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Abstract: This note first explains Clifford’s geometric algebra (GA) as a generalization of complex and
quaternion algebras. Second, this note describes GA neurons as a natural extension of complex neurons.
In any dimension the GA neuron takes a vector input and returns another vector output. The GA
neurons are applicable to optimization of Space Folding Model for effective pattern recognition. Next,
points with precision are considered using conformal geometric algebra and it is shown that addition of
conformal vectors works well for precision update. The GA neuron and its use of vectors with precision
(or belief) could be useful for datasets with different levels of precision/detail/belief of any dimension.
The conformal vector could be also useful to set a prior distribution of geometric versors.

1 Introduction

Let T (L) be the tensor space of the linear vector space L.
Grassmann’s exterior algebra E(L) regards all elements
of T (L) which contain tensor products of any x ∈ L with
x itself as the zero element of T (L). The exterior product
or wedge product maps an ordered pair E(L) × E(L) to
E(L). The exterior product is bilinear and x∧x becomes
0 for any x in L. Because 0 = (x + y) ∧ (x + y) =
x ∧ x + x ∧ y + y ∧ x + y ∧ y where x and y are both
elements of L, the exterior product is anti-commutative
x ∧ y = −y ∧ x.

Clifford’s geometric algebra G(L) is the exterior al-
gebra of a linear space L equipped with a measure
x ·x = |x|2. G(L) has a bilinear and associative product,
that maps an ordered pair G(L)×G(L) to G(L), which is
called geometric product or Clifford product. For x, y ∈
L, the geometric product (simply written by juxtaposi-
tion of the elements) is defined as xy = x·y+x∧y. Exam-
ple: Let us think about the two-dimensional Euclidean
space R2. The geometric products of its orthonormal ba-
sis vectors {e1, e2} are e1e1 = e1 · e1 = e2e2 = e2 · e2 = 1
and e1e2 = e1∧e2 = −e2∧e1 = −e2e1. Because of the as-
sociativity we have (e1e2)2 = −e2e1e1e2 = −e2e2 = −1.
We therefore denote the unit bivector as i = e1e2, then
i2 = −1. The set of real linear combinations of {1, i} is
the even grade subalgebra of G(R2), which is isomorphic
to the set of complex numbers C.

The authors have naturally extended the complex-
valued neuron, all of whose input, weight, bias and out-
put are in C [1, 2]. The proposed neuron uses the so-
called Clifford group = {s ∈ G(L) | φ(s, x) ∈ L ∀x ∈ L},
where φ is a function constructed with geometric prod-
ucts, with weight in G(L), and with input, output and
bias in L [3]. This note discusses the relationship of
the GA neuron with complex and quaternion neurons
[4]. This note also considers points with precision using
conformal geometric algebra.

2 Complex Neuron

The complex neuron in general sums input stimuli
weighted by weights plus bias all of which are complex

numbers. For simplicity, assume the neuron has an input:

uC = wCxC + bC,

where uC, wC, xC, bC ∈ C. A two-dimensional vector
(x1, x2) can be represented as a complex number. Its
first and second components are the real and the imag-
inary coefficients respectively: xC = x1 + x2i ∈ C. On
the other hand, a natural representation of a vector is
x = x1e1 +x2e2. Using geometric algebra G(R2), we can
link it to the complex number representation as xC =
x1(e1e1)+x2(e1e2) = e1(x1e1 +x2e2) = e1x. The square
root of wC = ρ(cos θ + i sin θ), ρ ∈ [0,∞), θ ∈ [0, 2π) is
also a complex number w′

C =
√

wC =
√

ρ(cos θ
2 + i sin θ

2 ).
And complex numbers are commutative, i.e. w′

C(e1x) =
(e1x)w′

C. Then, the complex neuron becomes:

(e1u) = w′
Cw′

C(e1x) + (e1b)
= w′

C(e1x)w′
C + (e1b).

Multiply e1 from the left:

e1e1u = e1w
′
Ce1xw′

C + e1e1b.

Looking at the underlined part, and let w′
C = α + βi,

w′
Ce1 = (α + βi)e1 = αe1 + βe1e2e1

= e1(α − βi) = e1w′
C,

where w′
C is the complex conjugation. Then, the complex

neuron is represented as:

e1e1u = e1e1w′
Cxw′

C + e1e1b

u = w′
Cxw′

C + b. (1)

This u is the result of rotating x by the angle θ, scaling
by factor ρ, and translation by vector b.

3 Geometric Algebra Neuron

The geometric algebra neuron is a natural extension
of the complex neuron. Let the Clifford group Σ =



{s ∈ G(L) | φ(s, x) ∈ L ∀x ∈ L}, whose element trans-
forms a vector to another vector. For k = 0, 1, . . . , n, the
set of versors, i.e. multiplications of k linearly indepen-
dent vectors {Mk = v1v2 . . . vk ∈ G(L) | v1, . . . , vk ∈ L}
is a subset of Σ with φ(Mk, x) = MkxMk. The authors
have proposed a geometric algebra neuron:

u =
n∑

k=0

φ(Mk, x) + b

and found optimal learning rates based on the Hessian
matrix. Note that the complex neuron of eq. (1) only
represents φ(M2, x) part. In the case of n = 2, φ(M0, x)
is scalar multiplication, φ(M1, x) is a reflection, and
φ(M2, x) is a rotation. These three transformations are
mixed. The mixing weights are adjusted with the norm
|Mk|2. In the case of n = 3, φ(M2, x) is isomorphic to
the quaternion product which gives rotation and scaling
in three-dimensional space.

As the GA neuron learns reflection and rotation of vec-
tors and multivectors in any dimension, a network con-
structed with GA neurons can be applicable to optimiza-
tion of Space Folding Model (SFM) [5]. In the network
for SFM, a GA neuron is assigned for each Space Folding
Vector (SFV) and the feature space is folded to minimize
the error function by training {Mk}s.

4 Conformal GA and Update of Preci-
sion

Introducing new two basis vectors e⃗+ and e⃗− to G(Rn) =
G(n), we have conformal geometric algebra G(n + 1, 1).
The new vectors have positive and negative signature,
i.e. e⃗ 2

+ = −e⃗ 2
− = 1. And further new basis vectors are

constructed in the e⃗+ ∧ e⃗− plane:{
n⃗∞ = e⃗+ + e⃗−
n⃗o = 1

2 (e⃗− − e⃗+) .

Because n⃗2
∞ = n⃗2

o = 0, they are also called null basis
vectors. Using these null basis vectors, n-dimensional
hypersphere with center at x⃗ ∈ Rn and radius ρ ∈ R is
represented as

X = µx⃗ +
µ

2
(
x⃗2 − ρ2

)
n⃗∞ + µn⃗o,

where µ is any nonzero real number.
We regard ρ2 of the conformal vector as precision, say

ρ2 = β = σ−2, where σ represents a standard deviation.
In this interpretation, addition of two conformal vectors
means:

X + Y = x⃗ + y⃗ +
1
2

(
x⃗2 − βx + y⃗2 − βy

)
n⃗∞ + 2n⃗o

∝ x⃗ + y⃗

2
+

1
2

(
x⃗2 + y⃗2

2
− βx + βy

2

)
n⃗∞ + n⃗o

= m⃗ +
1
2

(
m⃗2 − β

)
n⃗∞ + n⃗o,

where m⃗ = (x⃗ + y⃗) /2, i.e. the midpoint, and β =
(βx + βy) /2−

{
(x⃗ − m⃗)2 + (y⃗ − m⃗)2

}
/2. The new preci-

sion β is interpreted as average precision minus variance.
This can be generalized to weighted points. Let µx ∈ R

be the weight.

X = µxx⃗ +
µx

2
(
x⃗2 − βx

)
n⃗∞ + µxn⃗o.

The addition of weighted points is:

X + Y = µxx⃗ + µy y⃗ +
µx(x⃗2 − βx) + µy(y⃗2 − βy)

2
n⃗∞

+ (µx + µy)n⃗o

= µm⃗ +
µ

2
(
m⃗2 − β

)
n⃗∞ + µn⃗o,

where µ = µx + µy is the new weight and

m⃗ =
µxx⃗ + µy y⃗

µ

β =
µxβx + µyβy

µ
− µx(x⃗ − m⃗)2 + µy(y⃗ − m⃗)2

µ

m⃗ is the internally dividing point (center of mass) and
the new precision β is interpreted as weighted average
precision minus weighted variance.

This fact of good update of precision can be useful in
the following cases.

1. Each training/test sample has a different level of
precision β (or belief).

2. Massive samples must be learnt and coarse graining
is effective. Here, a lot of samples are learnt at once
as a hypersphere sample.

3. Precision (or belief) characterises a prior distribu-
tion of a dataset and neuron parameters.

5 Conclusion

This note described the GA neuron as a natural extension
of the complex neuron. In any dimension the GA neuron
inputs a vector and outputs another vector. Next, points
with precision were considered using conformal geomet-
ric algebra. And we showed that the addition of confor-
mal vectors works well to update precision. We want to
note the possibility of combining GA neuron with confor-
mal representation of precision in the analysis/learning
of datasets with various levels of details and in the coarse
graining of huge datasets. Bayesian updates of weights
could also be represented by conformal vectors.
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