. ProductP is an object con-
sisting of objectsOi, i = 0, . . .N with projection arrows
(pi : P → Oi) that extract its member objects. For ev-
ery objectZ that has arrowsai : Z → Oi to all members
of P, exactly one arrowaP to the product exists, such
thatai = pi ◦aP, see Figure 1. An exaple of the product
type can be the structure data type, that is a product of
its elements. When describing function, the arrowaP is
a combination of functions returning the elements of a
structure to a function returing the whole structure.

Figure 1: Product in a category

Let us define a category of GPU programs called
Gpu. Objects of Gpu are basic and structured

datatypes of graphical shaders and arrows are func-
tions (both built-in and composite). Both structured
datatypes (structure and array) fullfil the requirement
for product types2 as do the basic vector types. With
streams from the following subsection, every possible
shader will be an arrow inGpu.

2.1 Streams are Functors
Functor is a structure-preserving mapping be-
tween categories. FunctorF : A → B be-
tween categoriesA and B consists of a map-
ping Fobj : obj A → obj B and mappingss
FA1,A2 : HomA(A1,A2) → HomB(Fobj(A1),Fobj(A2)) for
every pair of objectsA1, A2 from A. Functors must
also preserve arrow composition and identity arrows.

Homogenous abstract data types like lists, stacks, or
queues are constructed by functors. TheFobj creates
structured types from the basic ones. The mappings for
arrows convert simple arrows to arrows working with
new types – usually doing the same for every element
of the new type. In functional programming, this fam-
ily of mappings is denoted bymap. map : (X → Y) →
(F(X) → F(Y)), whereF is a functor, i.e., for a given
arrow on the simple data type,map defines the corre-
sponding arrow on the structured data type.

In shader programming, one abstract data type is
ubiquitous – the stream of values (vertices, primitives,
fragments). It is a sequence of elements, that is,
however, never handled directly, but implicitly by the
streaming nature of the rendering pipeline. Stream
types in the categoryGpu are constructed using a
functor Stream : Gpu → Gpu. This functor creates
streams of elements of any basic type (and recursively
streams of streams). For everyX andY from objGpu,
the mapping for arrows is simply defined as

map : (X → Y) → (Stream(X)→ Stream(Y))

map(f)(x1, . . . ,xn) = (f (x1), . . . , f (xn)).

The mappingmap(f) transforms every stream element
by the functionf , see Figure 2.

Figure 2: Functorial transformation principle.

Streams are not the only functors in the category
Gpu, but arrays and basic vector types are functors as
well. For these data types,map works similarly to its
stream counterpart.

For categoriesA and B a categoryBA exists: the
functor category, whose objects are functors fromA to

2 Objects like sums (discriminated unions) or exponentials (partially
applied functions) are hard to express on GPU, so will not be used in
this paper.

B. Arrows of this category are callednatural transfor-
mations. For every functorF and G from BA, natu-
ral transformationφ : F → G and arrow f ∈ A, must
φ ◦F(f) = G(f)◦φ .

Natural transformations change only the structure of
an abstract data type, but the elements of the type are
left unchanged. For example, a transformation between
an array of streams and a stream of arrays is a natu-
ral transformation. Natural transformations are heavily
used in the following subsections.

2.2 Streams are Monads
Monad is a special type of functor used in functional
programming to represent computations and control
structures, to embed side effects, or model a process-
ing pipeline.

Monads in category theory is a functorF , together
with two natural transformationsη : 1C → F and µ :
F2 → F (F2 = F ◦ F). The corresponding triplet in
functional programming consists of a functorF and
mappingsunit : A → F(A) and join : F(F(A)) → F(A)
[6].

Mapping unit creates the monad type from
one element and join merges two layers of
the monad to one. In the categoryGpu, the
transformation unit : X → Stream(X) creates a
stream with a single element. The transformation
join : Stream(Stream(X))→ Stream(X) joins a stream
of streams to one single stream by concatenation.

In functional programming, thebind transformation
is used more thanjoin and it better describes the prop-
erties of monads.

bind : (X → F(Y)) → (F(X) → F(Y))

bind(f) = join◦map(f)

In Gpu, the transformation bind : (X →

Stream(Y)) → (Stream(X) → Stream(Y)) uses
the provided mapping to transform a stream. The
type shows that every element of the input stream is
used to create a new stream and such new streams are
concatenated together. In other words, 0−N elements
can be created from every single input element and the
input elements are processed separately, as shown by
Figure 3.

Figure 3: Monadic transformation schema.

A perfect example of monadic processing of a stream
is the geometry shader. From every primitive of the
input stream, zero or more primitives are generated and
those new streams are concatenated. Also, the fragment
shader can be described by a monad, as it can output
empty streams or streams with a single element.

2.3 Streams are Comonads

Functor and monad are sufficient to describe stream
transformers that access single elements of a stream.
For accessing multiple elements, a categorical dual to
a monad can be used – the comonad. Comonads can
represent some information in a context. In the case of
streams, the context of each element are the neighbor-
ing elements.

As dual functor to a monad, comonad is a func-
tor with two natural transformations in opposite di-
rection as the monad. These areextract : F → 1C
andduplicate : F → F2. The functional programming
forms areextract : F(X) → X andduplicate : F(X) →
F(F(X)). Mappingextract discards the context of a
value andduplicate duplicates the context for every in-
put.

Similarly to monad functionbind, comonad has its
dualextend.

extend : (F(X) → Y) → (F(X) → F(Y))

extend(f) = map(f)◦ duplicate

As the type suggests,extend can not change the el-
ement count, but contrary tobind, the output elements
depend on the context of the input elements as shown
by Figure 4.

Figure 4: Comonadic transformation schema.

In Gpu several implementations of the comonad for
streams are possible. Preceding or following elements
can form a context of a stream element – the underlying
implementation can be a delay link for example. The
actual implementation is not important for the scope of
this paper.

The primitive assembly can be viewed as a comonad
(followed by a monad); however, because of the inde-
pendence on actual stream contents, primitive assem-
bly can be also modelled as a natural transformation.
The tesselation control or hull shaders have also the
comonadic structure, although they do not operate on
stream but on array with index.

3 PIPELINE CATEGORY

The previously introduced categoryGpu mixes the
pipeline structure and the stages implementation. We
can construct a category, that models only the pipeline
structure and abstracts the actual implementation of the
stages.

For a categoryC with monadM, which contains ar-
rows of typeA → M(B),A,B ∈ obj C, exists another
categoryK,

obj K = obj C

HomK(A,B) = HomC(A,M(B))

The arrow composition inK is defined asgK ◦ fK =
bind(gC)◦ fC, so kategoryK expresses composition of
stream transformations. This category is calledKleisli
category of C.

Dual to Kleisli category, also theCoKleisli category
L for every categoryC exists, with a comonadN.

obj L = obj C

HomL(A,B) = HomL(N(A),B)

Similarly, the arrow composition inL is defined asgL ◦

fL = gC ◦ extend(fC).
For the categoryGpu, we can construct apipeline or

stream category Pipe. Objects of this category are basic
and structured shader types and arrows are functions
of type Stream(X) → Stream(Y). Arrows fall to three
groups.

• map(f), f is an arrow ofGpu without streams.

• bind(g), g is an arrow of the Kleisli category of
Gpu.

• extend(h), h is an arrow of the CoKleisli category of
Gpu.

This category provides a superset of all stream trans-
formations possible on GPU. In functional program-
ming, this kind of structure is calledArrows [2, 8].

From the axioms for functor, monad and comonad
[1], the following equivalences can be derived:

map(f)◦map(g) = map(f ◦ g) (2a)

map(f)◦ bind(g) = bind(map(f)◦ g) (2b)

bind(g)◦map(f) = bind(g ◦ f) (2c)

map(f)◦ extend(h) = extend(f ◦ h) (2d)

extend(h)◦map(f) = extend(g ◦map(f)) (2e)

extend(h)◦ bind(g) = map(h)◦ duplicate◦ join ◦map(g)
(2f)

bind(g)◦ extend(h) = bind(g ◦ h)◦ duplicate(x)
(2g)

When applied to the shader programming, these
equations are intutive. Equation (2a) shows that two
vertex-shader-like stages can be composed to one.
Equations (2b) and (2c) show the composition of
a geometry-shader-like stage with the following or
preceding vertex shader. Equations (2d) and (2e) show
the same for a comonadic shader.

The categoryGpu has product types – tuples (struc-
tures) of basic types or streams. For arrows of type
map(f), the tuples of streams are isomorphic to streams
of tuples. Therefore, also streams of tuples have the
properties of product types. The languageSh uses these
properties for parallel composition of shaders.

When arrows of typebind(f) are considered, the
product properties are lost. As outputs of two arrows
can be differently structured, they cannot be gener-
ally merged together without mutual affection. This
limits Sh-style parallel composition capabilities to ver-
tex shader, tesselation evaluation, and fragment shader
without discard.

The stream category can contain only streams of
tuples. Because tuples inPipe are not products, the
arrows generally can not be combined in parallel.
This parallel composition is limited tofunctorial and
comonadic arrows.

4 MODEL OF THE RENDERING
PIPELINE

Randering pipeline can be described using two cate-
gories.Gpu models complete GPU functionality from
implementation of shader stages to the whole pipeline
structure. Pipeline categoryPipe models the pipeline
structure by composition of simple shaders without
considering their implementation.

The simple shaders can be classified according to
their capabilities. The pipeline stages can be classified
similarly.

• Functorial shaders change only single stream ele-
ments. The results do not depend on the context and
the stage cannot change the stream’s structure. Ex-
isting stages: Vertex shader, Tesselation evaluation
shader, Fragment shader without discard.

• Monadic shaders can expand and remove elements.
Their input is limited to one element. Existing stages
: Rasterization, Fragment shader with discard, Frag-
ment tests, Geometry shader, Hardware tesselator.

• Comonadic shaders can process the context of the
element – the input consists of several elements
(possibly the whole stream). The output is, however,
limited to one element. Existing stages : Primitive
assembly.

Using equivalences from (2), the stages can be
composed from multiple simple shaders. Functorial
stages can be composed only from functorial shaders.
The (co)monadic stages can be composed from
both (co)monadic and functorial shaders, as every
(co)monad is a functor.

Also functorial and comonadic stages can be con-
structed using parallel composition. BothSh andGPipe
use only equivalence (2a). Following equivalences can

be used to extend the model capability to cover geome-
try and tesselation shaders.

5 CONCLUSION
This paper introduced a model of the rendering pipeline
using category theory. Although the mathematics in
this paper is not novel, it is not commonly seen in
the field of computer graphics. Two categories are
defined and used:Gpu describing pipeline capabili-
ties, structure and implementation andPipe for abstact-
ing the pipeline structure and composition from simple
shaders.

The formalism introduced in this paper can be used
for classification of different shader operations and for
automatic optimization of shader programs on inter-
stage level. Notably the equivalences from equation 2
form rewrite rules for moving computations between
different stages of the rendering pipeline. However ap-
plication of these rules is not trivial. Following work
will focus on searching suitable rules, probably using
genetical algorithms.

The model is inspired by two actual shader languages
and will be used for their extension. ThePipe category
can be also possibly used to describe generic stream
processing.

REFERENCES
[1] Neil Ghani, Christoph Lüth, Federico De Marchi, and John

Power. Algebras, coalgebras, monads and comonads, 2001.

[2] John Hughes. Generalising monads to arrows.Science of Com-
puter Programming, 37:67–111, May 2000.

[3] Saunders Mac Lane.Categories for the Woring Mathematician.
Springer, 1971.

[4] Michael McCool, Stefanus Du Toit, Tiberiu Popa, Bryan Chan,
and Kevin Moule. Shader algebra. InSIGGRAPH ’04: ACM
SIGGRAPH 2004 Papers, pages 787–795, New York, NY, USA,
2004. ACM.

[5] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. Shader
metaprogramming. InHWWS ’02: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware,
pages 57–68, Aire-la-Ville, Switzerland, Switzerland, 2002. Eu-
rographics Association.

[6] Eugenio Moggi. Computational lambda-calculus and monads.
pages 14–23. IEEE Computer Society Press, 1988.

[7] Eugenio Moggi. Notions of computation and monads.Informa-
tion and Computation, 93:55–92, 1989.

[8] Ross Paterson. A new notation for arrows. InInternational
Conference on Functional Programming, pages 229–240. ACM
Press, September 2001.

[9] R. F. C. Walters.Categories and Computer Science. Cambridge
University Press, 1992.

