
Knowledge representation using graph grammar rewriting
system

Jiří Zuzaňák, Pavel Zemčík
Graph@FIT

Department of Computer Graphics and Multimedia
Faculty of Information Technology

Brno University of Technology, Brno 612 66, Czech Republic
{izuzanak,zemcik}@fit.vutbr.cz

ABSTRACT

Graph rewriting systems are applicable to vast majority of problems that are being solved in computer science. From problems
concerning program optimization, software verification, description, and parsing of structured information to graph program-
ming languages and layout algorithms. Graph rewriting systems are often represented as sets of rules describing transformations
on graphs. The graph rewriting rule encapsulates complete information about applicable graph modification. In context of the
described graph rewriting system, rules represent atomic modification of graph. A novel approach to graph rewriting and cri-
teria for rule application enabling development of exhaustive graph rewrite system are introduced. The presented approach is
derived from the well known double pushout approach (DPO). This paper concentrates on discussion of knowledge formaliza-
tion representation for modeling concepts and on application of these concepts using the proposed programmed graph rewriting
system.

Keywords: Graph rewriting, Knowledge representation, Graph grammars, Image processing, Computer vision

1 INTRODUCTION
Most of the computing techniques can be simulated by
graph rule based modifications performed on models.
Systems from Chomsky hierarchy of grammars based
on string transformations are used for modelling of var-
ious languages; similarly, graph rewrite systems (GRS)
based on graph transformations can be used to trans-
form models based on graphs.

This way, the proper set of graph transformations
(graph rewriting rules) can be used to describe seman-
tics of the simulated process. Such process can be e.g.
program optimization, software verification, parsing of
complex structured information, layout algorithms, or
modification of complex networks. Traffic networks,
simulation of chemical reactions, construction of arti-
ficial neural networks, etc. represents example of net-
works which can be modeled and transformed by graph
rewriting systems. Follows few examples (described in
more details) of application of graph rewriting systems.

In [11] traffic, networks are modelled by graph
rewriting system. Result of graph rewriting process
is Time Transition Petri Net (TTPN). Generated Petri
Nets can be directly used for simulation of particular

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

traffic situations. The graph grammars in this work
define semantics of a given start model as all the
reachable models that results from the application of
rules.

Graph transformations are used also for simulation
of chemical reactions. In [15] reactions are modelled
by set of edge relabeling graph transformations. Re-
action is based on transformation of substrate chemical
graph to a product chemical graph. Transformation of
is performed by breaking existing bonds and creating
new bonds between molecule atoms. Atoms of chem-
ical molecule are represented by vertices, while bonds
between atoms are represented by graph edges.

Graph rewriting systems can be also exploited for
rewriting of specialized patterns such are terms ([6,
2, 3]) and already mentioned strings. The theory of
term graph rewriting studies the issue of representing
finite terms as directed, acyclic graphs, and of model-
ing term rewriting by graph rewriting. Main advantage
of this approach is sharing of common subterms explic-
itly, avoiding to copy subterm when applying rewrite
rule with more than one occurrence of a variable in its
right-hand side.

Graph rewriting is also used for performing basic
computations (atomic steps) in graph programming
(GP) languages [14]. GP languages are based on
modification of input graphs, and related transforma-
tion of vertex and edge labels. Transformations are
determined by set of rewriting rules, where rules are
part of graph algorithm. Resulted graph programming
language is suitable for solving graph problems at a

high level of abstraction, freeing programmers from
handling low-level data structures.

Graph rewriting systems can be used as computa-
tional model for more general class of languages than
just GP languages. Functional and logical program-
ming languages for example. Whilst implementation of
functional languages by graph rewriting is simple and
intuitive, the implementation of logic programming lan-
guages is less direct and thus is more limited in practice.
In [13] is proposed approach applying graph rewriting
system as computational model for logic programming
language. The achieved results are demonstrated on im-
plementation of Prolog, and more novel logic program-
ming language PLL.

In this paper, description of a novel approach for
graph rewriting and transformation based on pro-
grammed graph rewriting system is presented. The
graph rewriting system is designed mainly for parsing
and interpreting of knowledge retrieved from image or
video by various image processing and computer vision
algorithms. However, presented graph rewriting system
is designed in generally for use in any system which
can benefit from graph transformations. The presented
system and algorithms are designed especially for
efficiency of execution.

This paper is organized as follows. In Section 2, basic
definitions and notations are presented. Section 3 con-
tains description of graph rewrite system basics (graph
rewriting rules, left-side matching and rule application).
Section 4 briefly describes proposed graph rewriting
system. Implementation of described graph rewriting
system is discussed in Section 5. Finally in Section 6
the discussion of the results and proposed ideas for fu-
ture work concludes the paper.

2 BASIC DEFINITIONS
In this section, definitions and notations further re-
quired for description of graph rewriting system will be
introduced. Basic concepts of graph representation and
graph properties and also relations among graphs will
be described in details.

2.1 Basic Definitions
For graph rewriting system and graphs itself to be us-
able, it is important to introduce a possibility to evalu-
ate vertices and edges of graph by labels. Let labels be
set of arbitrary objects of same class. Also, for further
definitions, basic concepts of deterministic finite state
machine will be needed.

Definition 1 (Labels) Let L be a set of values, the la-
bels. The relation equal ⊆ L×L determines equality of
elements ofL. We will denote (x,y) ∈ equal by x=equal y

Relation equal should be relation of equivalence (re-
flexive, symmetric and transitive).

σtG ◦σ−1
sG

v1 v2 v3 v4

v1 0 1 1 1
v2 0 0 0 1
v3 0 0 0 1
v4 0 0 1 0

Figure 1: Example of directed multigraph

Definition 2 (Deterministic finite state machine)
The deterministic finite state machine (DFSM) is
quintuple M = (Σ,S , s0, δ,F), where Σ is input alphabet,
S is non-empty set of states, s0 ∈ S is machine initial
state, δ : S × Σ → S is deterministic state transition
function, and F ⊆ S is set of final states.

2.2 Graph Representation
Most important structure in graph rewriting systems is
the graph itself. From now on, reference to a graph
will refer to directed graph with multi-edges and loops
enabled. (Directed multigraph with loops)

Definition 3 (Directed multigraph) A directed multi-
graph G is tuple G = (V,E,σs,σt,µv,µe), where V is set
of vertices, E is set of edges, σs : E→V, andσt : E→V
are functions mapping edges to theirs source and target
vertices, and µv : V →L, and µe : E→L are functions
mapping vertices and edges to set of labels L

For text simplification we will write G = (VG,EG, . . .)
for graph G = (VG,EG,σsG ,σtG ,µvG ,µeG).

Example 1 Follows example of simple directed
multigraph G = (VG,EG,σsG ,σtG ,µvG ,µeG), where
VG = {v1, . . . ,v4}, EG = {e1, . . . ,e7}, σsG = {(e1,v1),
(e2,v1), (e3,v1), (e4,v2), (e5,v2), (e6,v3), (e7,v4)}, and
σtG = {(e1,v2), (e2,v3), (e3, v4), (e4,v4), (e5,v4), (e6,v4),
(e7,v3)}, and µvG = µeG = ∅. Example of graph is
displayed in Fig. 1.

Denotation 1 Several functions are implicitly associ-
ated with graph G

We say that edge e is incident to σs(e) and σt(e), and
if σs(e) , σt(e) then vertices σs(e) and σt(e) are adja-
cent.

Set of all edges incident to vertex v is defined by func-
tion inc(v) = {e | v = σs(e)∨ v = σt(e)}; similarly, set of
all vertices adjacent to vertex v is defined by function
ad j(v) = {u | (u = σs(e)∧ v = σt(e))∨ (u = σt(e)∧ v =
σs(e))}

The function in : V → N determines the number of
incoming incident edges of a vertex: in(v) = |{e | v =
σt(e)}|. Similarly, the function out determines the num-
ber of outgoing incident edges: out(v)= |{e | v=σs(e)}|.
A vertex with in(v) = 0 is called root. A vertex with
out(v) = 0 is called sink

The set of all graphs over set of labels L is denoted
as GL

Figure 2: Graphs G and H and morphism f : G→ H

Several relations among graphs are defined. From ba-
sic graph unions and intersections to subgraph relation
and graph isomorphisms, that are essential for graph
rewriting systems.

Definition 4 (Graph union and intersection) A
graph I = G ∪H is called union of graphs G and H,
if I = (VI ,EI , . . .), where VI = VG ∪VH , EI = EG ∪ EH ,
σsI = σsG ∪σsH , σtI = σtG ∪σtH , µvI = µvG ∪µvH , and
µeI = µeG ∪ µeH . Graph intersection I = G ∩ H, and
graph difference I =G \H are defined similarly

Definition 5 (Subgraph) A graph H = (VH ,EH , . . .) is
subgraph of graph G, if EH ⊆ EG, VH = {v | e ∈ EH∧(v=
σsG (e)∨ v = σtG (e))}∪ (Varb ⊆ VG), σsH = σsG ∩ (EH ×
VH), σtH = σtG ∩ (EH ×VH), µvH = µvG ∩ (VH ×L), and
µeH = µeG ∩ (EH ×L), where Varb is arbitrary subset of
VG. Subgraph is denoted by H ⊆G

Definition 6 (Graph morphism and isomorphism)
A graph morphism f : G → H between two graphs
G and H consists of two functions fv : VG → VH and
fe : EG → EH that preserve labels and attachment
to vertices, that is, µvH ◦ fv = µvG , µeH ◦ fe = µeG ,
µvH ◦σsH ◦ fe = µvG ◦σsG , and µvH ◦σtH ◦ fe = µvG ◦σtG

Functions illustrating connections of vertices and
edges of graphs G and H, and morphism between them
f : G→ H are depicted in Fig. 2.

The graph morphism f is injective (surjective) if fv
and fe are. If f is both injective and surjective, then
it is an isomorphism. In this case graphs G and H are
isomorphic, which is denoted by G � H

Definition 7 (Subgraph isomorphism) A subgraph
isomorphism f from graph H to graph G is graph
isomorphism f : H → S , where S ⊆ G. Denoted by
H � (S ⊆G), or f : H→ (S ⊆G)

3 GRAPH REWRITING
Basic building block of graph rewriting system is
graph rewriting rule, describing one possible modi-
fication (transformation) of the target host graph. In
vast majority of literature ([11, 15, 14]) graph rule
is represented by its left-hand side, right-hand side,
and set of connections. Left-hand side of such rule

can be represented by node, edge, or graph, from
which rewriting system get its name: node-, edge-,
graph-replacement systems. Right-hand side of rule is
in most cases represented by graph. The connections
describe relation between left-hand and right-hand side
of rule. In many cases, connections also describe how
to compute (find) labels of vertices and edges newly
inserted into the host graph.

This paper is restricted to graph-rewriting systems,
thus node and edge-rewriting systems are not consid-
ered. Most common approach for graph transformation
is Double Pushout Approach (DPO) ([4, 7, 8]) which
has rewriting rules of form:

r : L←l K→r R (1)

where L is left-hand side, K is interface graph, R is
right-hand side, and l and r are morphisms. K repre-
sents interface that is common for L and R. Transforma-
tion of graph G to graph H by rule r describe diagram
in Equation 2.

L ←l K →r R
↓ m ↓ d ↓ m∗

G ←l∗ D →r∗ H
(2)

In order to apply rule to graph G the match m should
be found between L and G. In next step are from G
deleted all elements L \K, thus producing graph D. Fi-
nally to produce graph H elements from R\K are added
to graph D.

Definition 8 (Reducible expression) Reducible ex-
pression (redex) represents subgraph of host graph, to
which is left side of rule mapped.

Approach to graph rewriting presented in this paper is
inspired by the DPO approach. But in contrary to DPO,
the proposed approach works as follows: the first step
of a rule rewrite, once a redex has been located, is to
glue into the host graph new structure (represented by
right-side); then change the shape of the graph by redi-
recting edges. Finally redundant structure (the garbage)
is removed.

Beside the connections in existing implementations,
also negative application conditions (NAC), are used,
that are left-hand side context information restricting
rule from application. This technique adds dependency
on contextual information to process of left-hand side
matching. Such extension of this process boosts expres-
sive power of graph rewriting system.

In the presented approach left-hand side of rule is
represented by general graph. This graph should be di-
rected multigraph with loops, and must be weakly con-
nected (in graph exist non oriented path from any ver-
tex to each other vertex). Above mentioned constraint
is requirement of algorithm for subgraph isomorphism
search.

Figure 3: Example of simple graph rewriting rule

Definition 9 (Graph rewrite rule) The quadruplet r =
(L,R,Eex, join) is graph rewrite rule, which consist of
left-hand side L ∈ GL, right-hand side R ∈ GL, set of
excluded edges Eex ⊆ EL, and function join : VL→ VR

The set of excluded edges Eex determines edges that
must not be present in host graph in order to rule be ap-
plicable (NAC). Function join defines connection (in-
terface) of graph rule in host graph. Example of simple
graph rewriting rule is depicted on Fig. 3, where func-
tion join is expressed by dashed arcs, and Eex = ∅.

Definition 10 (rule matching) The graph rewriting
rule r = (L,R,Eex, join) is applicable to host graph H
if:

1. graph isomorphism fr : Lw→ (S L ⊆H) exists, where
Lw = (VL,EL \Eex,σsL ,σtL ,µvL ,µeL).

2. the following holds for every ul ∈ VL and v ∈ VH: v =
frv (ul)∧ (inLw(ul) < inH(v)∨outLw (ul) < outH(v))⇒
ur ∈ VR∧ (ul,ur) ∈ join

3. the following holds for every eex ∈ Eex and
e ∈ EH: σsH (e) , frv (σsL (eex)) ∨ σtH (e) ,
frv (σtL (eex))∨µeH (e) ,equal µeL (eex)

Graph Lw is constructed by removing edges of set
Eex from graph L. Graph isomorphism fr is called oc-
currence, and graph S L = (VS L ,ES L , . . .) is called redex
(reducible expression). Statement 2 assures that all ver-
tices of graph L that are not in join relation with some
vertex in graph R have the same output and input de-
gree as their image in graph H. Statement 3 assures
that in graph H, edges that can be interpreted as images
of edges from Eex are not present.

Definition 11 (Graph rule match) The Graph rule
match is a triplet m = (r,H, fr), where r is matched
graph rewriting rule, H is host graph, and fr is
matching morphism, which meet all conditions from
Definition 10

Evaluation function determines labels of new ele-
ments (vertices, edges) in host graph. This function is
evaluated for every element e ∈ VR ∩ ER of right-side
graph R. Every of these elements has associated one of
evaluation heuristics.

Definition 12 (Evaluation function) The method for
determining labels of new elements of host graph is
encapsulated in evaluation function eval : (e,m)→ L,
where e ∈ VR∪ER, and m is graph rule match

Rule application

Host graph H is transformed into graph I by rule r in
following steps:

1. Construct graph I1 = (VI1 ,EH ,σsH ,σtH ,µvI1
,µeH),

where

• VI1 = VH ∪VR

– let fnv : VR → VI1 is injective function map-
ping right-hand side vertices to new vertices
in host graph

• µvI1
= µvH ∪ {(v, l) | vr ∈ VR ∧ v = fnv (vr) ∧ l =

eval(vr,m)}

Vertices from right-side of rule are inserted to host
graph. Labels of vertices are evaluated, and function
mapping original right-side vertices to new vertices
of host graph is constructed.

2. Construct graph I2 = (VI1 ,EI2 ,σsI2
,σtI2
,µvI1
,µeI2

),
where

• EI2 = EH ∪ER

– let fne : ER → EI2 is injective function map-
ping right-hand side edges to new edges in
host graph

• σxI2
= σxH ∪ {(e,v) | er ∈ ER ∧ e = fne (er)∧ v =

fnv (σxR (e))}
• µeI2

= µeH ∪ {(e, l) | er ∈ ER ∧ e = fne (er) ∧ l =
eval(er,m)}

for x ∈ {s, t}, (hence σxG stands for both σsG and
σtG). Edges of right-side of rule are inserted to host
graph (edges are defined on already inserted ver-
tices). Labels of edges are evaluated, and function
mapping edges of right-side to new edges of host
graph is constructed. Graph I2 is depicted at Fig.
4.b.

3. Construct graph I3 = (VI1 ,EI2 ,σsI3
,σtI3
,µvI1
,µeI2

),
where

• σxI3
= (σxI2

∪ {(e, fnv (v)) | (u,v) ∈ join ∧ e =
σ−1

xH
(frv (u))}) \ {(e, frv (u)) | (u,v) ∈ join ∧ e =

σ−1
xH

(frv (u))}

for x ∈ {s, t}. Edges connecting join vertices of left-
side of graph rewrite rule are redirected to join ver-
tices of right-side of graph rewrite rule. Resulting
graph I3 is depicted at Fig. 4.c., where redirected
edges are displayed as dashed arcs.

Figure 4: Illustration of host graph rewrite, driven by
rule from Fig. 3

4. Construct graph I4 = (VI1 ,EI4 ,σsI4
,σtI4
,µvI1
,µeI4

),
where

• EI4 = EI2 \ {e | el ∈ ELw ∧ e = fre (el)}
• σxI4

= σxI3
\ {(e,v) | el ∈ ELw ∧ e = fre (el)∧ v =

σxH (e)}
• µeI4

= µeI2
\ {(e, l) | el ∈ ELw ∧ e = fre (el) ∧ l =

µeH (e)}

for x ∈ {s, t}. Edges of rule left-side including their
labels and mappings to source and target vertices are
removed from host graph.

5. Construct graph I = (VI ,EI ,σsI ,σtI ,µvI ,µeI), where

• VI = VI1 \ {v | vl ∈ VL∧ v = frv (vr)}
• µvI = µvI4

\{(v, l) | vl ∈VL∧v= frv (vr)∧ l= µvH (v)}
• EI = EI4 , σsI = σsI4

, σtI = σtI4
, µeI = µeI4

Finally in last step vertices of rule left-side are re-
moved from host graph. Graph I (after removing
left-side vertices and edges) is depicted at Fig. 4.d.

Description of application of rule is tightly connected
to implementation. Vertices and edges of right-hand
side are inserted to host graph before any left-hand side
vertices or edges are removed, so labels of new vertices
and edges can be determined. Rewrite of host graph by
rule from Fig. 3 is inllustrated in Fig. 4.

4 GRAPH REWRITE SYSTEM
The literature concerning graph rewriting reports on
various methods of organizing a collection of graph
rewriting rules. These can be unordered, ordered,

or event-driven. Choice of rule organization system
largely affects the number of rewrite rule applications
that must be tested during graph rewriting system
execution. Parsing by graph grammar normally (with-
out any rule organisation system) requires frequent
testing of inapplicable rules. In contrast, an ordered
graph rewriting system can directly transform an input
graph into required output graph. Event-driven graph
rewriting systems are highly time-efficient, applied
rules are used only as direct response to external action.

Unordered Graph-rewriting System

A set of graph rewriting rules. Rewrites the host graph
by nondeterministically chosen rules until no further
rule apply.

Graph Grammar

A set of graph-rewrite productions. A starting host
graph. A designation of labels as terminal or nontermi-
nal. The starting graph is transformed by graph-rewrite
productions until terminal graph is obtained. The set of
terminal graphs that can be generated by this process is
called language of the grammar (generative use). Pars-
ing given graph: find sequence of rewrite productions
that derive given graph from start graph (recognition
use).

Ordered graph rewriting system

A set of graph rewriting rules. A control specifica-
tion (complete or partial ordering of rule-application).
Rewrite the given host graph (choosing nondetermin-
istically among applicable rules according to control
specification) until a final state in control specification
is reached.

Event-driven Graph-rewriting System

A set of graph-rewrite rules. A externally-arising se-
quence of events. Rewrite the initial host graph: rewrite
rules are executed in response to events.

Presented approach is restricted to first three of intro-
duced categories of graph rewriting (respective graph
grammar) systems. It is possible to extend presented
rewriting system by event-driven execution of graph
rewriting rules, but it was not introduced so far. Def-
initions of graph rewriting systems follows.

Definition 13 (Graph rewrite system) The graph
rewrite system (GRS), is represented by set of graph
rewriting rules. In short it can be denoted just by R.

Definition 14 (Graph grammar) The graph grammar
(GG) is triple XG = (P,Gs,Lt), where P is set of graph
rewriting productions, Gs ∈ GL is starting host graph,
and Lt ⊆ L is set of terminal labels.

Rules of graph rewrite system X are applied to host
graph in nondeterministic order. This can result (for
non confluent graph rewrite systems) in nondetermin-
istic results. Based on this fact need arise to introduce
ordering for rule applications of graph rewriting sys-
tem.

Definition 15 (GRS with priorities) The GRS with
priorities is pair Xp = (R, p), where R is set of graph
rewriting rules, and p : R → N is function assigning
priority number to each rule. This GRS represent
simple version of ordered graph rewriting system.

Definition 16 (GRS driven by DFSM) The GRS
driven by DFSM is defined as pairXM = (R,Mr), where
R is set of graph rewriting rules, and Mr = (R,S , s0, δ,∅)
is deterministic finite state machine. A string accepted
by Mr defines string of the used graph rewriting rules.
The set of applicable rules is in actual state s given as
Rs = {r | (s,r)→ sx ∈ δ}. GRS driven by DFSM stops
when Rs = ∅, it works while any applicable rules exist.
As in previous case this GRS presents ordered graph
rewriting system.

According to categorization of graph rewriting sys-
tems no explicit stopping conditions are introduced.
The rules of graph rewrite system are applied while at
least one matching of applicable graph rule exists.

5 GRAPH REWRITING IMPLEMEN-
TATION

In this section the implementation of approach which
was theoretically described in above text is described.
Implementation of the proposed approach corresponds
to the introduced theory.

5.1 Graph Representation
The graph is represented by a dynamic structure that
can be arbitrarily modified with no impact on perfor-
mance. Graphs represented by proposed structure can
be updated and modified using elementary steps con-
sisting of edge and vertex removal and insertion.

In short, graph is represented by set of vertices and
set of edges between these vertices. Each edge is de-
scribed by two (source and target) indexes to the set
of vertices and each vertex contains an array indexing
all its incident edges (for faster computations). Each
of graph elements (vertices, edges) has associated la-
bel which represents its evaluation. Described structure
enables for simple execution of sophisticated graph al-
gorithms, such as detection of spanning tree, testing bi-
partite graph, testing completeness, counting of graph
components, search for shortest path, and other graph
processing algorithms.

5.2 Vertex and Edge Evaluation

The possibility to evaluate vertices and edges of graph
by labels is provided by dynamically linked libraries
defining operations over labels, such as comparison,
copying, serialization, de-serialization etc. These li-
braries are created by graph rewrite system user, thus
enabling use of arbitrary type of labels of vertices and
edges of graph. For some conventional data types (in-
tegers, strings, etc.), default set of functions is defined.

5.3 Graph Isomorphism Matching

From the definition of graph rewriting system, it can be
seen that left-sides of graph rules are known a priory to
their matching in host graph. This fact is exploited in
system for detection of subgraph isomorphisms. Graph
parsing automata is created representing subgraph iso-
morphism detector for left-side of each rule of graph
rewriting system. Such automata is optimized for detec-
tion of common patterns in rules left-sides and exploits
this knowledge in order to boost isomorphism detection
speed.

The states of graph automata describes partial map-
ping of vertices and edges (spanning subtree) to a hypo-
thetical host graph. The transitions between these states
are described using edges, their properties, and by prop-
erties of target vertices (evaluation, in-out degree, di-
rections, etc.). each of prototype subgraphs (left-sides
of rules) has at least one final node, and by reaching
of this node, the vertex mapping between this subgraph
and host graph is decided.

Detection of subgraph and graph isomorphisms con-
sists of two fundamental steps:

The first step is search for vertex permutations (map-
pings) of subgraph vertices to host graph vertices, thus
describing set of functions Fvd. For which holds Fv ⊆
Fvd, where Fv is set of functions describing proper sub-
graph vertex mappings. Detection of set of vertex map-
ping functions Fvd is accomplished by search for a sub-
graph spanning tree.

The second step of subgraph (graph) isomorphism
detection consist of search for edge permutations Fe.
For each vertex mapping function fv ∈ Fvd, possible
permutations of edges are searched. Every found edge
mapping function fe is added to set Fe; if fv < Fv then fv
is inserted into set Fv, and the record fe→ fv is inserted
into the injective function π.

Result of this procedure is triple (Fv,Fe,π), where Fv
is set of vertex mapping functions, Fe is set of edge
mapping functions, and π : Fe → Fv is function asso-
ciating edge mapping function to vertex mapping func-
tion.

After detection of isomorphism of subgraph Lw in
host graph H, context conditions represented by set of
excluded edges Eex are verified.

5.4 Graph Rewriting System
Graph rewriting system itself is represented as set of
graph rewriting rules. To set of graph rules are as-
sociated priorities or DFSM. Each GRS is described
by one input text file. GRS file refers to rules repre-
sented in form of text file in graph format .dot, used
by graph visualising library graphviz. Important part
of graph rewriting system is represented by dynamic li-
brary, which defines vertices and edges evaluation func-
tions.

6 CONCLUSION
In this paper, an approach for graph rewriting system
implementation was proposed and also its real imple-
mentation was discussed. Graph rewriting system was
designed for use in graph grammars, which are cre-
ated for applications concerning parsing and describing
of knowledge retrieved from image or video. In both
forms of grammar use, either as generating tool, or for
parsing of retrieved graph.

The advantage of proposed graph rewriting system
is its ability to work with general directed multigraphs
with loops. These graphs are represented by dynamic
structure, which is not designed specifically for pro-
posed task, but is designed more generally to enable
to perform any tasks on them. No restrictions are intro-
duced on vertex and edge labels, and their evaluation in
process of rules applications. Proposed GRS was im-
plemented in language C/C++ and its implementation
respects its theoretical design.

Future work concerning graph rewriting system im-
plementation will concentrate on further optimisation
of graph rewriting algorithm and also optimisation of
graph matching algorithm. The plan is to introduce cat-
egories of rules, determined by their analysis; insert, re-
move, and alter for example, and optimise rewrite tech-
nique (algorithm) separately for each of them. Parallel
application of rules, based on analysis of redex over-
lays. In context of subgraph isomorphism search: iso-
morphism search based on incremental actualization of
set of detected isomorphisms.

Further work will also concern examination of graph
rewriting system properties. Graph rewriting system
termination, Church-Rosser property, confluence, and
from them resulting convergence should be discussed
and evaluated.

A survey of possible applications of designed and
implemented graph rewriting system, other than
description or representation of image knowledge is
also planned. Applications that can be possibly imple-
mented and tested in context of graph rewriting system
are for example (as was mentioned in Introduction):
simulation of traffic networks, chemical reactions,
automatic construction of artificial neural networks,
etc.

ACKNOWLEDGEMENTS
This work is supported by the European Commission under
contract FP7-215453 - WeKnowIt.

This work was (also) supported by the project "Security
Oriented Research in Information Technology" by Ministry
of Eduction, Youth and Sports of Czech Republic no.
MSM0021630528.

REFERENCES
[1] A study of two graph rewriting formalisms: Interaction nets and

MONSTR, February 20 1998.

[2] Zena M. Ariola and Jan Willem Klop. Equational term graph
rewriting. Fundam. Inf., 26(3-4):207–240, 1996.

[3] R. Banach. Transitive term graph rewriting, April 30 1996.

[4] R. Banach. The contractum in algebraic graph rewriting,
April 30 1998.

[5] Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Issues in
the practical use of graph rewriting, December 18 1996.

[6] A. Corradini. A 2-categorical presentation of term graph rewrit-
ing, July 20 1997.

[7] Hartmut Ehrig. Introduction to the algebraic theory of graph
grammars (a survey). In Graph-Grammars and Their Applica-
tion to Computer Science and Biology, pages 1–69, 1978.

[8] Hartmut Ehrig. Tutorial introduction to the algebraic approach
of graph grammars. In Proceedings of the 3rd International
Workshop on Graph-Grammars and Their Application to Com-
puter Science, pages 3–14, London, UK, 1987. Springer-Verlag.

[9] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and
Francesco Parisi-Presicce. From graph grammars to high level
replacement systems. In Proceedings of the 4th International
Workshop on Graph-Grammars and Their Application to Com-
puter Science, pages 269–291, London, UK, 1991. Springer-
Verlag.

[10] P. Foggia, C. Sansone, and M. Vento. A database of graphs
for isomorphism and sub-graph isomorphism benchmarking. In
CoRR, pages 176–187, 2001.

[11] Pieter J. Mosterman Juan de Lara, Hans Vangheluwe. Mod-
elling and analysis of traffic networks based on graph transfor-
mation.

[12] Christoph Klauck. Graph grammar based object recognition for
image retrieval. In ACCV ’95: Invited Session Papers from the
Second Asian Conference on Computer Vision, pages 561–569,
London, UK, 1996. Springer-Verlag.

[13] Peter M and Peter M C Brien. Implementing logic program-
ming languages by graph rewriting, April 22 1999.

[14] Detlef Plump. The graph programming language gp. In CAI
’09: Proceedings of the 3rd International Conference on Al-
gebraic Informatics, pages 99–122, Berlin, Heidelberg, 2009.
Springer-Verlag.

[15] Francesc Rosselló and Gabriel Valiente. Chemical graphs,
chemical reaction graphs, and chemical graph transformation.

[16] Medha Shukla Sarkar, Dorothea Blostein, and James R. Cordy.
GXL - A graph transformation language with scoping and graph
parameters, September 12 1998.

[17] Vladimiro Sassone and Pawel Sobocinski. Coinductive reason-
ing for contextual graph-rewriting, February 02 2004.

[18] A. Schfürr. Programmed graph replacement systems. pages
479–546, 1997.

[19] Sjaak Smetsers. Term graph rewriting and strong sequentiality,
November 06 1992.

