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ABSTRACT 
 The human-computer interaction using large projection screens is gaining more space nowadays. For these 
screens several computer vision techniques have been developed that allow the user to interact with the system 
through the projected images using laser pointers, special pens and the hands. On this work is presented the 
parallelization of a method for the real-time detection of non-stationary photometric perturbations in projection 
screens using the Computed Unified Device Architecture, in order to overcome the elevated running time of the 
serialized implementation on CPU. A comparison of the results is presented to establish the acceleration of the 
parallel algorithm against its original version on CPU. 
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1. INTRODUCTION 
High definition projection screens are gaining more 
space each day. Such screens are boosting the 
presence of multiple spectators, detailed model 
visualization, immersion sense and the creation of a 
natural environment of interactive collaboration 
between multiple users. 

As a consequence, several computer vision 
techniques are being developed that allow users to 
interact with the system through projected images 
using laser pointers [Kirs98a], special pens 
[LaRo03a] and the hands [Koik01]. 

In [Mig09a] a local method for the real-time 
detection of non-stationary photometric perturbations 
in projected images was presented from 
modifications performed to the global method 
presented in [Jay04a] for the detection and removal 
of shadows in projected images. 

 

The new method is based on computing the 
differences between the images of a projector frame 
buffer and the corresponding projected image 
captured by a camera. To carry out this comparison, 
a previous process of geometric and photometric 
calibration between the projector, the camera and the 
screen is needed. 

To test this method a system prototype that uses a 
camera/projector pair was implemented, and it 
proved to be very robust when facing spatial 
variations of the projector’s light intensity over the 
projection surface and the incidence on this surface 
of external locally-stationary factors. 

But in the experimentation only about ten images per 
second were processed using a Core 2 Duo (2.66 
GHz) processor, a NVIDIA GeForce 8400 GS GPU 
and a Logitech 9000 Pro Webcam, with a latency 
time of 95 milliseconds. This phenomenon cause 
visible differences of inaccuracy when detecting 
perturbations whose positions move across the screen 
[Mig09a].  

Two main reasons were identified: the serial 
execution on CPU, and the latency time in the 
VRAM- to-RAM transfer of the projector frame 
buffer. 

The method proposed in [Mig09a] is parallelizable as 
the information processing in several parts of the 
computation follows the Single Instruction Multiple 
Data (SIMD) model [Flynn72a]. 
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The latency time is introduced during the copy of the 
projector frame buffer from VRAM to conventional 
RAM for the estimation process.  

The Computed Unified Device Architecture (CUDA) 
gives the possibility to exploit the enormous parallel 
computing capabilities of the NVIDIA’s Graphics 
Processing Unit (GPU), when applied to general 
purpose problems, as long as those problems are 
parallelizable by the SIMD model. 

CUDA gives a subset of the C language to write 
kernels that run in parallel on GPU as a hierarchy of 
threads groups, with very low control and schedule 
overhead, fast barrier synchronization and shared 
memory usage [CUD09]. 

This makes CUDA a suitable technology to improve 
the running time of the method proposed in [Mig09a] 
,because of two main reasons: it provides a powerful 
SIMD programming environment, and its global 
memory is located at VRAM as well as the projector 
frame buffer, that would decrease the latency time.  

In this work is presented the parallelization of the 
local method presented in [Mig09a] for the real-
time detection of non-stationary photometric 
perturbations in projection screens using CUDA. 

The remainder of the content is structured as follows: 
section 2 gives a brief summary of the local method 
presented in [Mig09a] for the real-time detection of 
non-stationary photometric perturbations in 
projection screens; section 3 covers the 
parallelization of the previously mentioned method 
and finally, section 4 shows the results. 

2. SUMMARY ON THE LOCAL 
METHOD FOR DETECTING 
PHOTOMETRIC PERTURBATIONS  
The local method presented in [Mig09a] for the real-
time detection of non-stationary photometric 
perturbations in projection screens is based on the 
comparison of two images: one of them represents 
the real image captured by the camera of the 

projected image (the camera image), and the other 
one is the image that “should” be captured by the 
camera (the estimated image). 

Roughly speaking, if there were no lights or any 
other phenomena interfering with the projection 
process, the camera image and the estimated image 
should be very similar. Otherwise, these images must 
present differences in the regions where such 
perturbations are influenced. 

To make a correspondence between the coordinates 
of the camera image, the projection surface image 
and projector frame buffer image, a geometric 
calibration process is needed, thus obtaining 
transference functions for the coordinate systems of 
such images. For the geometric calibration, the 
planar homography method described in [Suk01a] 
was used. 

In the method presented in [Mig09a] the projector 
frame buffer resolution is higher than the camera 
resolution, which implies that a set of closely located 
pixels at the projector frame buffer are captured by 
the camera as a single pixel. 

For this reason, the projector frame buffer is 
conceived as a matrix of rectangular regions, whose 
intersection is null and whose joint is equal to the 
buffer.. This partition is performed in order to obtain 
a matrix with a row and column number equal to the 
camera resolution, which in turn is the given 
resolution to the estimated image. 

For each region of the projector frame buffer there is 
a single corresponding point in the estimated image. 
In turn, for each point of the estimated image there is 
a single corresponding point in the camera image, but 
for a given point in the camera image there may exist 
0, 1 or more points in the estimated image (see Fig. 
1). 

To homogenize the color range of both the camera 
image and the estimated image a process of 
photometric calibration is needed. 

 

 
Figure 1 Correspondence between a region in the projector frame buffer, a point in the estimated image and a 

point in the camera image. 



The photometric calibration process is established to 
make a correspondence between the color range of 
the camera image, the projection surface image and 
the projector frame buffer image. 

This calibration is needed because the projector 
frame buffer image and the camera-captured image 
have different photometric ranges due to several 
internal and external factors such as: differences in 
the color spaces and brightness level between the 
projector and the camera; the location of the 
projector with respect to the camera, which cause 
brightness variations according to its position; the 
influence of the environmental light over the screen; 
the camera’s internal features, as well as the 
adjustment of its intrinsic and extrinsic parameters; 
the existence of spots or irregularities on the 
projection surface, among others [Mig09a]. 

To perform this calibration, a model that produces 
transference functions between color spaces was 
used; those functions allow estimating the image that 
the camera should grab from the image of the frame 
buffer. For each region in the frame buffer such 
functions are obtained, one for each RBG color 
component. It differs from the method presented in 
[Jay04a] where the transference functions are 
obtained for the entire screen (global) and not for 
each region. 

The color transference functions are previously 
evaluated for every possible value of each color 
component for each region of the frame buffer, and 
the results are stored in three-dimensional tables in 
order to avoid revaluating these functions each time 
during the estimation process. 

Thus, the photometric calibration of each region in 
the frame buffer is given by three three-dimensional 
tables, one for each color component: 

byte [camHeight][camWidth][64] redTable  

byte [camHeight][camWidth][64] greenTable  

byte [camHeight][camWidth][64] blueTable 

To obtain the color components for a pixel in the 
estimated image, the average of the estimated color 
components for all the pixels in the frame buffer that 
belong to the corresponding region for the estimated 
pixel is computed. 

Given a pixel in the frame buffer with coordinates    
(x, y) and color components red, green and blue, its 
corresponding coordinates in the estimated image are 
(regX(x), regY(y)) and the estimated values are: 

estRed   = redTable    [regX(x)] [regY(y)][red  /4] 

estGreen=greenTable[regX(x)][regY(y)][green/4] 

estBlue=blueTable  [regX(x)] [regY(y)][blue /4] 

The function regX(x) gives the row of the estimated 
image that correspond to the pixel with row x in the 

frame buffer; the function regY(y) gives the column 
of the estimated image that correspond to the pixel 
with column y in the frame buffer. 

The value of each color component is divided by 4 in 
order to reduce the amount of memory needed to 
store the tables of each region of the frame buffer. 

The sequence of steps to detect the photometric 
perturbations is stated as follows: 

1. Obtain the image of the projector frame buffer 
(in RGB format) in the variable frameBuffer. 

2. For each pixel in this image with coordinates     
(x, y) obtain the coordinates (x’, y’) where 
x’=regX(x) y y’=regY(y), then for the color 
components red, green and blue of 
frameBuffer[x][y] compute the estimated values 
by querying the entry 
colorTable[x’][y’][color/4]. Given that for 
several pixels in frameBuffer the same 
coordinates (x’, y’) will be obtained (for all that 
belong to the same region), the average must be 
computed for each color component. 

3. Compare each pixel in the estimated image with 
its corresponding pixel in the camera image for 
each color component; if the difference between 
two values is greater than a given threshold, then 
a possible photometric perturbation may exist. 

3. PARALLELIZATION OF THE 
LOCAL METHOD FOR DETECTING 
PHOTOMETRIC PERTURBATIONS 
The first step is to copy the projector frame buffer to 
be processed with CUDA. One objective is to avoid 
the transference of this buffer to the RAM. 

Reading the projector frame buffer for its 
processing with CUDA 
It can be consulted in various CUDA SDK examples, 
that it is possible to write parallel algorithms to post-
process the frame buffer of a window through the 
CUDA’s interoperability with OpenGL. As described 
in [CUD09], OpenGL buffer objects can be mapped 
with CUDA to be accessed from the kernels. 

In our problem we need to read the entire projector 
frame buffer, that is, the “Desktop”. Whereas 
OpenGL does not provide any functions to create 
rendering contexts, this must be done using the 
underlying operating system’s API (hence, loosing 
portability that way). The method was implemented 
for the Microsoft Windows XP operating system. 

To carry out the reading of the projector frame buffer 
we follow these steps: 



 Create a top-level, layered window that covers 
the entire Windows’s desktop; this window will 
be invisible. 

 Create a hardware-accelerated OpenGL 
rendering context associated with this window 
and make it current. 

 Create a Pixel Buffer Object (PBO) with enough 
memory to store the entire projector frame buffer 
(this is related to the screen size and color 
depth). The PBO memory is usually allocated in 
VRAM and controlled by OpenGL. 

 Use the OpenGL’s function glBindBuffer to link 
our PBO to the reading operations over the 
frame buffer. 

 Use the OpenGL’s function glReadPixels to 
perform the copy of the frame buffer to the PBO. 

Then we just need to use the CUDA’s API function 
cudaGLMapBufferObject to map the PBO and its 
content is ready to be accesed  from CUDA’s 
threads. 

Parallelization of the estimation and 
compare algorithms 
3.2.1 Estimation algorithm in CPU. 
The estimation algorithm takes as input the projector 
frame buffer, the color tables of each region in this 
buffer, the dimensions of the estimated image and the 
projector frame buffer, and returns the estimated 
image, that is, the image that the camera should 
capture at exactly that moment. 

The estimation algorithm in CPU is as follows: 

Remark: All the coordinates are row major order. 

Input: Projector frame buffer, dimensions of the 
frame buffer and the estimated image, color tables of 
all the regions in the projector frame buffer. 

Output: Estimated image. 

Step 1. Initialize the estimated image with 0. 
Step 2. For each pixel in frameBuffer with 

coordinates (i, j) do steps 3 to 7: 
Step 3. Compute the region to which belongs the 

pixel (i, j) in the estimated image: 
i’=i*cammeraHeight /frameBufferHeight  

j’=j*cammeraWidth  /frameBufferWidth 

Step 4. Obtain the pixel’s color components:  
red    = frameBuffer[i][j] & 0x000000FF  

green=(frameBuffer[i][j] & 0x0000FF00)>>8  

blue  =(frameBuffer[i][j] & 0x00FF0000)>>16 

Step 5. Compute the estimated color components: 
estRed     = redTable    [i’][j’][    red /4]  

estGreen = greenTable[i’][j’][green /4]  

estBlue   = blueTable   [i’][j’][ blue /4] 

Step 6. Add the estimated values to the 
corresponding pixel in the estimated image: 

redEstimImg     [i’][j’] += red  

greenEstimImg [i’][j’] += green  

blueEstimImg   [i’][j’] += blue 

Step 7. Increase the count of pixels from 
frameBuffer that belong to the computed region: 

regionCount[i’][j’]++ 

Step 8. For each pixel in the estimated image with 
coordinates (i’,j’) divide by the pixel count for 
each color component: 

redEstim  [i’][j’] /= regionCount[i’][j’] 

greenEstim[i’][j’] /= regionCount[i’][j’]  

blueEstim [i’][j’] /= regionCount[i’][j’] 

Algorithm 1. Estimation algorithm in CPU. 

3.2.2 Decomposition of the algorithm. 
As can be easily seen, the same steps repeat over 
different data, this allows a data parallelism over a 
shared address space [Gra03a].  

We used the output data decomposition technique, 
where each output element can be independently 
computed as a function of the input. The value of 
each pixel in the estimated image (output) depends 
only on the corresponding frame buffer’s region and 
its color tables (input). 

This partition leads to the definition of a task as 
computing a pixel in the estimated image. The 
number of tasks is equal to the product of the 
estimated image’s width and height. For example, 
76800 tasks are obtained from a resolution of 
320x240. This decomposition can be classified as 
fine texture according to its granularity. Figure 2 
gives us a graphical scheme of the parallel algorithm. 

Still an issue must be analyzed: all the regions of the 
frame buffer do not have the same size, i.e., the rows 
and columns number may be different for two or 
more regions. This may influence in the performance 
of the algorithm when the threads of the same warp 
diverge in their execution paths.  

But there are several reasons in favor of this 
approach: 

(i) There is uniformity in the sense that each thread 
computes exactly a pixel of the estimated 
image, thus being unnecessary any 
communication and synchronization 
mechanisms between threads. 

(ii) Each thread will write on a single pixel in the 
estimated image, so there is no need to use 
atomic instructions (available only for 
computing capabilities 1.1 or above). 



Figure 2. Scheme of the estimation algorithm if GPU. 

3.2.3 Determining the execution 
configuration. 
When data decomposition is applied to a problem, 
generally the task mapping is static [Gra03a], where 
the tasks are distributed among the available 
processors before the algorithm execution. 

Our problem adjusts to a Blocks Distribution Scheme 
[Gra03a], where the resulting matrix (the estimated 
image) is divided in areas of k1 columns and k2 rows, 
so that each thread must compute all the estimated 
pixels of a given area. 

CUDA’s threads are organized in a hierarchy of one-
dimensional, bi-dimensional or three-dimensional 
thread blocks; those in turn are organized in a one-
dimensional or bi-dimensional grid of blocks. 

The GPU have a number of multiprocessors, and 
each multiprocessor have eight streaming processors. 
When the CPU launches the execution of a grid, its 
blocks are enumerated and distributed to the 
available multiprocessors. When a multiprocessor 
finishes the execution of a block, it gets assigned 
another non-executed block. This execution model is 
scalable, so we can define any number of threads 
without worrying about the number of 
multiprocessors. 

When the number of thread blocks increases to a 
large amount, GPUs with a few multiprocessors will 
not be favored, as plenty of time will be used in 
distributing the non-executed blocks to the 
multiprocessors as they become available, and this 
time may be significant against the running time of 
each block. 

For that reason the value of k1 and k2 must be 
obtained so each thread computes an area of k1 x k2 
pixels of the estimated image. These values can be 
adjusted depending on the number of available 
multiprocessors, thus giving more scalability to the 
implementation.  

The thread blocks are set to be bi-dimensional and 
have 16x16 = 256 threads, a value that is 
recommended in [CUD09] to obtain a good 
performance. The blocks grid is also bi-dimensional 
and it size will be: 

grid.x = ceil( cameraWidth / 16* k1 )   

grid.y = ceil(cameraHeight / 16* k2 )  

For instance, if we want a maximum number of 512 
blocks per multiprocessor we proceed as follows: 
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It is desirable that k1 be a divisor of cameraWidth 
and k2 be a divisor of cameraHeight, because, then 
the number of pixels to estimate is uniformly 
distributed among all threads. 

Table 1 shows some possible execution 
configurations. 

Camera 
resolution 

Multiprocessor
s (MPs) count 

k1 k2 Blocks per 

MPs 

320x240 2 1 1 150 

800x600 2 1 2 469 

1024x768 2 1 3 512 

Table 1. Execution configurations for different 
camera resolution and multiprocessors count. 



3.2.4 Parallel estimation and compare 
algorithms. 
We expose next the parallel estimation algorithm: 

Remark: All the coordinates are row major order. 

Input: Initial coordinates of the estimated image area 
that the thread will compute, values of k1 and k2, 
color tables and projector frame buffer regions of the 
estimation area. Size of the projector frame buffer 
and the estimated image. 

Output: Corresponding area of the estimated image. 

Step 1. For each pixel in the estimated image area 
with coordinates (i’, j’) do steps 2 to 8: 

Step 2. Initialize redSum, greenSum and blueSum 
with zero. 

Step 3. Compute in pixelCount the number of pixels 
in the corresponding projector frame buffer 
region. 

Step 4. For each pixel in the corresponding 
frameBuffer region with coordinates (i, j) do 
steps 5 to 7: 

Step 5. Obtain the color components of the pixel 
from frameBuffer: 

red   =   frameBuffer[i][j]& 0x000000FF  

green =(frameBuffer[i][j]& 0x0000FF00)>>8  

blue  =(frameBuffer[i][j] & 0x00FF0000)>>16 

Step 6. Compute the estimated values for each color 
component: 

estRed     =   redTable  [i’][j’][    red /4]  

estGreen = greenTable[i’][j’][green /4]  

estBlue   =  blueTable [i’][j’][  blue /4] 

Step 7. Add the estimated values: 
redSum    [i’][j’] += estRed  

greenSum[i’][j’] += estGreen  

blueSum  [i’][j’] += estBlue 

Step 8. Write the averaged results in the estimated 
image: 

redEstimImg    [i’][j’]=   redSum/pixelCount  

greenEstimImg[i’][j’]=greenSum/pixelCount  

blueEstimImg  [i’][j’]=  blueSum/pixelCount 

Algorithm 2. Parallel estimation algorithm in GPU. 

The algorithm for comparing the images was also 
parallelized. The same execution configuration that 
was previously exposed is use for this algorithm.  

The parallel version of the compare algorithm 
introduces some execution overhead, since the 
camera image must be copied to the CUDA’s global 
memory to perform the comparison with the 
estimated image (that already is at global memory). 

Next we expose the parallel compare algorithm: 

Remark: All the coordinates are row major order. 

Input: Initial coordinates of the estimated image area 
and the camera image area that the thread will 
compare, values of k1 and k2, size of the images. 

Output: Binary matrix area with 1 in the pixels where 
a photometric perturbation may exists. 

Step 1. For each pixel in the estimated image area 
and the camera area with coordinates  (i, j) do 
steps 2 to 3: 

Step 2. Compute the differences between color 
components: 

red= abs(redEstimImg  [i][j] – redCamera  [i][j]) 

green = abs(greenEstimImg[i][j] – greenCamera[i][j])  

blue=abs(blueEstimImg[i][j] – blueCamera [i][j]) 

Step 3. Compare and write the results in the output 
matrix: 

outImg[i][j]=(red>redThreshold|| 
green>greenThreshold || blue>blueThreshold)?1:0 

Algorithm 3. Parallel compare algorithm in GPU. 

Some implementation details. 
3.3.1 Execution phases. 
The process of working with the GPU was divided in 
three main phases: 

o Initialization phase: the necessary memory is 
allocated in CUDA and in the host, the color tables 
for each region are copied to CUDA’s global 
memory, several constants are initialized and the 
execution configuration for the algorithms is 
determined.  

o Execution phase: the parallel algorithms are 
invoked. The normal order should be: 

Estimation algorithm, requires no transference 
between the host and the device. 

Compare algorithm, requires two transferences 
between host and device: receives the camera 
image, and return the resulting binary matrix. 

There is some relaxation in the sense that both the 
estimation algorithm and the compare algorithm 
can be called more than once repeatedly, although 
if the compare algorithm is called before any call 
to the estimation algorithm then the results are 
inconsistent. 

o Termination phase: all resources are released 
from the GPU and CPU, and the working session 
with CUDA is closed. 

  



3.3.2 Use of shared memory. 
Global memory accesses are less time-expensive 
while less memory transactions are require. If all 
threads in a half-warp (0 to 15 or 16 to 31) follow a 
memory access pattern (which differs according to 
the computing capability) then the memory accesses 
can be coalesced and only a few (one or two) 
memory transactions are required, thus improving 
performance.  

Due to the nature of our problem, when the threads 
of a half-warp accesses its color tables to estimate a 
color, say the red, each can have access to any of 64 
bytes, so the total area they can address is 
64*16=1024 bytes, and one of the requirements for 
coalescence is that all the threads in the half-warp 
accesses an aligned memory segment having at most 
128 bytes [CUD09] for computing capabilities 1.2 or 
above. For computing capabilities 1.0 and 1.1 the 
coalescence requirement are stricter, so no 
coalescence will be met for any computing 
capabilities.  

Two choices are available: the use texture fetches or 
shared memory; we chose the second one since it is 
possible to obtain a bank-conflicts free distribution 
with a probability of 1/16 that the desired value exists 
in shared memory for each thread and each color 
component. 

As the blocks have 16x16 threads, we define a matrix 
of shared memory with the same size for each color 
component, which totalize (256 threads)*(4 bytes)* 
(3 colors) = 3 Kb of shared memory per block. This 

low value allows for several active blocks per 
multiprocessor, improving the overall performance. 

Figure 3 gives an idea of the use of shared memory 
in the estimation algorithm. 

This distribution is bank-conflicts free. Table 2 
shows the distribution of each word of shared 
memory to the banks of shared memory. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

…                

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Table 2. Distribution of each word of shared memory 
in a 16x16 word matrix to the banks. 

The number inside each cell represents the bank of 
shared memory on which the 32-bit word of shared 
memory is located. As can be seen, all threads of 
each half-warp own a word of shared memory that 
lies in a distinct bank, thus avoiding bank conflicts.  

This shared memory size per thread gives the 
possibility to estimate up to 16 different values per 
color component without accessing the global 
memory, because 256/4 = 64 entries in the color 
table, divided by 4 bytes on each shared memory 
word = 16 values.  

It should also be considered that it’s not likely that 
there exist many sudden variations of color in an 
image, because generally the changes of colors are 
softened and progressive. 

 

 

 
Figure 3. Use of shared memory.



EXPERIMENTATION AND RESULTS 
To evaluate the parallel implementation of the local 
method presented in [Mig09a] for the real-time 
detection of non-stationary photometric 
perturbations in projection screens some 
experimentation was made. 

The parallel algorithms were integrated to an 
existing system prototype implemented in Java 
through the Java Native Interface (JNI). A little 
effort was needed to make the system call either, 
the existing serial implementation on CPU or the 
new parallel implementation with CUDA. 

The experimentation was carried out in a Core 2 
Duo processor at 2.66 MHz and a GeForce 8400 
GS GPU (having two multiprocessors). The screen 
resolution was 1024x768 and the camera resolution 
was 320x240, both with 32 bit color in RGB 
format. The development environment for the 
experiment was NetBeans IDE 6.5 over Microsoft 
Windows XP SP2, and the version of CUDA 2.2.  

Table 3 shows the results of running both the serial 
and parallel algorithms in the system prototype. For 
the parallel algorithms, experimentation was made 
both using shared memory and not using shared 
memory. 

As can be seen, without using shared memory a 
speedup of 1.7x was achieved, in contrast with the 
higher 2.8x speedup obtained when using shared 
memory. 
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95 ms 35 ms 57 ms 

Averag
e FPS 

10 28 17 

 Table 3. Experimentation results. 

The number of concurrent threads per iteration in 
the parallel implementation is equal to 320x240 = 
76800 for the estimation algorithm, plus 76800 for 
the compare algorithm, making a total of 153600 
threads.  

CONCLUSIONS  
In this work, it was presented the parallelization of 
the local method presented in [Mig09a] for the real-
time detection of non-stationary photometric 
perturbations in projection screens using the 
Computed Unified Device Architecture.  

The implementation requires neither 
communication nor synchronization between 
threads. It is also designed to be scalable and 
compatible with computing capabilities 1.0 or 
above, and a bank conflicts free access to shared 
memory is used in order to improve performance, 
obtaining a speedup of 2.8x in the experimentation. 

Still some other optimizations may be introduced to 
the implementation in the future for trying to 
achieve better results. 
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