
Graph Drawing in Lightweight Software:

Conception and Implementation

Vitaly Zabiniako

Riga Technical University, Institute of Applied
Computer Systems,

1/3 Meza street, Latvia,
LV-1048, Riga.

Vitalijs.Zabinako@rtu.lv

Pavel Rusakov

Riga Technical University, Institute of Applied
Computer Systems,

1/3 Meza street, Latvia,
LV-1048, Riga.

Pavels.Rusakovs@cs.rtu.lv

ABSTRACT
This work describes basic ideas of lightweight graph visualization system developed in Riga Technical

University. Comparison of according existing freeware and shareware solutions is being made. Overall proposed

software architecture at high abstraction level is presented along with details of implementation of its

mechanisms. This work includes aspects of optimization of force-based graph layout algorithm; description of

useful visualization techniques (such as projective shadows, visual data clustering that might be useful in design

and analysis routines, etc.). Described ideas were implemented and verified by visualization of large graphs in

original lightweight software 3DIIVE. Conclusions about achieved results are also presented.

Keywords
Graph, visualization, architecture, algorithm, clustering.

1. INTRODUCTION
The concept of information visualization plays

important role in modern IT industry, as it allows

representing data according to the current needs of

end-user and information processing tasks. There is

a demand for these tools in such domains as data

mining and analysis, education process, etc.

Multiple visualization solutions already exist, each

with its own functionality and implementation

specifics. Some of these tend to handle wide range

of input data types and visualization tasks (which

comes at the cost of complexity and usually – bulky

architecture), while others are more of ad-hoc type

solutions for specific purposes (and, as a result,

non-usable outside originally intended visualization

domain). The authors of this paper argue that there

is a need for more agile solutions that should be

based on achievements of modern computer

graphics and object-oriented approach. These will

provide appropriate aid for users in science,

industry and business. Proposed architecture must

ensure a set of primary features (i.e. ability to store

and represent topology and associated metadata of a

graph using appropriate description formats, layout

algorithms and visualization techniques for better

comprehension).

2. OVERVIEW OF EXISTING

GRAPH DRAWING SOLUTIONS
Nowadays one can find wide range of tools that

provide aid in graph drawing. Considering that it is

impossible to summarize features of all these tools

and versions, authors decided to analyze few

distinctive representatives from both freeware and

commercial products (summary of main aspects of

such tools are presented in Table 1). Additionally,

authors choose a set of criteria that is

Table 1. Comparison of graph drawing solutions

Criteria

Solution
Data format Space

Graphics

library
Platform

Additional

tools

Graphviz DOT (plain text-based) 2D Native Windows / Linux / Mac OS –

Wilmascope 3D Native XML-based, GML 3D Java 3D Windows +

aiSee GDL 2D Native Windows / Linux / Mac OS –

Tulip Native, GML, DOT 3D Native Windows / Linux +

yFiles Native, GraphML, GML 2D Native Windows / Linux / Mac OS +

Walrus Native 3D Java3D Windows / Linux / Mac OS –

Tom Sawyer Native 2D Native Windows / Linux / Mac OS +

VGJ GML 2D Native Windows / Linux –

3DIIVE Native XML-based 3D OpenGL Windows +

based on aforementioned primary features, support

of additional analysis tools and implementation

capabilities and allows comparing these solutions in

order to get general vision of functionality.

3. OVERALL SOFTWARE

ARCHITECTURE AND INDIVIDUAL

FRAMEWORK COMPONENTS
Last row of Table 1 contains information about

original lightweight graph visualization software

system that is being developed in Riga Technical

University for academic purposes as a part of

doctoral thesis research. This system will be

referred as “3DIIVE” (Three–Dimensional

Interactive Information Visualization Environment)

further in this text. This system was initially

intended as utility program for demonstrating basic

concepts in graph drawing area (focusing on

drawing in three dimensions). As it can be

perceived from the table, 3DIIVE is an agile

solution that might be used both for general

visualization of information encoded in form of

graphs and more specific data-oriented applications

in MS Windows platform. High abstraction level of

proposed software framework is presented in Fig.1.

Fig.1. Architecture of 3DIIVE system

Our approach is based on the assumption that there

must be clear separation in functionality of layout

algorithms and visualization techniques – in this

case these will be able to perform independently,

making implementation of other algorithms /

techniques much easier. Another assumption is that

the structure of proposed framework must conform

to the object-oriented approach, because graph itself

can be conveniently interpreted as a set of

topological and other associated properties that can

be altered by appropriate methods.

Considering aforesaid, the main parts of this system

are as follows: XML parser (interpretation of the

input XML document with a description of the

graph, and extraction of necessary information

about topology of the graph and its elements),

module of interactive visualization (the main part of

the system that performs visualization by triggering

necessary layout algorithms and visual techniques

from repositories and relies on navigation, selection

and modification mechanisms), repository of layout

algorithms (a set of available layout algorithms for

visualization of graphs), repository of visualization

techniques (a set of techniques for improvement of

comprehension) and XML assembler (acts similar to

XML parser with only difference – opposite

information processing flow).

The graph within a system is presented as a separate

object with multiple attributes and methods.

Information about topology of the graph from the

parser module is converted into the adjacency

matrix. The rest of the data is loaded into multiple

arrays with references to associated elements.

4. IMPLEMENTATION OF LAYOUT

ALGORITHMS AND

VISUALIZATION TECHNIQUES

4.1 Layout algorithms
Current implementation relies on well-known force-

based layout algorithm proposed by Peter Eades

[Ead84]. The repository holds both its original and

custom versions with optimizations done by

authors. It is founded on combination of force-

based and orthogonal layout properties and includes

additional improvements.

For example, during the search of equilibrium state,

in case if a value of average kinetic system energy

achieves local minimum, it takes an additional time

to retrieve from this, that’s why authors make a step

with random offset from current position, bypassing

“slow” iterative recovering upon detection of local

minimum. Another aspect is that the equilibrium

state is being formed with unpredictable offset in

space. In our system the model of graph is placed

near the origin of a coordinate system.

Authors evaluated performance of both original

(“FB”) and modified (“MOD”) algorithms with a

set of time measurements from the first iteration and

to the moment, when an equilibrium state was

reached. Probability distribution is shown in Fig.2.

Fig.2. Probability distribution graph

Statistical processing allows concluding that the

modified algorithm performs about to 15% faster

while showing more stable distribution of time

required for the execution. For detailed description

of improved algorithm and according experiments

refer to [Zab08].

4.2 Visualization techniques
Repository of visualization techniques holds a set of

tools for improvement of information

comprehension. It includes both common useful

techniques, such as transparency (in case if certain

part of the graph is chosen for further analysis,

transparency helps to abstract from the other data

by visually “weakening” it while still allowing to

perceive the whole graph structure), magnification

(interactive scaling up visuals that is implemented

via image post-processing and allows to see more

details by increasing resolution of these), etc. For

more detailed description refer to [Zab09].

Fig.3. “Projective shadows” and “Visual

clustering”

In 3DIIVE there are few custom visual techniques

implemented by authors. One of such techniques is

“Projective shadows” (Fig.3, part A). The idea is to

draw the three-dimensional data model in iterative

steps. The first step captures the model from the

current position of the virtual camera like in

previously mentioned techniques. During next steps

camera is placed so that it faces model orthogonally

– directly from the top, front, left etc. Each

rendering result is placed into separate texture.

When all steps are complete, textures are placed on

corresponding faces of the rectangular

parallelepiped (or cube). The parallelepiped is

drawn in the scene so that three-dimensional data

model is situated at its centre. In this case each

texture represents a projection or essentially a

“shadow” of original data structure.

As the result, user perceives not only the graph

itself, but he can also evaluate and choose one two-

dimensional instance which suits for outputting it in

a plane surface (for example – for printing the graph

on a paper). Two-dimensional instances are updated

each frame and modifications that user performs

with the spatial graph are reflected in all projections

in real-time which makes this technique particularly

useful.

In order to support this technique, graphical

framework must provide access for rendering to

texture which can be applied to the scene later.

OpenGL framework (this API has been chosen due

to its simple yet effective state machine model

[Zab06]) allows to implement projective shadows

with the code as follows:

Projective shadowing allows to get more detailed

comprehension about data structure – when

perceiving spatial model from particular point of

view it is sometimes hard enough to judge how

complex the graph topology in individual

dimensions is. Multiple projections allow to get rid

of this problem. This concept is similar to

orthographic projection views in CAD (Computer-

Aided Design) systems. The difference is that in this

case shadows allow to explore topological

relationships of multiple elements rather than purely

geometrical properties of single object. It is also

suitable for tasks where the result of visualization

must be presented or printed out as planar image.

Another custom implemented technique is in

relation with graph data clustering task (Fig.3, part

B). In general, clustering is required in case if data

units must be evaluated in terms of its similarity or

semantic closeness [Wri04]. Two common

examples of such analysis are optimization of

storing data in memory (in the field of database

technology classic implementation of “Many-to-

Many” relationship between two entities via

auxiliary table results in data storage in different

memory regions, so unwanted additional fetching of

memory pages would be required) and deriving

hidden patterns in large loosely structured data sets

(detecting of dense semantic relationships among

entities of knowledge domain may influence

management strategy and even trigger development

of new business rules).

Data clustering opportunity in 3DIIVE is based on

secondary effect of force-based approach: the final

layout tends to group densely interconnected nodes

close to each other, while separating loosely

connected groups in different space regions. A

space partitioning mechanism is required to get the

desired results (separate sets containing unique data

(A)

/*1*/ ... //set matrix for camera
/*2*/ ... //draw object
/*3*/ for (x=1; x<=DimNum; x++)
/*4*/ {
/*5*/ ... //set matrix for dimension
/*6*/ ... //draw object
/*7*/ glCopyTexImage2D(GL_TEXTURE_2D,
 0,GL_RGBA,0,0,512,512,0);
/*8*/ }
/*9*/ //draw cube with textured faces

(B)

elements). The implemented model of space

partitioning is based on octree that produces

recursive division of cube model as shown in Fig.4.

Fig.4. Recursive space partitioning model

Finally, the last implemented mechanism that is

needed for accomplishment of clustering is regions

merging – the natural way to bring multiple close

nodes into corresponding cluster. Definition of a

cluster with a set of neighbor regions is recursively

transitive by its nature – region R, its neighbors

{R’}, neighbors of neighbors {R’’), …, etc. belong

to the same class. Authors propose the pseudo-code

for the algorithm for assigning unique cluster

identifications for an ordered set of regions:

The first procedure assign_cluster_id initiates

sequential processing of regions by calling

subroutine process_region. When non-empty and

un-marked region has been found, it becomes either

a core of new cluster or a part of already existing

one – depending on the state of surrounding

regions. Then all its neighbors are recursively

revisited as in Fig.5 (sequence of regions is marked

with red numbers and resulting clusters are marked

with blue).

Fig.5. Example of partitioning sequence

5. USAGE EXAMPLES
Screenshots of different 3DIIVE functioning modes

while visualizing complex network that consists of

few hundred nodes are presented in Fig.6, (part A –

selection step, B – usage of magnification, C –

usage of transparency, D – clustering step).

Fig.6. Screenshots of 3DIIVE workflow

6. CONCLUSION
Our implementation – 3DIIVE software system,

allows visualization, analysis, editing of general

graphs and provides a set of useful techniques for

better information comprehension.

Current version holds both well-known existing

graph drawing solutions and those proposed by the

authors. The functional content of each module is

gradually expanded during author’s researches in

the domain of graph visualization.

Considering its clustering capabilities this system

can be used not only as a system for visualization

and analysis but also as a tool for optimization, e.g.

for refining relational model of database structure.

7. REFERENCES
[Ead84] P. Eades. A heuristic for graph drawing,

Congresses Numerantium, vol. 42, pp. 149-160

(1984).

[Wri04] M. Kaufmann, D. Wagner “Drawing

Graphs: Methods and Models”, Springer, 312 p.

(2001).

[Zab06] V. Zabiniako, P. Rusakov. Comparative

Analysis of Visualization Aspects in Technologies

Direct3D and OpenGL. Scientific Proceedings of

Riga Technical University, Computer Science,

series 5, vol. 26, pp 209-221 (2006).

[Zab08] V. Zabiniako, P. Rusakov. Development

and Implementation of Partial Hybrid Algorithm for

Graphs Visualization, Scientific Proceedings of

Riga Technical University, Computer Science, ser.

5, vol. 34, pp. 192 – 203 (2008).

[Zab09] V. Zabiniako, P. Rusakov “Supporting

Visual Techniques for Graphs Data Analysis in

Three-Dimensional Space”. The 50th Scientific

Conference of Riga Technical University, Computer

Science, Applied Computer Systems, October,

Riga, Latvia (2009).

(A)

proc assign_cluster_id

 for each region r process_region(r);

end

proc process_region(r)

 if r = Ø or r has id then return;

 if r has neighbors with id then

 assign same id to r;

 else

 assign new id to r;

 end

 for each neighbor n process_region(n);

end

(C) (D)

(B)

