
Reading the Visible Frame Buffer to a Pixel Buffer
Object

Antonio Díaz-Tula

Departamento de Ciencia de la
Computación

Universidad de Oriente
Ave. Patricio Lumumba, 9500

 Santiago de Cuba, Cuba

diaztula1@gmail.com

Miguel Castañeda-Garay

Departamento de Ciencia de la
Computación

Universidad de Oriente
Ave. Patricio Lumumba, 9500

Santiago de Cuba, Cuba

mcgaray_cu@yahoo.es

Óscar Belmonte-Fernández

Departamento de Ingeniería y
Cienca de los Computadores

Universitat Jaume I, Spain

Oscar.Belmonte@lsi.uji.es

ABSTRACT
Under certain circumstances it is necessary to read the visible frame buffer from a display device for post-
processing. Examples of such applications are systems where the user interacts through projection screens and
cameras. Traditionally the frame buffer is copied to the RAM to perform the post-processing, which many times
is parallelisable and compute-intensive, leading to high latency times associated with the transfer of the pixel’s
information over the bus and serial execution on CPU. But to the purpose of processing the frame buffer copy
with the programmable hardware of the graphics processing unit (GPU), it needs to be copied to Video RAM
instead of conventional RAM to avoid the latency time and exploit the parallel computational resources of the
GPU. On this work we present an easy-to-use approach for reading the visible frame buffer to a Pixel Buffer
Object, suitable for processing with the GPU through the CUDA architecture. A comparison with a method for
transferring the visible frame buffer to the RAM is presented, as well as a practical application.

Keywords
visible frame buffer, pixel buffer object, layered window, CUDA.

1. INTRODUCTION
Several approaches are based on post-processing the
content of the visible frame buffer. For example, in
high definition projection screen systems several
computer vision techniques are based on post-
processing the image that one or more projection
screens are displaying, in order to perform
comparisons with the images captured by one o more
cameras, thus detecting the user actions like pointing
to a certain region of the projected image [Bres03a],
[Jay04a], [Mig09a].

If this processing is performed on CPU, there is a
latency time associated with the transfer of the image
being displayed by a projection device to the main
memory (RAM), and the processing itself is done in
serial execution.

With the rising and development of programmable
video cards, new opportunities are now at close hand.
These video cards have an internal video memory
(VRAM) and a parallel architecture of several
processors and enormous computational capabilities.

Examples of the software counterpart to exploit these
features are the Shading Languages and CUDA.

The process of reading the frame buffer into VRAM
is currently done by using a pixel buffer object
(PBO), which is suitable for processing with CUDA
since it can be mapped to be accessed from CUDA’s
kernels, either for reading and/or writing.

But for reading the “entire” visible frame buffer (not
a window’s specific) a strong background and
programming skills in OpenGL and the target
Operative System (OS) API is required.

On this work we present an approach encapsulated in
a C++ class that abstracts all the complexity
associated with the process of reading the visible
frame buffer of a display device into VRAM using a
PBO. The target OS is Microsoft Windows.

2. ACCESSING THE FRAMEBUFFER
THROUGH OPENGL
To be able to use PBOs, the hardware-accelerated
implementation of OpenGL must be launched.

Over Windows, the visible frame buffer is the
Desktop. But the OS does not allow creating a
hardware-accelerated Rendering Context (RC)
associated with the Desktop and make it current.

A full-screen, top-level transparent window is
needed, such window do support a hardware
accelerated RC. A window’s procedure is required,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

as well as many calls and configuration setup for
both OpenGL and OS API.

We encapsulate all the processing needed in a single
C++ class, whose interface is detailed in Table 1.

Method Description

w2GL Constructor: initializes the
instance attributes, gets the
width, height and color depth of
the desktop; creates a
transparent, top-level window
that covers the entire desktop.

~w2GL Destructor: releases all allocated
resources and destroys the
window.

createGLContext Creates a device context for the
window, assign it a native pixel
format (hardware-accelerated)
and creates the corresponding
rendering context.

makeCurrent Makes the previously created
rendering context current.

unmakeCurrent Makes the rendering context no
longer current.

readFrameBuffer Reads the frame buffer content to
the pixel buffer object.

getWidth Returns the window’s width.

getHeight Returns the window’s height.

getPBO Returns the pixel buffer object
identifier (unsigned integer),
which can be used for processing
the frame buffer image either in
GPU or CPU.

displayChange Adjust the window’s size,
OpenGL current state and PBO
memory to the new size and
color depth of the screen.

Table 1. The interface of the class w2GL

3. EXPERIMENTATION AND
CURRENT APPLICATION
A method for reading the visible frame buffer to the
RAM, based on a Memory Device Context and a
Device Independent Bitmap (DIB) [MSD05], was
implemented in order to perform some comparisons
with our approach. This method includes a call to the
function CreateDIBSection and BitBlt from the
Windows’s API. Results are shown in Table 2.

Although results show a better performance using
Windows’s DIB, not all devices support the BitBlt
function, it is not suitable for processing in GPU and
the pixel information is in BGR format.

Screen resolution Using DIB Using w2GL

1024x768 340 215

1280x1024 190 130

Table 2. Performance results

The class w2GL allows processing the visible frame
buffer in both GPU and CPU. Full screen
applications are captured, including those that use
OpenGL and Direct3D. On the other hand, video
rendering using hardware-supported overlays is not
captured (a black region is read).

If a user of the class wants to draw something using
OpenGL, it will need to create its own rendering
context and make it current, since our class does not
create a new thread, but is part of the one that created
the object w2GL. This is a disadvantage since the
context switching is expensive. Future extensions
may create its own thread to overcome this difficulty.

The approach works for multiple screens. In the Dual
View Mode, it will read the main screen.

The class is currently used in a parallel
implementation of a local method for detecting non-
stationary photometric perturbations in projected
images [Mig09a] with CUDA, as one part of this
method requires post-processing the visible frame
buffer.

Results are good, as in the first experimentation a
speedup of 2.8x was achieved, and ultimately up to
3.5x. Reading the visible frame buffer using our
approach makes no degradation on the system
performance.

4. REFERENCES
 [Bre03a] Bresnahan, G. et al.: Building a large scale,

high-resolution, tiled, rear projected, passive
stereo display system based on commodity
components. In: Stereoscopic Displays and
Virtual Reality Systems X, SPIE Proc. Vol. 5006
(2003).

[Jay04a] JAYNES C., WEBB S., STEELE M.:
Camera-based detection and removal of shadows
from interactive multiprojector displays. IEEE
Transactions on Visualization and Computer
Graphics 10, 3 (2004).

 [Mig09a] Castañeda-Garay, M., Belmonte-
Fernández, O., Gil-Altaba, J., Pérez-Rosés, H.,
Un Método para la Detección en Tiempo Real de
Perturbaciones Fotométricas en Imágenes
Proyectadas, Congreso Español de Informática
Gráfica CEIG’09, San Sebastian, Sept. 9-11
(2009), Páginas 239-242. The Eurographics
Digital Library, http://diglib.eg.org.

 [MSD05] Microsoft Development Network Library
2005.

