
Parallelization of a method for detecting non-
stationary photometric perturbations in projection

screens with CUDA

Antonio Díaz-Tula

Departamento de Ciencia de la
Computación

Universidad de Oriente
Ave. Patricio Lumumba, 9500

Santiago de Cuba, Cuba

diaztula1@gmail.com

Miguel Castañeda-Garay

Departamento de Ciencia de la
Computación

Universidad de Oriente
Ave. Patricio Lumumba, 9500

Santiago de Cuba, Cuba

mcgaray_cu@yahoo.es

Óscar Belmonte-Fernández

Departamento de Ingeniería y
Cienca de los Computadores

Universitat Jaume I, Spain

Oscar.Belmonte@lsi.uji.es

ABSTRACT
 The human-computer interaction using large projection screens is gaining more space nowadays. For these
screens several computer vision techniques have been developed that allow the user to interact with the system
through the projected images using laser pointers, special pens and the hands. On this work is presented the
parallelization of a method for the real-time detection of non-stationary photometric perturbations in projection
screens using the Computed Unified Device Architecture, in order to overcome the elevated running time of the
serialized implementation on CPU. A comparison of the results is presented to establish the acceleration of the
parallel algorithm against its original version on CPU.

Keywords
parallelization, photometric perturbation, projection screens, CUDA.

1. INTRODUCTION
High definition projection screens are gaining more
space each day. Such screens are boosting the
presence of multiple spectators, detailed model
visualization, immersion sense and the creation of a
natural environment of interactive collaboration
between multiple users.

As a consequence, several computer vision
techniques are being developed that allow users to
interact with the system through projected images
using laser pointers [Kirs98a], special pens
[LaRo03a] and the hands [Koik01].

In [Mig09a] a local method for the real-time
detection of non-stationary photometric perturbations
in projected images was presented from
modifications performed to the global method
presented in [Jay04a] for the detection and removal
of shadows in projected images.

The new method is based on computing the
differences between the images of a projector frame
buffer and the corresponding projected image
captured by a camera. To carry out this comparison,
a previous process of geometric and photometric
calibration between the projector, the camera and the
screen is needed.

To test this method a system prototype that uses a
camera/projector pair was implemented, and it
proved to be very robust when facing spatial
variations of the projector’s light intensity over the
projection surface and the incidence on this surface
of external locally-stationary factors.

But in the experimentation only about ten images per
second were processed using a Core 2 Duo (2.66
GHz) processor, a NVIDIA GeForce 8400 GS GPU
and a Logitech 9000 Pro Webcam, with a latency
time of 95 milliseconds. This phenomenon cause
visible differences of inaccuracy when detecting
perturbations whose positions move across the screen
[Mig09a].

Two main reasons were identified: the serial
execution on CPU, and the latency time in the
VRAM- to-RAM transfer of the projector frame
buffer.

The method proposed in [Mig09a] is parallelizable as
the information processing in several parts of the
computation follows the Single Instruction Multiple
Data (SIMD) model [Flynn72a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

The latency time is introduced during the copy of the
projector frame buffer from VRAM to conventional
RAM for the estimation process.

The Computed Unified Device Architecture (CUDA)
gives the possibility to exploit the enormous parallel
computing capabilities of the NVIDIA’s Graphics
Processing Unit (GPU), when applied to general
purpose problems, as long as those problems are
parallelizable by the SIMD model.

CUDA gives a subset of the C language to write
kernels that run in parallel on GPU as a hierarchy of
threads groups, with very low control and schedule
overhead, fast barrier synchronization and shared
memory usage [CUD09].

This makes CUDA a suitable technology to improve
the running time of the method proposed in [Mig09a]
,because of two main reasons: it provides a powerful
SIMD programming environment, and its global
memory is located at VRAM as well as the projector
frame buffer, that would decrease the latency time.

In this work is presented the parallelization of the
local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens using CUDA.

The remainder of the content is structured as follows:
section 2 gives a brief summary of the local method
presented in [Mig09a] for the real-time detection of
non-stationary photometric perturbations in
projection screens; section 3 covers the
parallelization of the previously mentioned method
and finally, section 4 shows the results.

2. SUMMARY ON THE LOCAL
METHOD FOR DETECTING
PHOTOMETRIC PERTURBATIONS
The local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens is based on the
comparison of two images: one of them represents
the real image captured by the camera of the

projected image (the camera image), and the other
one is the image that “should” be captured by the
camera (the estimated image).

Roughly speaking, if there were no lights or any
other phenomena interfering with the projection
process, the camera image and the estimated image
should be very similar. Otherwise, these images must
present differences in the regions where such
perturbations are influenced.

To make a correspondence between the coordinates
of the camera image, the projection surface image
and projector frame buffer image, a geometric
calibration process is needed, thus obtaining
transference functions for the coordinate systems of
such images. For the geometric calibration, the
planar homography method described in [Suk01a]
was used.

In the method presented in [Mig09a] the projector
frame buffer resolution is higher than the camera
resolution, which implies that a set of closely located
pixels at the projector frame buffer are captured by
the camera as a single pixel.

For this reason, the projector frame buffer is
conceived as a matrix of rectangular regions, whose
intersection is null and whose joint is equal to the
buffer.. This partition is performed in order to obtain
a matrix with a row and column number equal to the
camera resolution, which in turn is the given
resolution to the estimated image.

For each region of the projector frame buffer there is
a single corresponding point in the estimated image.
In turn, for each point of the estimated image there is
a single corresponding point in the camera image, but
for a given point in the camera image there may exist
0, 1 or more points in the estimated image (see Fig.
1).

To homogenize the color range of both the camera
image and the estimated image a process of
photometric calibration is needed.

Figure 1 Correspondence between a region in the projector frame buffer, a point in the estimated image and a

point in the camera image.

The photometric calibration process is established to
make a correspondence between the color range of
the camera image, the projection surface image and
the projector frame buffer image.

This calibration is needed because the projector
frame buffer image and the camera-captured image
have different photometric ranges due to several
internal and external factors such as: differences in
the color spaces and brightness level between the
projector and the camera; the location of the
projector with respect to the camera, which cause
brightness variations according to its position; the
influence of the environmental light over the screen;
the camera’s internal features, as well as the
adjustment of its intrinsic and extrinsic parameters;
the existence of spots or irregularities on the
projection surface, among others [Mig09a].

To perform this calibration, a model that produces
transference functions between color spaces was
used; those functions allow estimating the image that
the camera should grab from the image of the frame
buffer. For each region in the frame buffer such
functions are obtained, one for each RBG color
component. It differs from the method presented in
[Jay04a] where the transference functions are
obtained for the entire screen (global) and not for
each region.

The color transference functions are previously
evaluated for every possible value of each color
component for each region of the frame buffer, and
the results are stored in three-dimensional tables in
order to avoid revaluating these functions each time
during the estimation process.

Thus, the photometric calibration of each region in
the frame buffer is given by three three-dimensional
tables, one for each color component:

byte [camHeight][camWidth][64] redTable

byte [camHeight][camWidth][64] greenTable

byte [camHeight][camWidth][64] blueTable

To obtain the color components for a pixel in the
estimated image, the average of the estimated color
components for all the pixels in the frame buffer that
belong to the corresponding region for the estimated
pixel is computed.

Given a pixel in the frame buffer with coordinates
(x, y) and color components red, green and blue, its
corresponding coordinates in the estimated image are
(regX(x), regY(y)) and the estimated values are:

estRed = redTable [regX(x)] [regY(y)][red /4]

estGreen=greenTable[regX(x)][regY(y)][green/4]

estBlue=blueTable [regX(x)] [regY(y)][blue /4]

The function regX(x) gives the row of the estimated
image that correspond to the pixel with row x in the

frame buffer; the function regY(y) gives the column
of the estimated image that correspond to the pixel
with column y in the frame buffer.

The value of each color component is divided by 4 in
order to reduce the amount of memory needed to
store the tables of each region of the frame buffer.

The sequence of steps to detect the photometric
perturbations is stated as follows:

1. Obtain the image of the projector frame buffer
(in RGB format) in the variable frameBuffer.

2. For each pixel in this image with coordinates
(x, y) obtain the coordinates (x’, y’) where
x’=regX(x) y y’=regY(y), then for the color
components red, green and blue of
frameBuffer[x][y] compute the estimated values
by querying the entry
colorTable[x’][y’][color/4]. Given that for
several pixels in frameBuffer the same
coordinates (x’, y’) will be obtained (for all that
belong to the same region), the average must be
computed for each color component.

3. Compare each pixel in the estimated image with
its corresponding pixel in the camera image for
each color component; if the difference between
two values is greater than a given threshold, then
a possible photometric perturbation may exist.

3. PARALLELIZATION OF THE
LOCAL METHOD FOR DETECTING
PHOTOMETRIC PERTURBATIONS
The first step is to copy the projector frame buffer to
be processed with CUDA. One objective is to avoid
the transference of this buffer to the RAM.

Reading the projector frame buffer for its
processing with CUDA
It can be consulted in various CUDA SDK examples,
that it is possible to write parallel algorithms to post-
process the frame buffer of a window through the
CUDA’s interoperability with OpenGL. As described
in [CUD09], OpenGL buffer objects can be mapped
with CUDA to be accessed from the kernels.

In our problem we need to read the entire projector
frame buffer, that is, the “Desktop”. Whereas
OpenGL does not provide any functions to create
rendering contexts, this must be done using the
underlying operating system’s API (hence, loosing
portability that way). The method was implemented
for the Microsoft Windows XP operating system.

To carry out the reading of the projector frame buffer
we follow these steps:

 Create a top-level, layered window that covers
the entire Windows’s desktop; this window will
be invisible.

 Create a hardware-accelerated OpenGL
rendering context associated with this window
and make it current.

 Create a Pixel Buffer Object (PBO) with enough
memory to store the entire projector frame buffer
(this is related to the screen size and color
depth). The PBO memory is usually allocated in
VRAM and controlled by OpenGL.

 Use the OpenGL’s function glBindBuffer to link
our PBO to the reading operations over the
frame buffer.

 Use the OpenGL’s function glReadPixels to
perform the copy of the frame buffer to the PBO.

Then we just need to use the CUDA’s API function
cudaGLMapBufferObject to map the PBO and its
content is ready to be accesed from CUDA’s
threads.

Parallelization of the estimation and
compare algorithms
3.2.1 Estimation algorithm in CPU.
The estimation algorithm takes as input the projector
frame buffer, the color tables of each region in this
buffer, the dimensions of the estimated image and the
projector frame buffer, and returns the estimated
image, that is, the image that the camera should
capture at exactly that moment.

The estimation algorithm in CPU is as follows:

Remark: All the coordinates are row major order.

Input: Projector frame buffer, dimensions of the
frame buffer and the estimated image, color tables of
all the regions in the projector frame buffer.

Output: Estimated image.

Step 1. Initialize the estimated image with 0.
Step 2. For each pixel in frameBuffer with

coordinates (i, j) do steps 3 to 7:
Step 3. Compute the region to which belongs the

pixel (i, j) in the estimated image:
i’=i*cammeraHeight /frameBufferHeight

j’=j*cammeraWidth /frameBufferWidth

Step 4. Obtain the pixel’s color components:
red = frameBuffer[i][j] & 0x000000FF

green=(frameBuffer[i][j] & 0x0000FF00)>>8

blue =(frameBuffer[i][j] & 0x00FF0000)>>16

Step 5. Compute the estimated color components:
estRed = redTable [i’][j’][red /4]

estGreen = greenTable[i’][j’][green /4]

estBlue = blueTable [i’][j’][blue /4]

Step 6. Add the estimated values to the
corresponding pixel in the estimated image:

redEstimImg [i’][j’] += red

greenEstimImg [i’][j’] += green

blueEstimImg [i’][j’] += blue

Step 7. Increase the count of pixels from
frameBuffer that belong to the computed region:

regionCount[i’][j’]++

Step 8. For each pixel in the estimated image with
coordinates (i’,j’) divide by the pixel count for
each color component:

redEstim [i’][j’] /= regionCount[i’][j’]

greenEstim[i’][j’] /= regionCount[i’][j’]

blueEstim [i’][j’] /= regionCount[i’][j’]

Algorithm 1. Estimation algorithm in CPU.

3.2.2 Decomposition of the algorithm.
As can be easily seen, the same steps repeat over
different data, this allows a data parallelism over a
shared address space [Gra03a].

We used the output data decomposition technique,
where each output element can be independently
computed as a function of the input. The value of
each pixel in the estimated image (output) depends
only on the corresponding frame buffer’s region and
its color tables (input).

This partition leads to the definition of a task as
computing a pixel in the estimated image. The
number of tasks is equal to the product of the
estimated image’s width and height. For example,
76800 tasks are obtained from a resolution of
320x240. This decomposition can be classified as
fine texture according to its granularity. Figure 2
gives us a graphical scheme of the parallel algorithm.

Still an issue must be analyzed: all the regions of the
frame buffer do not have the same size, i.e., the rows
and columns number may be different for two or
more regions. This may influence in the performance
of the algorithm when the threads of the same warp
diverge in their execution paths.

But there are several reasons in favor of this
approach:

(i) There is uniformity in the sense that each thread
computes exactly a pixel of the estimated
image, thus being unnecessary any
communication and synchronization
mechanisms between threads.

(ii) Each thread will write on a single pixel in the
estimated image, so there is no need to use
atomic instructions (available only for
computing capabilities 1.1 or above).

Figure 2. Scheme of the estimation algorithm if GPU.

3.2.3 Determining the execution
configuration.
When data decomposition is applied to a problem,
generally the task mapping is static [Gra03a], where
the tasks are distributed among the available
processors before the algorithm execution.

Our problem adjusts to a Blocks Distribution Scheme
[Gra03a], where the resulting matrix (the estimated
image) is divided in areas of k1 columns and k2 rows,
so that each thread must compute all the estimated
pixels of a given area.

CUDA’s threads are organized in a hierarchy of one-
dimensional, bi-dimensional or three-dimensional
thread blocks; those in turn are organized in a one-
dimensional or bi-dimensional grid of blocks.

The GPU have a number of multiprocessors, and
each multiprocessor have eight streaming processors.
When the CPU launches the execution of a grid, its
blocks are enumerated and distributed to the
available multiprocessors. When a multiprocessor
finishes the execution of a block, it gets assigned
another non-executed block. This execution model is
scalable, so we can define any number of threads
without worrying about the number of
multiprocessors.

When the number of thread blocks increases to a
large amount, GPUs with a few multiprocessors will
not be favored, as plenty of time will be used in
distributing the non-executed blocks to the
multiprocessors as they become available, and this
time may be significant against the running time of
each block.

For that reason the value of k1 and k2 must be
obtained so each thread computes an area of k1 x k2
pixels of the estimated image. These values can be
adjusted depending on the number of available
multiprocessors, thus giving more scalability to the
implementation.

The thread blocks are set to be bi-dimensional and
have 16x16 = 256 threads, a value that is
recommended in [CUD09] to obtain a good
performance. The blocks grid is also bi-dimensional
and it size will be:

grid.x = ceil(cameraWidth / 16* k1)

grid.y = ceil(cameraHeight / 16* k2)

For instance, if we want a maximum number of 512
blocks per multiprocessor we proceed as follows:

11 *16
)

*16
(

k

hcameraWidt

k

hcameraWidt
ceil

22 *16
)

*16
(

k

htcameraHeig

k

htcameraHeig
ceil

512
***256

*

21

mpCountkk

htcameraHeighcameraWidt

mpCountk

htcameraHeighcameraWidt
k

**131072

*

1
2

It is desirable that k1 be a divisor of cameraWidth
and k2 be a divisor of cameraHeight, because, then
the number of pixels to estimate is uniformly
distributed among all threads.

Table 1 shows some possible execution
configurations.

Camera
resolution

Multiprocessor
s (MPs) count

k1 k2 Blocks per

MPs

320x240 2 1 1 150

800x600 2 1 2 469

1024x768 2 1 3 512

Table 1. Execution configurations for different
camera resolution and multiprocessors count.

3.2.4 Parallel estimation and compare
algorithms.
We expose next the parallel estimation algorithm:

Remark: All the coordinates are row major order.

Input: Initial coordinates of the estimated image area
that the thread will compute, values of k1 and k2,
color tables and projector frame buffer regions of the
estimation area. Size of the projector frame buffer
and the estimated image.

Output: Corresponding area of the estimated image.

Step 1. For each pixel in the estimated image area
with coordinates (i’, j’) do steps 2 to 8:

Step 2. Initialize redSum, greenSum and blueSum
with zero.

Step 3. Compute in pixelCount the number of pixels
in the corresponding projector frame buffer
region.

Step 4. For each pixel in the corresponding
frameBuffer region with coordinates (i, j) do
steps 5 to 7:

Step 5. Obtain the color components of the pixel
from frameBuffer:

red = frameBuffer[i][j]& 0x000000FF

green =(frameBuffer[i][j]& 0x0000FF00)>>8

blue =(frameBuffer[i][j] & 0x00FF0000)>>16

Step 6. Compute the estimated values for each color
component:

estRed = redTable [i’][j’][red /4]

estGreen = greenTable[i’][j’][green /4]

estBlue = blueTable [i’][j’][blue /4]

Step 7. Add the estimated values:
redSum [i’][j’] += estRed

greenSum[i’][j’] += estGreen

blueSum [i’][j’] += estBlue

Step 8. Write the averaged results in the estimated
image:

redEstimImg [i’][j’]= redSum/pixelCount

greenEstimImg[i’][j’]=greenSum/pixelCount

blueEstimImg [i’][j’]= blueSum/pixelCount

Algorithm 2. Parallel estimation algorithm in GPU.

The algorithm for comparing the images was also
parallelized. The same execution configuration that
was previously exposed is use for this algorithm.

The parallel version of the compare algorithm
introduces some execution overhead, since the
camera image must be copied to the CUDA’s global
memory to perform the comparison with the
estimated image (that already is at global memory).

Next we expose the parallel compare algorithm:

Remark: All the coordinates are row major order.

Input: Initial coordinates of the estimated image area
and the camera image area that the thread will
compare, values of k1 and k2, size of the images.

Output: Binary matrix area with 1 in the pixels where
a photometric perturbation may exists.

Step 1. For each pixel in the estimated image area
and the camera area with coordinates (i, j) do
steps 2 to 3:

Step 2. Compute the differences between color
components:

red= abs(redEstimImg [i][j] – redCamera [i][j])

green = abs(greenEstimImg[i][j] – greenCamera[i][j])

blue=abs(blueEstimImg[i][j] – blueCamera [i][j])

Step 3. Compare and write the results in the output
matrix:

outImg[i][j]=(red>redThreshold||
green>greenThreshold || blue>blueThreshold)?1:0

Algorithm 3. Parallel compare algorithm in GPU.

Some implementation details.
3.3.1 Execution phases.
The process of working with the GPU was divided in
three main phases:

o Initialization phase: the necessary memory is
allocated in CUDA and in the host, the color tables
for each region are copied to CUDA’s global
memory, several constants are initialized and the
execution configuration for the algorithms is
determined.

o Execution phase: the parallel algorithms are
invoked. The normal order should be:

Estimation algorithm, requires no transference
between the host and the device.

Compare algorithm, requires two transferences
between host and device: receives the camera
image, and return the resulting binary matrix.

There is some relaxation in the sense that both the
estimation algorithm and the compare algorithm
can be called more than once repeatedly, although
if the compare algorithm is called before any call
to the estimation algorithm then the results are
inconsistent.

o Termination phase: all resources are released
from the GPU and CPU, and the working session
with CUDA is closed.

3.3.2 Use of shared memory.
Global memory accesses are less time-expensive
while less memory transactions are require. If all
threads in a half-warp (0 to 15 or 16 to 31) follow a
memory access pattern (which differs according to
the computing capability) then the memory accesses
can be coalesced and only a few (one or two)
memory transactions are required, thus improving
performance.

Due to the nature of our problem, when the threads
of a half-warp accesses its color tables to estimate a
color, say the red, each can have access to any of 64
bytes, so the total area they can address is
64*16=1024 bytes, and one of the requirements for
coalescence is that all the threads in the half-warp
accesses an aligned memory segment having at most
128 bytes [CUD09] for computing capabilities 1.2 or
above. For computing capabilities 1.0 and 1.1 the
coalescence requirement are stricter, so no
coalescence will be met for any computing
capabilities.

Two choices are available: the use texture fetches or
shared memory; we chose the second one since it is
possible to obtain a bank-conflicts free distribution
with a probability of 1/16 that the desired value exists
in shared memory for each thread and each color
component.

As the blocks have 16x16 threads, we define a matrix
of shared memory with the same size for each color
component, which totalize (256 threads)*(4 bytes)*
(3 colors) = 3 Kb of shared memory per block. This

low value allows for several active blocks per
multiprocessor, improving the overall performance.

Figure 3 gives an idea of the use of shared memory
in the estimation algorithm.

This distribution is bank-conflicts free. Table 2
shows the distribution of each word of shared
memory to the banks of shared memory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

…

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 2. Distribution of each word of shared memory
in a 16x16 word matrix to the banks.

The number inside each cell represents the bank of
shared memory on which the 32-bit word of shared
memory is located. As can be seen, all threads of
each half-warp own a word of shared memory that
lies in a distinct bank, thus avoiding bank conflicts.

This shared memory size per thread gives the
possibility to estimate up to 16 different values per
color component without accessing the global
memory, because 256/4 = 64 entries in the color
table, divided by 4 bytes on each shared memory
word = 16 values.

It should also be considered that it’s not likely that
there exist many sudden variations of color in an
image, because generally the changes of colors are
softened and progressive.

Figure 3. Use of shared memory.

EXPERIMENTATION AND RESULTS
To evaluate the parallel implementation of the local
method presented in [Mig09a] for the real-time
detection of non-stationary photometric
perturbations in projection screens some
experimentation was made.

The parallel algorithms were integrated to an
existing system prototype implemented in Java
through the Java Native Interface (JNI). A little
effort was needed to make the system call either,
the existing serial implementation on CPU or the
new parallel implementation with CUDA.

The experimentation was carried out in a Core 2
Duo processor at 2.66 MHz and a GeForce 8400
GS GPU (having two multiprocessors). The screen
resolution was 1024x768 and the camera resolution
was 320x240, both with 32 bit color in RGB
format. The development environment for the
experiment was NetBeans IDE 6.5 over Microsoft
Windows XP SP2, and the version of CUDA 2.2.

Table 3 shows the results of running both the serial
and parallel algorithms in the system prototype. For
the parallel algorithms, experimentation was made
both using shared memory and not using shared
memory.

As can be seen, without using shared memory a
speedup of 1.7x was achieved, in contrast with the
higher 2.8x speedup obtained when using shared
memory.

S
er

ia
l

im
pl

em
en

ta
ti

on

P
ar

al
le

l
im

pl
em

en
ta

ti
on

P
ar

al
le

l
im

pl
em

en
ta

ti
on

(w
ith

ou
t u

si
ng

sh

ar
ed

m

em
or

y)

Latency
time

95 ms 35 ms 57 ms

Averag
e FPS

10 28 17

 Table 3. Experimentation results.

The number of concurrent threads per iteration in
the parallel implementation is equal to 320x240 =
76800 for the estimation algorithm, plus 76800 for
the compare algorithm, making a total of 153600
threads.

CONCLUSIONS
In this work, it was presented the parallelization of
the local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens using the
Computed Unified Device Architecture.

The implementation requires neither
communication nor synchronization between
threads. It is also designed to be scalable and
compatible with computing capabilities 1.0 or
above, and a bank conflicts free access to shared
memory is used in order to improve performance,
obtaining a speedup of 2.8x in the experimentation.

Still some other optimizations may be introduced to
the implementation in the future for trying to
achieve better results.

REFERENCES
[CUD09] NVIDIA CUDATM Programming Guide

2.2, 2009 NVIDIA Corporation.

[Flynn72a] Flynn, M. J.: Some Computer
Organizations and Their Effectiveness”, IEEE
Transactions on Computers, vol. C-21, Sept.
1972.

[Gra03a] Grama, A., Karypis G. et al., Introduction
to parallel computing, Addison-Wesley, 2003.

[Jay04a] JAYNES C., WEBB S., STEELE M.:
Camera-based detection and removal of
shadows from interactive multiprojector
displays. IEEE Transactions on Visualization
and Computer Graphics 10, 3 (2004).

[Kirs98a] Kirstein, C., Muller, H.: Interaction with
a projection screen using a camera-tracked laser
pointer. In: Proceedings of the International
Conference on Multimedia Modeling. IEEE
Computer Society Press (1998).

[Koik01] Koike, H., Sato, Y., Kobayashi, Y.:
Integrating paper and digital information on
EnhancedDesk: a method for real-time finger
tracking on augmented desk system. In: ACM
Trans. On CHI, 8 (4), pp. 307--322 (2001).

[LaRo03a] La Rosa, F., Costanzo, C, Lannizzotto,
G.: VisualPen: A Physical Interface for natural
human-computer interaction. In: Physical
Interaction (PI03) – Workshop on Real World
User Interfaces. 2003.

 [Mig09a] Castañeda-Garay, M., Belmonte-
Fernández, O., Gil-Altaba, J., Pérez-Rosés, H.,
Un Método para la Detección en Tiempo Real
de Perturbaciones Fotométricas en Imágenes
Proyectadas, Congreso Español de Informática
Gráfica CEIG’09, San Sebastian, Sept. 9-11
(2009), Páginas 239-242. The Eurographics
Digital Library, http://diglib.eg.org.

 [Suk01a] Sukthankar, R., Stockton, R.G., Mullin,
M.D.: Smarter presentation: Exploiting
homography in camera-projector systems. In:
Proceedings of International Conference on
Computer Vision, pp 247--253. Vancouver,
Canada, July 9-12 (2001)

