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Abstract

Ascending and descending Morse complexes, de-
fined by the critical points and integral lines of
a scalar field f defined on a manifold M , induce
a subdivision of M into regions of uniform gra-
dient flow, and thus provide a compact descrip-
tion of the morphology of f on M . We propose
a dual representation for the ascending and de-
scending Morse complexes of f in arbitrary dimen-
sions in terms of an incidence graph. We describe
atomic simplification and refinement operators on
the Morse complexes and we investigate the effect
of those operators on the graph-based represen-
tation of the two complexes. Simplification and
refinement operators form a basis for a hierarchi-
cal multi-resolution representation of Morse com-
plexes, from which it will be possible to dynami-
cally extract representations of the morphology of
the scalar field f over M , at both uniform and
variable resolutions.

1 Introduction

Representing morphological information extracted
from discrete scalar fields is a relevant issue in sev-
eral application domains, including terrain mod-
eling, volume data analysis and visualization, and
time-varying 3D scalar fields. Morse theory offers
a natural and intuitive way of analyzing the struc-
ture of a scalar field f as well as of compactly rep-
resenting the scalar field through a decomposition
of the domain of f into meaningful regions associ-
ated with the critical points of the field. The as-
cending and the descending Morse complexes are
defined by considering the integral lines emanat-
ing from, or converging to the critical points of
f , while the Morse-Smale complex describes the

subdivision of M into parts characterized by a
uniform flow of the gradient between two critical
points of f .

Structural problems in Morse and Morse-Smale
complexes, like over-segmentation in the presence
of noise, or efficiency issues arising because of the
very large size of the input data sets, can be faced
and solved by defining simplification operators on
such complexes and on their morphological repre-
sentations.

Here, we present atomic operators for simpli-
fying and refining Morse complexes. Such oper-
ators are defined in arbitrary dimensions and af-
fect a constant number of entities in the Morse
complexes. We show in [6] that the simplifica-
tion operators together with their refinement ones
define a basis for simplifying Morse (and Morse-
Smale) complexes. Moreover, the general cancel-
lation operator defined in Morse theory [19] can
be expressed as a suitable combination of our op-
erators.

We represent the ascending and descending
Morse complexes as an incidence graph. This rep-
resentation is based on encoding the incidence re-
lations of the cells of the Morse complexes, and
exploits the duality between the ascending and de-
scending complexes. We define the effect of the
simplification and of the refinement operators on
the incidence-based dual representation of the de-
scending and ascending Morse complexes. The
two operators are defined in a dimension inde-
pendent way, and their effect on the graph-based
representation of the Morse complexes is easy to
describe and implement. Moreover, they form the
basis for the definition of a hierarchical model of
the Morse complexes. A hierarchical representa-
tion of the morphology of a scalar field is critical
for interactive analysis and exploration in order
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to maintain and analyze characteristic features at
different levels of abstraction.

The remainder of the paper is organized as fol-
lows. In Section 2, we review some basic notions
on Morse theory and Morse complexes. In Sec-
tion 3, we discuss some related work. In Section
4, we describe a dual incidence-based representa-
tion of the Morse complexes. In Sections 5 and
6, we present simplification and refinement oper-
ators respectively and we describe their effect on
the incidence-based representation of the Morse
complexes. Finally, in Section 7, we draw some
concluding remarks and discuss current and future
work.

2 Morse Theory and Morse
Complexes

Morse theory studies the relationship between the
topology of a manifold M and the critical points
of a scalar (real-valued) function defined on the
manifold (for more details on Morse theory, see
[19, 20]).

Let f be a C2 real-valued function defined over
a closed compact n-manifold M . A point p is
a critical point of f if and only if the gradient
∇f = ( ∂f

∂x1
, ..., ∂f

∂xn
) (in some local coordinate sys-

tem around p) of f vanishes at p. Function f is a
Morse function if all its critical points are non-
degenerate (i.e. the Hessian matrix Hesspf of
the second derivatives of f at p is non-singular).
The number i of negative eigenvalues of Hesspf is
called the index of critical point p, and p is called
an i-saddle. A 0-saddle, or an n-saddle, is also
called a minimum, or a maximum, respectively.
An integral line of f is a maximal path which is
everywhere tangent to the gradient of f . Each in-
tegral line connects two critical points of f , called
its origin and its destination.

Integral lines that converge to (originate at) a
critical point p of index i form an i-cell ((n−i)-cell)
p called a descending (ascending) cell, or manifold,
of p. The descending and ascending cells decom-
pose M into descending and ascending Morse com-
plexes, denoted as Γd and Γa, respectively, see Fig-
ure 1 (a) and (b) for a 2D example. We will denote
as p the descending i-cell of an i-saddle p. A Morse
function f is called a Morse-Smale function if the
descending and the ascending manifolds intersect
transversally. A Morse-Smale complex is defined
by the connected components of the intersection
of descending and ascending Morse complexes. If
f is a Morse-Smale function, then complexes Γa

and Γd are dual to each other.

p p’q

z

r

r

r c
p

pz

zp
p

p

c

z

1 1
1

1

2

2
2

2
3

3

3

z

4

5

4

5

p q
p’

z

z

z

z

z

1

2

3

4

5

r

r

1c

c2

1

2

r3

(a) (b)

Figure 1: A portion of a descending Morse com-
plex in 2D, with the descending cells of maxima
p and p′ highlighted (a), and the dual ascending
Morse complex, with the ascending cells of minima
z1 and z2 highlighted (b).

3 Related Work

In this Section, we review related work on mor-
phological representations of scalar fields provided
by Morse or Morse-Smale complexes. We concen-
trate on two topics, which are relevant to the work
presented here, namely: computation and simpli-
fication of Morse and Morse-Smale complexes.

Several algorithms have been proposed in the
literature for decomposing the domain of a 2D
scalar field f into an approximation of a Morse,
or a Morse-Smale, complex. Recently, some algo-
rithms in higher dimensions have been proposed.
For a review of the work in this area, see [3].

The extraction of critical points of a scalar field
f defined on a simplicial mesh has been investi-
gated in 2D [2, 21], and in 3D [15, 25, 26, 24, 12]
as a basis for computing Morse and Morse-Smale
complexes. Algorithms for decomposing the do-
main M of f into an approximation of a Morse,
or of a Morse-Smale complex in 2D can be classi-
fied as boundary-based [1, 4, 13, 22, 23], or region-
based [5, 9]. In [12], an algorithm for extracting
the Morse-Smale complex from a tetrahedral mesh
is proposed. The algorithm, while interesting from
a theoretical point of view, exhibits a large com-
putation overhead, as discussed in [18].

Discrete methods rooted in the discrete Morse
theory proposed by Forman [14] are computa-
tionally more efficient. In [9], a dimension-
independent approach based on region growing
has been proposed which implements the discrete
gradient approach and computes the descending
and the ascending Morse complexes. In [18], a
region growing method, inspired by the water-
shed approach, has been proposed to compute the
Morse-Smale complex. In [16], a Forman gradient
vector field V is defined, and an approximation of
the Morse-Smale complex is computed by tracing
the integral lines defined by V .

One of the major issues that arise when com-
puting a representation of a scalar field as a
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Morse, or as a Morse-Smale, complex is the over-
segmentation due to the presence of noise in the
data sets. Simplification algorithms have been de-
veloped in order to eliminate less significant fea-
tures from a Morse-Smale complex. Simplification
is achieved by applying an operator called cancel-
lation, defined in Morse theory [19]. It cancels
pairs of critical points of f , in the order usually
determined by the notion of persistence, which is
the absolute difference in function values between
the paired critical points [13]. In 2D Morse-Smale
complexes, the cancellation operator has been in-
vestigated in [4, 13, 17, 23, 27]. The cancellation
operator on Morse-Smale and Morse complexes of
a 3D scalar field has been investigated in [17] and
[7], respectively.

4 A Dual Incidence-Based
Representation for Morse
Complexes

In this Section, we discuss a dual representation
for the ascending and the descending Morse com-
plexes Γa and Γd, that we call the incidence-based
representation. The underlying idea is that we can
represent both the ascending and the descending
complex as a graph by considering the boundary
and co-boundary relations of the cells in the two
complexes. In the discrete case, we consider a rep-
resentation for the simplicial mesh Σ which gen-
eralizes an indexed data structure commonly used
for triangle and tetrahedral meshes [10], and we
relate the two representations into the incidence-
based data structure.

Recall that there is a one-to-one correspondence
between i-saddles p and i-cells p in the descend-
ing complex Γd, and dual (n − i)-cells in the as-
cending complex Γa, 0 ≤ i ≤ n. We exploit this
duality to define a representation which encodes
both the ascending and the descending complexes
at the same time as an incidence graph [11]. The
incidence graph encodes the cells of a complex
as nodes, and a subset of the boundary and co-
boundary relations between cells as arcs. The inci-
dence graph associated with an n-dimensional de-
scending Morse complex Γd (and with an ascend-
ing Morse complex Γa) is a graph G = (N, A), in
which

1. the set of nodes N is partitioned into n + 1
subsets N0, N1,...,Nn, such that there is a
one-to-one correspondence between nodes in
Ni (which we will call i-nodes) and the i-cells
of Γd (and thus the (n− i)-cells of Γa),

q r rr c c1 2 3 1 2

zz z z z1 2 3 4 5

p’ p p p p p1 2 3 4 5p

Figure 2: A portion of the incidence graph encod-
ing the connectivity of descending and ascending
Morse complexes illustrated in Figure 1 (a) and
(b), respectively

2. there is an arc joining an i-node p with an
(i+1)-node q if and only if the corresponding
cells p and q differ in dimension by one, and
p is on the boundary of q in Γd (q is on the
boundary of p in Γa),

3. each arc connecting an i-node p to an (i+1)-
node q is labeled by the number of times i-cell
p (corresponding to i-node p) in Γd is incident
to (i+1)-cell q (corresponding to (i+1)-node
q) in Γd.

Attributes are attached to the nodes of the inci-
dence graph, containing information about geom-
etry, and function values, while arcs have no asso-
ciated (geometric) attributes. Note that the inci-
dence graph provides also a combinatorial repre-
sentation of the 1-skeleton of a Morse-Smale com-
plex. Figure 2 shows a portion of the incidence
graph encoding the connectivity of the descending
Morse complex in Figure 1 (a), and of the ascend-
ing Morse complex in Figure 1 (b).

We have designed and implemented a data
structure based on the incidence graph by encod-
ing this latter as a standard adjacency list. We
associate with each 0-node p (corresponding to a
minimum) a list of the n-simplexes of a simplicial
complex Σ forming the corresponding ascending
n-cell of p. Dually, we associate with each n-node
p (corresponding to a maximum) a list of the n-
simplexes forming the corresponding descending
n-cell of p. The resulting data structure is the
incidence-based representation.

5 Simplification Operators

In Morse theory, a general cancellation operator
has been defined that allows eliminating any pair
of critical points of consecutive index which are
connected by a unique integral line [19]. One of
the drawbacks of such operator, when applied to a
Morse-Smale complex, is that the number of cells
in the complex can increase, and, when applied to
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a Morse complex, the number of incidences among
cells can also increase.

In [8], we have defined two dual simplification
operators in arbitrary dimensions, which we call
removal and contraction. The two simplification
operators are defined in a dimension-independent
way. They are defined by imposing constraints
on a cancellation operator, that allow us to avoid
creating new cells in the Morse-Smale complex or
new incidences in the Morse ones. The two op-
erators form a complete set of basic operators for
simplifying Morse complexes on a manifold M , as
detailed in [6]. Moreover, the classical cancellation
operator [19] can be seen as a macro-operator and
expressed as a sequence of our atomic operators.
A persistence value is associated with a simplifi-
cation operator, and thus we apply simplifications
in order of increasing persistence [13].

The first operator, called a removal of index i,
1 ≤ i ≤ n−1, removes an i-saddle q and an (i+1)-
saddle p, provided that q is connected by a unique
integral line to an (i + 1)-saddle p, and to exactly
one other (i + 1)-saddle p′ different from p, or to
just one (i+1)-saddle p. In the first case, a removal
of q and p is denoted as rem(p, q, p′), while in the
second case as rem(p, q, ∅). The second operator,
that we call a contraction of index i, 1 ≤ i ≤
n− 1, removes an i-saddle q and an (i− 1)-saddle
p provided that q is connected by a unique integral
line to an (i−1)-saddle p, and to exactly one other
(i − 1)-saddle p′ different from p, or to just one
(i−1)-saddle p. In the first case, a contraction of q
and p is denoted as con(p, q, p′), and in the second
case as con(p, q, ∅). For the sake of simplicity, we
discuss here only removals and contractions of the
first kind.

5.1 Simplification on Morse com-
plexes

The removal and contraction operators have a
dual effect on the descending and the ascending
Morse complexes. The effect of a contraction of
index i on Γd (Γa) is the same as the effect of a
removal of index n− i on Γa (Γd). For the sake of
brevity, we describe the effect of the two operators
on the descending Morse complex only.

The effect of a removal rem(p, q, p′) on the de-
scending Morse complex Γd is as follows: i-cell q,
corresponding to i-saddle q is deleted and (i + 1)-
cell p, corresponding to (i + 1)-saddle p is merged
into (i + 1)-cell p′, which corresponds to (i + 1)-
saddle p′. A contraction con(p, q, p′) deletes i-cell
q and merges (i − 1)-cell p into (i − 1)-cell p′ in
Γd. i-cell q is contracted, and each i-cell in the
co-boundary of p is extended to include a copy of

(a) (b)

Figure 3: Portion of a 3D descending Morse com-
plex before and after a removal rem(p, q, p′) of in-
dex 2 (a), and of index 1 (b).

i-cell q, i.e., each i-cell in the co-boundary of p is,
after contraction, the union of itself with i-cell q.

The 2D case is simple, as our operators reduce
to a minimum-saddle or a maximum-saddle can-
cellation operator. In 2D, there are exactly one re-
moval and exactly one contraction operator (both
of index 1). A removal deletes a 1-cell (saddle) q,
and merges the two 2-cells (maxima) which shared
q. It is the same as a maximum-saddle cancel-
lation. A contraction contracts a 1-cell (saddle)
q and collapses the two 0-cells (minima) which
bounded q. It corresponds to a minimum-saddle
cancellation. Note that both operators involve an
extremum and a saddle.

In 3D, there are two removal and two contrac-
tion operators. A removal of index 2 involves a
2-saddle q and a maximum p (it is a maximum-2-
saddle cancellation). In the descending complex,
it removes a 2-cell q, and merges 3-cell p into a
unique 3-cell p′ incident in q and different from p,
as illustrated in Figure 3 (a). A removal of index 1
involves a 1-saddle q and a 2-saddle p. It is defined
only if 1-cell q is incident to exactly two different
2-cells p and p′. It removes 1-cell q and merges 2-
cell p into 2-cell p′, as illustrated in Figure 3 (b).
Thus, it is a special case of a 1-saddle-2-saddle
cancellation.

5.2 Simplification on the Incidence
Graph

A removal, or contraction, simplification on the
Morse complexes induces a modification on the in-
cidence graph G = (N, A) representing such com-
plexes, that we call a simplification modification.
Each simplification modification can be expressed
as a deletion of two nodes p and q from N , and a
replacement of a subset A+ of the arcs in A with
another subset A− of arcs. For the sake of brevity,
we will consider only a removal rem(p, q, p′) of in-
dex i, 1 ≤ i ≤ n− 1.

Let G = (N, A) be the incidence graph rep-
resenting both the descending and the ascend-
ing Morse complexes Γd and Γa before a removal
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(a) (b)

Figure 4: Removal rem(p, q, p′) on a 3D descend-
ing Morse complex (a) and on the corresponding
incidence graph (b).

rem(p, q, p′). Then,

• i-node q is connected through an arc in A to
exactly two different (i + 1)-nodes p and p′,
such that the label of arcs (q, p) and (q, p′) is
1, and to an arbitrary number of (i−1)-nodes
from a set Z = {zh, h = 1, .., hmax};

• node p is connected to an arbitrary number
of i-nodes from a set R = {rj , j = 1, .., jmax :
rj 6= q}, and to an arbitrary number of (i +
2)−nodes from a set S = {sk, k = 1, .., kmax};

• node p′ is connected to an arbitrary number
of i-nodes from a set C = {cl, l = 1, .., lmax :
cl 6= q}, and to an arbitrary number of (i+2)-
nodes from a set D = {dm, m = 1, ..,mmax}.

These conditions translate the feasibility condition
of a removal operator.

For example, before the removal rem(p, q, p′), il-
lustrated in Figure 4 (b), 1-node q is connected to
exactly two different 2-nodes p and p′ (correspond-
ing to 2-saddles), and to two 0-nodes z1, and z2

(corresponding to minima), which are not shown
in the Figure. 2-node p is connected to 1-nodes r1,
r2 and r3 and 2-node p′ is connected to 1-nodes
c1, c2 and c3. Nodes p and p′ are connected to
exactly the same 3-nodes s1 and s2, which are not
shown in the Figure.

As an effect of a removal rem(p, q, p′) on G,
nodes p and q are deleted, as well as all the arcs
incident into q, and all the arcs incident into p and
connecting p to (i + 2)-nodes in S. All the arcs
incident into p and connecting p to i-nodes in R
(with the exception of arc (p, q)), become incident
in p′. Note that the effect of a contraction on G
is exactly the same as that of a removal, except
for the fact that in a removal q is an i-node, and
p and p′ are (i + 1)-nodes, while in a contraction
q is an i-node and p and p′ are (i− 1)-nodes.

Thus, a simplification modification induced by
a removal can be expressed as a local modification
of the incidence graph G = (N, A) which produces
a graph G′ = (N ′, A′), where:

• N ′ = N\{p, q} and

• A′ = A\A+ ∪A−, such that

- A+ = {(q, p)}∪{(q, p′)}∪{(q, zh) : zh ∈ Z}∪
{(p, rj) : rj ∈ R} ∪ {(p, sk) : sk ∈ S},

- A− = {(p′, rj), rj ∈ R}.
Nodes p, q, p′, zh, rj and sk are as described

above. In addition, for each arc (p, rj), rj 6= q,
such that (p′, rj) is also an arc in A (i.e., such
that rj = cl, for some l), the label of arc (p′, rj)
is increased by the label of arc (p, rj). A contrac-
tion can be expressed as a modification of graph
G in a completely dual fashion. Thus, a simpli-
fication modification on the incidence graph can
be expressed as a pair (A+, A−), i.e, as the col-
lections of the arcs which are removed (A+) and
which are inserted (A−).

In the example in Figure 4, after the removal
of 1-saddle q and 2-saddle p, nodes q and p are
deleted from the incidence graph (N ′ = N\{q, p}),
arcs connecting q to p and p′, and arcs connecting
1-node q to 0-nodes z1 and z2 (not illustrated in
the Figure) are deleted, as are arcs connecting 2-
node p to 3-nodes s1 and s2 (not illustrated in the
Figure). Arcs connecting 2-node p to 1-nodes r1,
r2 and r3 are replaced by arcs connecting 2-node
p′ to 1-nodes r1, r2 and r3.

The effect on the incidence-based representa-
tion, that is the incidence graph extended with
the references to the underlying simplicial decom-
position, is restricted to the incidence graph when
a simplification does not involve an extremum.
When we perform a removal rem(p, q, p′) of in-
dex n − 1, then the set of n-simplexes forming
the descending cell of p are merged into the set of
n-simplexes forming the descending cell of p′. Du-
ally, a contraction con(p, q, p′) of index 1 merges
the n-simplexes of the ascending cell of p with n-
simplexes of the ascending cell of p′.

6 Refinement Operators

We have defined two refinement operators [6],
which are inverse of the two simplification opera-
tors discussed in Section 5. Thus, they have the ef-
fect of introducing an i-saddle and an (i+1)-saddle
by splitting an existing i-saddle or an (i + 1)-
saddle. They are defined as an undo of the cor-
responding simplifications. Before performing a
refinement, the situation around the two newly
introduced saddles, i.e., around the correspond-
ing cells in the Morse complexes, needs to be the
same as it was at the time of the inverse simplifi-
cation. Like the two simplification operators, the
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two refinement operators are dual to each other.
The first operator, called an insertion of index i,
splits an (i + 1)-saddle p′ into p′ and an (i + 1)-
saddle p by inserting an i-saddle q. The second
operator, called an expansion of index i, splits an
(i− 1)-saddle p′ into p′ and an (i− 1)-saddle p by
expanding an i-saddle q.

6.1 Refinement on Morse Com-
plexes

In this Subsection, we discuss the effect of the
refinement operators on the ascending and de-
scending Morse complexes. In a descending com-
plex Γd, an insertion of index i, denoted as
ins(p, q, p′), which is the inverse (undo) of the re-
moval rem(p, q, p′), consists of splitting an (i+1)-
cell p′ into two new (i+1)-cells p and p′, by insert-
ing an i-cell q into (i + 1)-cell p′. i-cell q is shared
by (i+1)-cells p and p′. For the correct application
of the operator, we need to specify explicitly:

• the new cells p and q,

• the existing (i + 1)-cell p′,

• i-cells rj in R, j = 1, .., jmax, which were on
the boundary of (i + 1)-cell p′ before the in-
sertion, and which are on the boundary of
(i + 1)-cell p after the insertion,

• (i−1)-cells zh in Z, h = 1, .., hmax, which are
on the boundary of i-cell q after the insertion,
and

• (i + 2)-cells sk in S, k = 1, .., kmax, which are
in the co-boundary of (i + 1)-cell p after the
insertion.

Note that the (i + 1)-cells in the co-boundary of
i-cell q after the insertion are exactly (i + 1)-cells
p and p′. The cells in Z (which will be on the
boundary of i-cell q), in R (which will be on the
boundary of (i + 1)-cell p), and in S (which will
be in the co-boundary of (i + 1)-cell p) need to be
the same as the corresponding cells on the bound-
ary and in the co-boundary of p and q before the
inverse removal rem(p, q, p′).

Figure 5 (a) shows an insertion ins(p, q, p′) of
index 1 of 1-cell q and 2-cell p into 2-cell p′ in a
2D descending Morse complex. It is specified by
1-cell q, 2-cells p and p′, 0-cells z1 and z2 on the
boundary of 1-cell q, and 1-cell r1 on the boundary
of 2-cell p. (The co-boundary of 2-cell p in 2D
is empty.) Figure 5 (b) shows the effect of the
insertion ins(p, q, p′) of index 1 in a 3D descending
Morse complex. It is specified by 1-cell q, 2-cells p
and p′, 0-cells z1 and z2 on the boundary of 1-cell

z1

c2

z2

r1

z1

c2

z2

r1

(a) (b)

Figure 5: Insertion ins(p, q, p′) of index 1 on a
descending Morse complex in 2D (a), and in 3D
(b). It is specified by cells p, q and p′, and cells
in the immediate boundary and on the immediate
co-boundary of the introduced cells p and q.

q, 1-cells r1, r2 and r3 on the boundary of 2-cell p,
and 3-cells s1 and s2 in the co-boundary of 2-cell
p.

An expansion of index i, denoted as exp(p, q, p′),
which is the inverse of contraction con(p, q, p′),
consists of splitting an (i − 1)-cell p′ in Γd into
two new (i− 1)-cells p and p′ by expanding a new
i-cell q bounded by p and p′. It is specified by
a list of cells on the immediate boundary and on
the immediate co-boundary of the new cells p and
q, which are the same as the corresponding cells
before contraction con(p, q, p′).

6.2 Refinement on the Incidence
Graph

Like a simplification operator on Morse complexes,
a refinement operator on Morse complexes in-
duces a modification on the incidence graph G′ =
(N ′, A′) representing these complexes, that we call
a refinement modification. Since a refinement op-
erator is defined as an undo of the corresponding
simplification operator, each refinement modifica-
tion on the incidence graph is also an undo of the
corresponding simplification modification. A re-
finement modification can be expressed as an in-
sertion of two nodes p and q into N ′, and a re-
placement of a set A− of arcs in A′ with set A+.
Nodes p and q are the nodes which were elimi-
nated by the inverse simplification modification,
and A− and A+ are exactly the same sets of arcs
which defined the inverse simplification modifica-
tion. In other words, a refinement modification
inverse to a simplification modification defined by
(A+, A−) is defined by (A−, A+).

Specifically, given an insertion operator
ins(p, q, p′), the corresponding refinement mod-
ification of the incidence graph G′ = (N ′, A′)
produces a graph G = (N,A), where:

• N = N ′ ∪ {p, q} and

• A = A′\A− ∪A+, such that

- A− = {(p′, rj), rj ∈ R}.
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(a) (b)

Figure 6: (a) Insertion operator ins(p, q, p′) of a
1-cell q and 2-cell p in the 3D descending complex,
and (b) the corresponding refinement modification
of the incidence graph.

- A+ = {(q, p)}∪{(q, p′)}∪{(q, zh) : zh ∈ Z}∪
{(p, rj) : rj ∈ R} ∪ {(p, sk) : sk ∈ S}.

Here, (i − 1)-nodes zh ∈ Z correspond to (i − 1)-
cells on the boundary of i-cell q, i-nodes rj ∈ R
correspond to i-cells on the boundary of (i + 1)-
cell p, and (i + 2)-nodes sk ∈ S correspond to
(i + 2)-cells in the co-boundary of (i + 1)-cell p.
Arc (p′, rj) is removed from A if label of arc (p′, rj)
minus label of arc (p, rj) equals 0. Otherwise, arc
(p′, rj) remains in A with label diminished by label
of arc (p, rj). An expansion can be expressed as
a modification of graph G′ in a completely dual
fashion.

Figure 6 shows the effect of the refinement mod-
ification induced by an insertion ins(p, q, p′) of in-
dex 1 in 3D. Here, Z = {z1, z2}, R = {r1, r2, r3},
and S = {s1, s2}. After the modification, the new
1-node q is connected to 2-node p′, new 2-node
p, and to 0-nodes z1 and z2 in Z. 2-node p is
connected to 1-nodes r1, r2 and r3 in R, and to
3-nodes s1 and s2 in S.

7 Concluding Remarks

We have presented a dimension-independent rep-
resentation which encodes both the ascending and
descending Morse complexes in a single combina-
torial structure, the incidence-based representa-
tion. This is achieved by exploiting the duality
of the two complexes which leads to an incidence
graph representation of their connectivity. We
have described simplification operators for gener-
alizing Morse complexes in arbitrary dimensions
and their inverse refinement operators. In particu-
lar, we have presented their effect on the incidence
graph in a completely dimension-independent way.
The simplification and refinement operators are
the basic ingredients for the definition of a hierar-
chical representation for the dual Morse complexes
in terms of the incidence graph, which will provide
a description of the Morse complexes at different
levels of abstraction.

Currently, we are working on a dimension-
independent implementation of simplification and
refinement operators on the incidence-based repre-
sentation. Our next step is the design and imple-
mentation of a multi-resolution representation for
the two Morse complexes by defining its encod-
ing data structure, an algorithm for computing
it based on iterative simplification, and a selec-
tive refinement algorithm for extracting adaptive
Morse complexes.
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