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ABSTRACT
Geometric Algebra (GA) is a mathematical framework that allows a compact and geometrically intuitive descrip-
tion of geometric relationships and algorithms. In this paper a translation, rotation and scale invariant algorithm
for registration of color images and other multichannel data is introduced. The use of Geometric Algebra allows to
generalize the well known Fourier Transform which is widely used for the registration of scalar fields. In contrast
to the original algorithm our algorithm allows to handle vector valued data in an appropriate way. As a proof of
concept the registration results for artificial, as well as for real world data, are discussed.
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1 INTRODUCTION
Registration of images is a crucial step in many im-
age processing applications where the final informa-
tion is obtained by combining multiple input im-
ages. Widely used applications such as image stitch-
ing [16], medical imaging [3] and video tracking [15],
heavily rely on the accuracy of image registration. A
broad variety of approaches for various image regis-
tration problems has been developed and presented in
the literature, a survey which classifies the different
approaches is given in [19].

In many applications multi-channel images are
available, which require adequate processing of vec-
tor data. Fundamental image processing steps such
as convolution and correlation are not well suited
to work with vector data, as the multiplication of
vectors has a different meaning as the multiplication
of scalar values. In practice there are two common
ways to work around this limitation. One is to reduce
the dimensionality, e.g. to convert color images to
a monochrome representation. The other way is to
handle the vector components respective channels
independently and to combine the results afterwards,
e.g. perform a filter operation on the red, green, and
blue channel of a RGB image separately.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Obviously both approaches cause inaccuracies by
introducing information loss or misinterpretations
and may lead to inappropriate results.

The key innovation of our work presented here is
a way to perform a registration of multichannel im-
ages based on the Fourier Transform using Geomet-
ric Algebra as an adequate mathematic foundation to
handle vector data in a well defined and appropriate
way.

In Section 3 a brief introduction of some Geometric
Algebra basics is given and the registration of images
using the Fourier Transform is discussed. As main
contribution of this paper the generalization of this
registration approach for multichannel images, such
as color images, introduced in Section 4. The eval-
uation and the results are discussed in Section 5 and
6 respectively, and afterwards a conclusion is given
in Section 7. Finally an outlook to the future work is
given in Section 8.

2 RELATED WORK
Applications that rely on registration of images are
a.o.: image stitching [16], medical imaging [3] and
video tracking [15]. Especially in medical imaging
the registration of multichannel images plays an im-
portant role [12], [14]. To be able to process these
multichannel images in the phase domain, a general-
ization of the classical Fourier-Transform is needed.
Many different approaches have been invented to gen-
eralize the classical Fourier Transform in the recent
years [2], [7] and [8]. The basis of this paper is the
so called Clifford-Fourier-Transform that was derived
and successfully used in [5] and [6].



3 PREREQUISITES
3.1 Geometric Algebra
Below we only describe the parts of the Geometric
Algebra on Rn, G(Rn) or in abbreviate form Gn, that
will be used in this paper. For a more detailed in-
troduction to Geometric Algebra we reference to [1],
[4], [11], [18].

Inner Product: let a,b,c∈ Gn be Geometric Algebra
vectors and k ∈ R, then the inner product a ·b, that is
also known as the scalar product from vector calcu-
lus, has the following properties:

a ·b = b ·a
(k a) ·b = k(a ·b)

a · (b+ c) = a ·b+a · c .

Further we also know from vector calculus that
a ·b = |a | |b |cos(α), where α is the angle between a
and b, i.e. a ·b = 0 a,b 6= 0⇔ a and b are orthogonal.

Outer Product: let a,b,c∈Gn be Geometric Algebra
vectors and k ∈ R, then the outer product a∧b has the
following properties:

a∧b =−b∧a
(a∧b)∧ c = a∧ (b∧ c)
a∧ (b+ c) = a∧b+a∧ c

(ka)∧b = k(a∧b) .

It can be shown that the outer product a∧b spans a
plane, i.e. a∧b = 0⇔ a and b are parallel.

A term like
∧k

i=1 bi = b1∧b2∧·· ·∧bk is being called
a k-blade. A unit n-blade is often referred to as a
pseudoscalar e1∧ e2∧·· ·∧ en = in, where ei are unit
vectors, i.e. ei · e j = δi j .

Geometric Product: let a,b,c ∈ Gn be Geomet-
ric Algebra vectors, then the geometric product ab
is simply the sum of the inner and outer product
ab = a ·b+a∧b with the properties:

(ab)c = a(bc)
a(b+ c) = ab+ac
(b+ c)a = ba+ ca .

The sum of scalars, vectors and blades is denoted
as multivector, especially every single scalar, vector
and blade is a multivector too, i.e. the result of any
afore mentioned product is a multivector in general.

Rotations in Gn: let e1,e2, . . . ,en be unit vectors in
Gn, then with i 6= j

(ei∧ e j)(ei∧ e j) =−1 , (1)

a proof is given in Appendix A.1.
So, similar to Euler’s Formula, by substituting

e1∧ e2 = i, where i is the imaginary unit, and comput-
ing Taylor series expansion of exp(φ(e1∧ e2)), or in
shorthand notation eφ(e1∧e2), we get

eφ(e1∧e2) = cos(φ)+(e1∧ e2)sin(φ) , (2)

which is the well known rotation operator (rotor) for
complex numbers.

Unlike the case of complex numbers, for a
general rotation in Gn of an arbitrary plane
L = ∑

n
i=1 ∑

n
j=i+1 ki jei∧ e j with 0≤ ki j ≤ 1 and

∑i, j ki j = 1 a two-sided rotor is needed

arotated = e
−φ

2 L a e
φ

2 L . (3)

This is given by the fact that a two-sided rotor has no
effect on vectors perpendicular to the rotation plane,
e.g.

e
−φ

2 e1∧e2 e3 e
φ

2 e1∧e2 = e3 . (4)

a proof is given in Appendix A.2. A one-sided rotor
does not have this property.

3.2 Fourier-Mellin Transform
In this Section we briefly introduce the application
of the Fourier-Mellin Transform for registration of
grayscaled images. All theorems and proofs accord-
ing to the Fourier-Transform can be found in [10].

As in [10], we use the following definition of the
Fourier-Transform of a function f : R2→ C2

F(χ,ξ ) =
∫ +∞

−∞

∫ +∞

−∞

f (x,y)e−2πi(χx+ξ y)dxdy ,

and the Inverse Fourier-Transform as

f̂ (x,y) =
∫ +∞

−∞

∫ +∞

−∞

F(χ,ξ )e−2πi(χx+ξ y)dχdξ .

Translation Invariance: let f1 and f2 be two images
with the following relation:

f1(x,y) = f2(x− tx,y− ty) , (5)

i.e. moving f2 by tx (right) and ty (down) will result
in f1. Further let F1 and F2 be the Fourier-Transforms
of f1 respective f2, then by the shift-theorem both are
related to each other by:

F1(χ,γ) = F2(χ,γ)e−2iπ(χ tx+γ ty) , (6)

where i is the imaginary unit.
The latter equation can be rearranged to:

F∗2 (χ,γ)F1(χ,γ)

|F2(χ,γ)|2
= e−2iπ(χ tx+γ ty) , (7)

where F∗2 (χ,γ) denotes the conjugate complex Value
of F2(χ,γ).

The right-hand side of (7) is a Fourier-Transform of
the Dirac-Delta function1, i.e.:

e−2πi(χ tx+γ ty) =
∫∫
R2

δ (x− tx,y− ty)e−2πi(χ x+γ y) dxdy .

Since the inverse Fourier-Transform gives us the
Dirac Delta function δ (x− tx,y− ty), the position of
the Dirac impulse gives us the values for tx and ty, as
can be seen in Figure 1.

1 or to be more precise Dirac Delta distribution
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Figure 1: According to Paragraph Translation Invariance in Section 3.2, (a) is f1 and (b) is f2 with the relation
f1(x,y) = f2(x−50,y−10), which means that shifting (b) 50 pixels right and 10 pixels down will result in (a)
(the orign is the upper left corner and the image sizes are 128×128). The Inverse Fourier Transform of the left-hand
side of equation (7) results in (c). The Dirac Impulse p, i.e. the white point, has got the coordinates p = (50,10)T .

Rotation and Scale Invariance: let f1 and f2 be two
images with the following relation:

f1(x,y) = f2(x cos(α)+ y sin(α),y cos(α)− x sin(α)) , (8)

i.e. rotating f2 by the angle α will result in f1. Trans-
forming from Cartesian (x,y) to polar coordinates, the
latter equation can be written as:

f1 = f2(r,φ −α) ,

and is syntactically similar to equation (5) now. So
the value for α can be computed in the same way as
explained previously.

Having not only a difference in rotation but also in
all directions equal scale, one gets

f1(x,y) = f2(
x
s

cos(α)+
y
s

sin(α),
y
s

cos(α)− x
s

sin(α)) ,

where s is the so called scaling factor.
Transforming both sides of the above equation to

polar coordinates results in

f1(r,φ) = f2(
r
s
,φ −α) .

Computing the logarithm of r
s gives the so called log-

polar coordinates which leads to

f1(log(r),φ) = f2(log(r)− log(s),φ −α) , (9)

the same structure as in (5), so that α and log(s), re-
spective the scaling factor s, can be computed as de-
scribed above.

The Fourier-Transform F l of f (x,y) in log-polar co-
ordinates can be rearranged as follows:

F l(u1,u2) =
∫ 2π

0

∫ +∞

0
f (log(r),φ)e−2πi(u1 log(r)+u2φ)dlog(r)dφ

=
∫ 2π

0

∫ +∞

0
f (log(r),φ)r−2πiu1 e−2πu2φ dlog(r)dφ

=
∫ 2π

0

∫ +∞

0
f (log(r),φ)r−2πiu1−1dre−2πu2φ dφ .

Since the inner integral is a Mellin-Transform
while the outer integral is a Fourier-Transform, the
whole formula is often referred to as the Fourier
Mellin Transform.

Translation, Rotation and Scale Invariance: let f1
and f2 be two images, with the relation

f1(x,y)= f2(sx cos(α)+sy sin(α)−tx,sy cos(α)−sx sin(α)−ty) ,

i.e. rotating f2 by the angle α, scaling by s > 0 and
finally shifting it by tx and ty will result in f1 .

The Fourier-Transforms of both sides are related to
each other by

F1(χ,γ)= F2(
χ cos(α)+ γ sin(α)

a
,

γ cos(α)−χ sin(α)
a

)
e−2πi(χ tx+γ ty)

a2 .

The factor e−2πi(χ tx+γ ty) is a rotor, i.e. it changes only
the orientation but not the magnitudes of F2. So com-
puting the magnitude spectra M1,M2 of F1 and F2 leads
to

M1(χ,γ) = M2(
χ cos(α)+ γ sin(α)

s
,

γ cos(α)−χ sin(α)
s

)
1
s2 .

Fourier-Mellin Transforming both sides in log-polar
coordinates results in

FM1(ξ ,ψ) = FM2(ξ ,ψ)
e−2πi(ξ s+ψα)

s2 .

Now computing the magnitudes of both sides leads to

MFM1
(ξ ,ψ) = MFM2

(ξ ,ψ)
1
s2 , (10)

that finally can be rearranged to

s =

√
MFM1

(ξ ,ψ)

MFM2
(ξ ,ψ)

. (11)

Having the value of s we are able to compute the
value of α as described in Scale and Rotation Invari-
ance and subsequent the values for tx and ty as de-
scribed in Translation Invariance.



4 GENERALIZED REGISTRATION
In this Section we generalize the method of regis-
tering grayscaled images as mentioned above, to a
method that allows a registration of multichannel im-
ages as well. Therefore we make use of the Geomet-
ric Algebra and the Clifford Fourier Transform (CFT)
introduced in [6] that is defined as

F(χ) =
∫
Rn

f(x)e−2π in(x·χ)dx , (12)

and its inverse

f̄(x) =
∫
Rn

F(χ)e−2π in(x·χ)dξ , (13)

where x,ξ ∈ Rn are two n dimensional vectors, in is a
pseudoscalar, i.e. inin =−1 (the proof is analogous to
the one given in Appendix A.1), and f, f̄ : Rn→ Gm are
multivector valued signals.

The main advantage of this Fourier Transform is
that it is a sum of classical Fourier Transforms,

F(χ) =
∫
Rn

f(x)e−2π in(x·χ)dx

=
∫
Rn

( f1(x)e1 + f2(x)e2 + · · ·+ fn(x)en) e−2π in(x·χ)dx

=
∫
Rn

(−1)n−1 f1(x)e−2π in(x·χ)e1

+(−1)n−1 f2(x)e−2π in(x·χ)e2

+ · · ·+(−1)n−1 fn(x)e−2π in(x·χ)en dx

= (−1)n−1F1(x)e1 + · · ·+(−1)n−1Fn(x)en , (14)

i.e. high-performance implementations can be real-
ized by using Fast Fourier Transforms.

4.1 Translation Invariance
Let f1, f2 : Rn → Rm be two vector valued signals and
let x, t ∈ Rn with the following relation:

f1(x) = f2(x− t) .

The Fourier Transforms F1,F2 of f1 and f2 respec-
tively are related by

F1(χ) = F2(χ)e−2π in(t·χ) , (15)

a proof is given in Appendix A.3.
Analogously to the afore mentioned case for

grayscaled images, multiplying the inverse of F2
from the left and computing the inverse Clifford
Fourier Transform (13) will result in the Dirac
Delta function δ (x− t), i.e. the impulse is located at
position t ∈ Rn. A proof is given in A.4.

4.2 Rotation and Scale Invariance
As described in paragraph Rotations in Gn in
Section 3.1, rotations are defined in unit planes
L = ∑

n
i=1 ∑

n
j=i+1 ki jei∧ e j with 0≤ ki j ≤ 1 and

∑i, j ki j = 1. Obviously there are
(n

2

)
such planes

that can be extracted as

eφL = eφ1e1∧e2 eφ2e1∧e3 . . . e
φ(n

2)en−1∧en
,

where φ = φ1
k11

+ φ2
k12

+ · · ·+
φ(n

2)
kn−1 n

This means that in n dimensions two functions
f1, f2 : Rn→ Rm that differ in rotation, can finally dif-
fer in at most

(n
2

)
angles. Taking this in mind one

can see, that for computing all angles, the functions
f1, f2 must have the form f(r,φ1,φ2, . . . ,φ(n

2)
), i.e. two

equal functions that differ in rotation and scale (that
is equal in all dimensions), f1(x) = f2(e−

α

2 L x e
α

2 L) can
be written as

f1(log(r),φ) = f2(log(r)− log(s),φ −α) , (16)

where φ = (φ1,φ2, . . . ,φ(n
2)

)T , α = (α1,α2, . . . ,α(n
2)

)T

and r > 0,s > 0. These coordinates are related to the
Cartesian coordinates by

r
φ1
φ2
...

φ(n
2)

=̂ e−
φ1
2 e1∧e2 . . .e−

φ(n
2)
2 en−1∧en(re1)e

φ1
2 e1∧e2 . . .e

φ(n
2)
2 en−1∧en︸ ︷︷ ︸

Cartesian

(17)

Given equation (16), s > 0 and α ∈ R(n
2) can be com-

puted in the same way as for shifted vector valued
signals.

4.3 Translation, Rotation and Scale In-
variance

Although so far the generalization was easily done by
exchanging the classical Fourier-Transform by the so
called Clifford-Fourier-Transform, the generalization
of the registration of a rotated, scaled and shifted im-
age is a challenging task.

Let f1, f2 : Rn → Rm be two multichannel images
with the relation

f1(x) = f2(e−
1
2 φL x

s
e

1
2 φL− t) ,

with t ∈ Rn,φ ∈ R(n
2) and s > 0. The Fourier-

Transforms of f1 and f2 have the relation

F1(χ) = F2(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn .

Getting rid of the factor e−2πinχ·t by computing the
magnitudes, would allow to compute the scale and
the angles and afterwards the shift. Unfortunately this
step would result in a so called scalar field, which can
be imagined as a grayscaled image, i.e. from here
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Figure 2: Images (a) and (b) are the two related color images that served as inputs for the presented multichannel registration
algorithm. The result is shown in (c), a peak on the upper right. Transforming (a) and (b) into gray values (d)
respective (e), the result (f) is no more a single peak, i.e. the rotation angle can not be computed anymore.

on the algorithm would operate on grayscaled and no
more on multichannel images.

From equation (14) and the latter relation directly
follows:

(−1)n−1F11(χ)e1 +(−1)n−1F12(χ)e2 · · ·+(−1)n−1F1n(χ)en

= F21(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn e1

+F22(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn e2

+ · · ·+F2n(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn en ,

where Fi j is the classical Fourier Transform of image
i and channel j. Computing the magnitudes compo-
nent wise results in

M11(χ)e1 +M12(χ)e2 + · · ·+M1n(χ)en

= M21(e
1
2 φL sχ e−

1
2 φL)

e1

sn +M22(e
1
2 φL sχ e−

1
2 φL)

e2

sn

+ · · ·+M2n(e
1
2 φL sχ e−

1
2 φL)

en

sn ,

or in shorthand notation

MF1(χ) = MF2(e
1
2 φL χ

s
e−

1
2 φL)

1
sn ,

which can be rewritten in transformed coordinates as

MF1(log(r),φ) = MF2(log(r)− log(s),φ −α)
1
sn .

Clifford Fourier Transforming both sides leads to

FMF1(ρ,ξ ) = FMF1(ρ,ξ )
e
−2πin

(ρ

ξ

)
·
(

log(s)
α

)
sn .

From here on, computing sn, then α and finally t can
be done analogously to the case of grayscaled images,
that was described previously.

5 EVALUATION
The evaluation of our approach was made with two
different kinds of data: artificial and real world data.

An artificial color image has been created such that
the different colors within the image correspond to
the same gray value after conversion to grayscale (cf.
Figure 2). As real world data the 30th slice of a mon-
key head Positron Emission Tomography (PET) scan
(cf. Figure 3), available from [13], has been chosen.

The registration of the artificial data was done by
first rotating this image by a certain degree and then
registering it as described in Rotation and Scale In-
variance of Section 4. This step shows the potential
and advantages of this multichannel registration and
will be discussed in the next Section.

The evaluation of the monkey head PET was sim-
ilar to the afore mentioned case of the artificial data.
In contrast with the artificial data, the registration was
executed on each single channel (red, green and blue),
on the average signal of the three channels and on the
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Figure 3: This images are taken from the 30th slice of a PET scan of a monkey head available from [13]. The images are
respectively, the original PET image (a) itself, then the red (b), green (c) and blue (d) channels of the original image,
and the average (e) of the three channels.

multichannel data itself. These steps were performed
ten times to obtain many different results. Afterwards
the min., max. and avg. errors were computed. As
error measure we use the difference of the computed
angle and the ground truth.

Since the registration on each single channel
respectively on the average signal are state of the
art approaches, this evaluation procedure compares
them with the presented multichannel registration
algorithm.

6 RESULTS
The basic outcome of this work is a novel approach
for the registration of multichannel images, achieved
by the generalization of the Fourier(-Mellin) Trans-
form using Geometric Algebra multivectors as basis
elements.

The main advantage of this algorithm is that it di-
rectly operates on the multichannel signal, instead of
e.g. scaling the signal down to one dimension (e.g. by
averaging) and thereby loosing a lot of information.
This information loss in some cases will negatively
affect on the accuracy of the registration results, as
can be seen in Figure 2. Given the multichannel in-
formation, this artificially generated image is rotation
invariant, i.e. the rotation relation of two different
images (Figures 2(a) and (b)) is unique and can be
computed with our algorithm. Computing the gray
image would map all given colors, in this case, to the
same gray values (Figures 2(d) and (e)), such that the
computation of the angle is impossible from here on.
Figures 2(c) and (f) depict the mentioned behavior of
both processes, i.e. the former image shows a clearly
visible peak on the upper right (the unique solution),
while the latter image has got many different local
maxima.

The PET images that were used for the evaluation
are shown in Figure 3. Adding certain Gaussian noise
(µ = 0 and σ2 ∈ {0,0.1,0.2,0.3,0.4,0.5} ) to the ro-
tated image and subsequent performing the steps as
described in the previous Section, results in the com-
puted min., max. and avg. errors that are shown in
Tables 1,2 and 3 respectively.

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 0.044 0.272 0.044 0.272 0.044
0.1 0.005 0.064 0.064 0.005 0.005
0.2 0.061 0.061 0.101 0.061 0.061
0.3 0.111 0.111 0.297 0.219 0.100
0.4 0.074 0.074 0.074 0.060 0.060
0.5 0.266 0.132 0.285 0.150 0.112

Table 1: min. errors

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 2.189 2.030 3.436 2.189 1.062
0.1 1.624 1.447 2.994 1.955 1.248
0.2 99.738 2.128 4.405 4.118 1.612
0.3 88.483 4.405 4.108 161.608 1.806
0.4 48.528 3.430 31.653 155.403 1.762
0.5 79.519 55.548 118.452 134.363 1.891

Table 2: max. errors

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 0.675 1.021 1.309 0.986 0.516
0.1 0.618 0.919 1.411 0.801 0.665
0.2 19.418 1.041 1.480 1.043 0.688
0.3 9.600 2.170 1.392 29.621 0.891
0.4 7.943 1.127 4.230 45.112 0.791
0.5 16.028 8.471 36.845 23.743 0.900

Table 3: avg. errors

These results show, that the registration performed
on multichannel data (cf. column multich.) is more
accurate and more stable to noise than the registra-
tion on each channel separately (cf. columns ch. i) or
on the average of all channels (cf. column avg.ch.).
At the same time one can see that the registration on
channel 2 (blue) was far more accurate than the regis-
tration on the other single channels in the most cases,
i.e. combining the results of the different channels,
to compute the rotation angle, is a hard and still un-
solved task. Having the multichannel registration as
presented here, the solution of the mentioned task be-
comes no longer necessary since the registration is
performed on all channels simultaneously.



7 CONCLUSION
The proposed registration algorithm is an extension of
the well-known and widely used Fourier Transform
which operates on scalar data (e.g. gray images). As
many image sources provide multi-channel informa-
tion, there is a need to process this data in an adequate
way which prevents loss of information and keeps the
original dimensionality of the information.

Geometric Algebra has been chosen as a mathemat-
ical framework which allows a.o. an extension of the
Fourier Transform, called the Clifford Fourier Trans-
form [6], to be able to operate on multichannel signals
directly, i.e. it allows a frequency analysis on vector
valued signals and an implementation of vector val-
ued filters.

It has been shown in [6], that the Clifford Fourier
Transform is a sum of many classical Fourier Trans-
forms. As nowadays signal-processing hardware or
recent graphics hardware provides interfaces to per-
form the Fast Fourier Transform (FFT) hardware-
accelerated, it is suitable to design more complex al-
gorithms on base of the FFT and remain in suitable
computing times.

First investigation of the results shows that our reg-
istration on multichannel signals is very robust to
noise, and that this approach provides potential for
many applications on vector valued data.

8 FUTURE WORK
Our next steps will be a qualitative comparison with
conventional approaches as well as an evaluation on
volumetric image data.

Since a very high accuracy is needed, especially in
the context of medical imaging, our algorithm will be
extended with a spectrum based subpixel registration
approach like [17], to achieve even more accurate re-
sults.

Having this, other approaches, such as the improve-
ment of the resolution by registration [9], will be eas-
ily applicable with our multichannel registration al-
gorithm as well.

Further, to improve performance, our future work
will also include an implementation in CUDA respec-
tive OpenCL.
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A MATHEMATICAL PROOFS

A.1 Proof of (1)

(ei∧ e j)(ei∧ e j) = (−e j ∧ ei)(ei∧ e j)

= (−e jei)(eie j)

=−e j ei ei︸︷︷︸
1

e j

=− e je j︸︷︷︸
1

=−1

q.e.d.

A.2 Proof of (4)

e
−φ

2 e1∧e2 e3 e
φ

2 e1∧e2

= (cos(
φ

2
)− (e1∧ e2)sin(

φ

2
))e3 (cos(

φ

2
)+(e1∧ e2)sin(

φ

2
))

= (cos(
φ

2
)− (e1∧ e2)sin(

φ

2
))(cos(

φ

2
)+(e1∧ e2)sin(

φ

2
))e3

= (cos(
φ

2
)2 + sin(

φ

2
)2)e3

= e3

q.e.d.

A.3 Proof of (15)

Let f : Rn → Gn be a (multi-)vector valued function,
then the Clifford-Fourier-Transform of f(x− t) equals

Ft(u) =
∫
Rn

f(x− t)e−2πiu·xdx

=
∫
Rn

f(x̂)e−2πinu·(x̂+t)dx̂

=
∫
Rn

f(x̂)e−2πinu·x̂dx̂ e−2πinut

= F(u) e−2πinut

where F is the Fourier Transform of f (providing that
the Fourier-Transform exists).

Now let f1, f2 : Rn → Gn be two (multi-)vector val-
ued functions, such that f1(x) = f2(x− t). Let F1,F2,Ft
be the Fourier-Transforms of f1(x), f2(x) and f2(x− t),
respectively, then

F1(u) = Ft(u)

= F2(u) e−2πinu·t

q.e.d.

A.4 Proof of Dirac Delta CFT
Let δ : Rn → {0,+∞} be a Dirac Delta function, de-
fined as

δ (x) =

+∞ ,x =
(0...

0

)
0 ,else

then the Clifford Fourier Transform of δ (x− t) is

F(u) =
∫
Rn

δ (x− t)e−2πinx·udx

=
∫
Rn

δ (x̂)e−2πin(x̂+t)·udx̂

=
∫
Rn

δ (x̂)e−2πinx̂·udx̂ e−2πint·u

= e−2πint·u

q.e.d.


