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ABSTRACT

In this paper we propose an optimization of the Shape Diameter Function (SDF) that we call Accelerated SDF
(ASDF). We discuss in detail the advantages and disadvantages of the original SDF de�nition, proposing theo-
retical and practical approaches for speedup and approximation. Using Poisson-based interpolation we compute
the SDF value for a small subset of randomly distributed faces and propagate the values over the mesh. We show
the results obtained with ASDF versus SDF in terms of timings and error.

Keywords: Segmentation, Poisson equation.

1 INTRODUCTION

The Shape Diameter Function (SDF) [18] has
proven very useful for mesh skeletonization and
segmentation. Closely related to the Medial Axis
Transform (MAT) [5], it de�nes a scalar function
over the points of a mesh representing the diameter
of the shape's volume at each point while being
computationally lightweight as compared to the
MAT. The main contribution of the SDF is its
taking into account the interior of the mesh and its
volumetric information as opposed to the majority
of segmentation algorithms that rely on local
surface features as curvature; for each primitive it
computes the diameter of the object along its inte-
rior, the result is a pose invariant function of the
local volume that yields a good mesh partitioning.
Moreover, it de�nes a set of internal points for each
primitive, halfway through its interior, that can
be used for skeleton extraction. In this paper we
focus on optimization for segmentation purposes:
a study of the behavior of the SDF function over
the mesh suggests that, as main variations occur
only in a small subset of the faces, it is possible to
lower the number of computations with little to no
e�ect on the �nal result by means of a constrained
Poisson interpolation over the mesh (see �gure 1
for an example). We will present a summary of the
published works related to our problem in Section
2; Section 3 will contain a detailed description of
the original SDF algorithm, while details on the
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Figure 1: The SDF function is computed
only on the selected faces (red in the top im-
age). The constrained interpolation results
in a smooth and accurate descriptor (bottom

image).

Poisson Equation used to e�ciently interpolate the
values can be found in Section 4, with results and
comparison between the optimized version and the
original implementation in Section 5. Section 6
contains our conclusions and suggestions for future
works.
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2 RELATED WORK

2.1 Mesh Segmentation

There is a large amount of research works that
study segmentation with many di�erent strategies
aiming to extract a semantically consistent parti-
tioning. Most of the approaches rely on local sur-
face properties for segmentation, as geodesic dis-
tance, angular distance or normal direction. In
[12] the mesh is partitioned using the minima rule,
that states that human perception divides shapes
along the concave discontinuities; a snake contour
is relaxated along the surface until convergence us-
ing geometric features as curvature and centricity.
Minima rule is used also in [16] where the authors
de�ne an algorithm called Fast Marching Water-
sheds that identi�es the regions bounded by con-
tours of negative curvature; a similar technique can
be found in [14] where an extension of the 2D mor-
phological watershed segmentation over the mesh
is used to partition the shape according to curva-
ture. Katz and Tal, in [10], adopt the strategy to
decompose the mesh in a hierarchical manner us-
ing fuzzy clustering according to a combination of
surface metrics and using minimum graph cuts to
extract the patch boundaries. Cohen-Steiner and
colleagues in [8] propose a framework for shape ap-
proximation based on shape partitioning, obtain-
ing a face clustering that minimizes an error met-
ric based on normal deviation. These surface fea-
tures may provide good results, however their sen-
sitiveness on local surface variations makes them
unsuitable for a pose invariant segmentation. The
main advantage of the SDF algorithm is that it
takes advantage of the connection between surface
and volume of the object; such kind of approach
can be found in [15], where the mesh is intersected
with a sphere over each vertex and the behavior of
the intersections is used for partitioning, or in [3]
where geometric primitives are iteratively �tted to
the mesh.

2.2 Applications of the Poisson
Equation in Computer Graphics

The Poisson equation (PE) has been used in a large
number of application areas. In computer graph-
ics and related �elds, one of the main applications
of Poisson equation is the image processing. Perez
and colleagues in [17] used Poisson equation in or-
der to modify the content of an image; particularly,
the gradient of the original image is computed, then
modi�ed according to desired result, and �nally
Poisson equation is solved to obtain a new image.
Perez uses this approach in order to enhance the
original image, by correcting local illumination or
changing local color by de�ning appropriate con-

straint �elds; the solution of the PE will be the
image that best �t these constraint �elds. In im-
age processing, the Poisson equation has been used
also for seamless image mosaic (as presented in [13],
[20] and [19]), since the Poisson-based interpola-
tion guarantees a smooth transition between two
images (a property that makes Poisson equation
also suitable for photomontage, in [1]). Poisson
equation has been used also in geometry process-
ing and mesh editing system. For example, in [22],
gradient �elds are used in order to model coordi-
nate functions, and mesh editing is performed by
locally adapting the gradients and solving the Pois-
son equation for the new coordinate functions. In
this way, it is possible to perform operations such
as deformation, merging, smoothing and denoising.
Alexa [2] uses discrete Laplace and Poisson models
to perform mesh editing and detail transfer from
one mesh to another, while Xu et al. [21], in order
to realize shape interpolation, use PE to �nd an
intermediate shape that allows a smooth transition
between the source shape and the target shape. PE
has been also used in order to reconstruct the sur-
face of a mesh starting from a point cloud as shown
in [11] by Kazhdan et al.
Also, there is a number of de�nition and formula-
tion of the Laplace-Beltrami operator, such as in
[4], [6] or [7]; in this work, we propose an imple-
mentation of the Laplace-Beltrami operator which
is slightly di�erent from the previous ones but that
showed to perform well and to be easy to imple-
ment.

3 THE SHAPE DIAMETER
FUNCTION

The main idea behind the Shape Diameter Func-
tion is to take into account the volumetric informa-
tion of the shape by de�ning a scalar function on
the mesh representing the diameter of the interior
of the object, similarly to the MAT where the scalar
�eld represents the distance between each point to
the nearest boundary point. However, while the
MAT is computationally expensive and requires a
discretization of the space, the SDF results in a
faster and more robust descriptor.
Given a mesh M the SDF is a scalar function on

the surface (fp : M � R) de�ned as the neighbor-
hood diameter of the object at each surface point
p ∈ M . Such diameter is extracted by casting a
cone of rays from the point p to the interior of the
mesh according to the inverse normal at p and com-
puting the distance between p and each intersection
between the rays and the mesh. In order to improve
the robustness of this approach, false intersections
are removed from the computation: those intersec-
tion points whose normal is in the same direction as



the point p, that is when the angle between the nor-
mals is less than 90◦ are not considered in the �nal
computation. The de�nition is extremely simple
and intuitive, however it is highly sensitive to noise
and local variations; further improvement is ob-
tained by considering just those rays whose length
fall within a standard deviation from the median
of all lengths in order to remove spurious intersec-
tions. The �nal value of the SDF is a weighted
average of the remaining lengths: the weights are
the inverse of the angle between the ray to the cen-
ter of the cone, due to the fact that rays with larger
angles are much more frequent and therefore must
have smaller importance in the �nal averaging.

The authors show that the best results are ob-
tained by casting 30 rays into a cone of 120◦ per
point; smaller angles don't discriminate between
the object parts and are extremely sensitive to lo-
cal features, whilst larger angles cause some rays
to intersect unrelated parts of the mesh and add
errors to the computation. In our paper we stick
to this parameters to produce comparable results
with the ones provided in the original algorithm.

The algorithm as de�ned doesn't guarantee pose
invariance. The authors propose a small number
of bilateral �ltering steps in order to reduce the
variation of the SDF value after a pose change; one
may refer to the original paper for the formulation
of the �ltering as it is unnecessarily verbose for our
purposes. As for the intersection search, an Octree
is used to spatially index the elements of the mesh
for a reduced number of ray-triangle intersection
tests.

4 ACCELERATED SDF
(ASDF) VIA POISSON
INTERPOLATION

The main contribution of our optimization method
is based on an observation of the behavior of
the SDF function for regular meshes. On simple
meshes the di�erence between the SDF value of a
primitive (face or vertex) and the SDF value of its
neighborhood is approximately zero for primitives
in the same part of the object and it increases
smoothly on the boundaries of the parts. This
means that little to none additional information is
obtained by the SDF computation for a vertex or
face whose neighbors have already been evaluated.
Furthermore, the bi-lateral �ltering step proposed
in the original paper lowers the importance of a
single computation in the �nal output. Figure 2
shows the normalized, absolute value Laplacian of
the SDF computed for each face according to the
formula:

Figure 2: The absolute di�erences in SDF
value between each face and its neighbor-
hood, coded from blue where close to zero
to red where maximum, shows that the func-
tion has very small variations on most of the

surface

F (p) = |
∑

v∈N(p)

wvSDF (p)−
∑

v∈N(p)

wvSDF (v)|

where N(p) is the neighborhood of p and wv is
the weight of face v de�ned as 1 over the distance
between the barycenter of v and the barycenter of
p. In the image, the color red means zero or close
to zero while blue is the maximum di�erence. It is
worth to notice that the di�erence in SDF is higher
where the shape changes sharply: thus, for segmen-
tation purposes, it is possible to approximate the
SDF on the whole mesh by propagating the func-
tion value computed on a small subset of faces. The
mean of propagation we choose is solving a Pois-
son equation with Dirichlet boundary conditions,
a technique that obtained good results in mesh
editing [22] and image processing [17] under sim-
ilar circumstances. This technique allows to easily
compute a constrained interpolation over the mesh
guaranteeing computational e�ciency and robust-
ness of the results.

4.1 Poisson Equation

The formulation of the Poisson equation that we
use is de�ned as follows:

∆f = ∇v with f |∂Ω = f∗|∂Ω

where f is an unknown scalar function, v a guid-
ance vector �eld, ∇v is the divergence of v, ∆ is



the Laplace operator and f∗ de�nes the values of
a known scalar function at the boundary ∂Ω of a
selected region Ω. Solving this equation allows to
reconstruct the unknown function by interpolating
the boundary values so that the gradient of f is
as close as possible to the vector �eld v, resulting
in a smooth and seamless propagation that satis-
�es some user prescribed conditions; the unknown
values in the user-selected region Ω are set to the
known function f∗ in the border of Ω so that no
seam is visible between the known and unknown
regions, and the values change smoothly according
to v.
In our framework, the SDF is both the known

and unknown scalar function and Ω is de�ned as
the set of faces whose SDF hasn't been computed
yet. f consists of the known, exactly computed
values of SDF where f∗ is the interpolated value of
the SDF function where no actual ray casting will
be performed. The choice of the guidance vector
�eld for the interpolation is nontrivial: we want the
Laplacian of the propagated SDF to be the same
as the divergence of v, thus we need to understand
the behavior of the SDF function according to its
neighborhood.
A good approximation of the divergence can then

be obtained by the opposite of the curvature on
each face curv(p) (computed as the mean of its
vertices' curvature): it is plausible to expect the
diameter of a shape to slightly increase where the
Gaussian curvature is less than zero, that is, where
the normals of the faces converge and the neigh-
borhood is concave. This assumption, while not
taking into account the shape of the other side of
the mesh, is still good enough for small neighbor-
hoods.
The �nal formula for each unknown face is:

∑
v∈N(p)

wvf(p)−
∑

v∈N(p)∩Ω

wvf(v) =∑
v∈N(p)∩∂Ω

wvf∗(v)− curv(p)

where the Laplacian is computed on the dual
graph of the mesh. The above formulation causes
each unknown SDF to be a function of the known
values over the boundary and the local curvature,
whereas a face with no known neighbors will ob-
tain a value completely dependent on the curvature
variation.

4.2 Face Selection

We did not point out how we select the faces over
which we compute the SDF. In early stage of our
development we were using fancy schemes for iden-
tifying the correct subset of set that were thought

Figure 3: SDF computation on the ant using
5% (left) and 100% (right) of the primitives,
shown from red to blue according to the lo-
cal thickness. It is noticeable how the pres-
ence of small local di�erences doesn't a�ect
the global result with each segment easily

distinguishable

to maximize the dispersion of the selected faces
over the mesh.

This choice had one major advantage: the deter-
ministic choice of the face subset, but also a clear
disadvantage since the selection stage was time con-
suming and the improvement over the original SDG
was de�nitely moderate.

We then decided to follow a randomized scheme
in selecting the faces. We, thus, compute an initial
permutation of the face set and, in a second step,
we select any single face in a simple manner, just
picking every nth face and setting a �ag on it iden-
tifying it as a seed for the solution of the Poisson
equation. The mix of randomized input and Pois-
son equation revealed to be the best choice for our
purposes.

5 RESULTS AND DISCUSSION

In this section we discuss the results obtained by
our method in terms of time and error between the
optimized and unoptimized version. For segmen-
tation purposes it isn't mandatory that the SDF
value of each single primitive is correct; in fact the
segmentation process tends to split patches where
the change rate is high on a signi�cant area, while
ignoring local peaks on the gradient. Therefore the
correctness of a single face or vertex is discarded in
favor of an overall correctness that is achieved by
our propagation algorithm for a dense enough sam-
pling. We can see in �gure 3 that there is no sub-
stantial di�erence between the downsampled (5%)
and original (100%); the di�erences in the values
are restricted to a local point of view, whereas the
global segmentation remains consistent.

To further discuss the relevance of these di�er-
ences we show in �gure 4 a map of the errors be-
tween a 10% subsampled and a complete SDF with
blue being zero and red being the max di�erence.
We can see how the highest di�erences are located
along the boundaries of the mesh parts, due to the



sensitiveness of the original SDF de�nition on di-
ameter variation.
However table 1 shows that the magnitude of this

di�erences is low and doesn't strongly in�uence the
outcome of the segmentation; moreover, the peaks
in the errors occur on a small set of boundary faces,
rapidly decreasing in their neighborhood: this may
result in a fuzziness of the �nal segmentation bor-
der, with a negligible number of faces that are as-
signed to a patch that is di�erent from the expected
one, but still no substantial errors in the �nal seg-
mentation.
As for the computational advantages of this op-

timization, we show in �gure 5 a plot of the maxi-
mum and average error over the percentage of sam-
ples. Figure 6 shows the timings for the same com-
putations. Timings don't re�ect the ones presented
in [18] and are obtained by an unoptimized single-
thread implementation using the VCG library for
the ray-triangle. We can anyway obtain an imple-
mentation independent speedup with a small error
cost.
What is relevant of the ADSF can be understood

looking with one eye at table 1 and the other at �g-
ure 5 reporting data about the same mesh: this will
tell us that introducing less then 3% of error in the
computation selecting only one face every tenth (as
already mentioned this does not in�uence the over-
all segmentation at all) we gain one order of magni-
tude in the time spent for the computation passing
from sixty to slightly more than six seconds.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented our proposal for
speeding-up an algorithm for mesh segmentation
that uses the SDF function. We showed how the
Poisson equation de�ned on the mesh vertices
can be used to propagate, with a limited error,
the value of a subsampled SDF by computing the
function for a randomly distributed set of faces.

Faces % Max SDF error Avg. SDF error

50% 0.4022 0.0099
20% 0.5054 0.0198
10% 0.5292 0.0272
5% 0.5538 0.0374
2% 0.5374 0.0575
1% 0.5813 0.0695

Table 1: Max and average error in SDF ac-
cording to the percentage of faces used for
computation. The number are normalized
over the SDF values, so they ranges from 0
to 1. The computation was performed on

the horse mesh.

Figure 4: In this picture you can visually
appreciate the di�erence between the SDF
computed on all the faces and a subset (10%
of the total number). The image on top rep-
resents the result of the computation of the
SDF on all the faces, while the one in the
bottom represents the results of the compu-
tation performed on only 10% of the faces.
In the middle image, the di�erences between
the two results are graphically mapped on
the mesh, with blue indicating no di�erence
and colors towards red indicating larger and

larger di�erences.

The percentage of the samples can go down to 5%
without sensible di�erences in the outcome.

A future improvement that we would like to ex-
plore is the choice of the samples according to
their morphological signi�cance instead of a ran-
dom choice (see �gure 7 for an example); we would
like to study the behavior of our strategy if us-
ing a Gaussian sphere subsampling [9] where the
samples are uniformly distributed over a Gaussian



Figure 5: Average error in SDF in function
of the percentage of faces used for �ve dif-
ferent meshes. Green line are errors when
selecting 10% of the faces, red line when
selecting 20% and blue line when selecting

50%.

Figure 6: Computational times in function
of the number of selected faces. The times
were taken while processing the horse mesh.

sphere according to their normal resulting, there-
fore, more representative of the shape.

We also plan to improve the spatial organiza-
tion for the intersection search: computing the ray-
mesh intersection is a well known problem in Com-
puter Graphics even outside the computational ge-
ometry area. In fact there is a lot of work on ray-
tracing due to its centrality in rendering, and many
of the techniques adopted in this �eld can be ap-
plied to the SDF problem in order to optimize the
intersection search. While the original paper uses
octrees as a mean of spatial indexing, it's reason-
able to think that a KD-Tree can outperform it
even when the data grow large or huge. It would
be interesting to see how a specialized structure can
further lower the computational times. One more
open issue is how the parallelism implicit in ray-
tracers can be exploited to work out a GPU imple-
mentation of the whole accelerated SDF. Further-

Figure 7: Random face sampling (7%) - The
quasi-uniform sampling gives no weight to

the features of the mesh.

more, works on ray-tracing showed the usefulness
of the SIMD paradigm with ray packing.
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