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ABSTRACT

The focus of the this work is on the better integration of algorithms expressed in Conformal Geometric Algebra (CGA) in
modern high level computer languages, namely C++ and NVIDIA’s Compute Unified Device Architecture (CUDA). A high
runtime performance in terms of CGA is achieved using symbolic optimizing through the invocation of Gaalop.
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1 INTRODUCTION
During the last decade Conformal Geometric Algebra
(CGA) has become increasingly popular in expressing
solutions to geometry related problems in scientific ap-
plications of robotics, dynamics, rendering and com-
puter vision. Video game developers are becoming
aware of CGA, in search for simpler and faster ways
to describe their lighting [2] and physics algorithms.
The majority of developers makes use of C-related pro-
gramming languages like C++ or CUDA [14], which
are performant and abstract enough for most needs.

From a programmer’s perspective, the integration of
CGA directly into C++ and CUDA yields a high level
of intuitiveness. Coupled with a highly efficient gen-
erative software tool like Gaalop [9] in the background,
an integration could set new standards to CGA-powered
software development. The integration itself including
other comforts, and to make CGA-usage available to a
broad audience, is the purpose of this work.

1.1 Conformal Geometric Algebra
Conformal Geometric Algebra (CGA) is a new way of
expressing most geometry focused mathematical prob-
lems. It deals naturally with intersections and trans-
formations of planes, lines, spheres, circles, points and
point pairs, but is also good at representing mechanics
and dynamics. In Linear Algebra one would have to dif-
ferentiate a plane-sphere intersection into three distinct
cases, namely circle intersection, point intersection and
no intersection. In Conformal Geometric Algebra the
intersection itself is formulated as one operation on the
plane (P) and the sphere (S) respectively.

R = S∧P

The three different cases of Linear Algebra are im-
plicitly contained in the one result (R) of Conformal
Geometric Algebra, being more compact and better
readable. Similar observations can be made in other
applications of geometry related mathematics. Applied
to computer programs, CGA therefore has a high po-
tential for improving code readability and to shorten

production cycles. It has also been proven, that if im-
plemented right, Geometric Algebra has at least similar
performance, but sometimes even better performance,
than conventional approaches [8].

An element of Conformal Geometric Algebra is re-
ferred to as multivector. A multivector consists of a
linear combination of so called blades. Blades define
the basis of CGA and are combinations of the vectors
e1,e2,e3,e0 and e∞. All possible blades are listed in
table 1. Keep this in mind for section 2.2.

index blade grade

1 1 0

2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1

7 e1 ∧ e2 2
8 e1 ∧ e3 2
9 e1 ∧ e∞ 2
10 e1 ∧ e0 2
11 e2 ∧ e3 2
12 e2 ∧ e∞ 2
13 e2 ∧ e0 2
14 e3 ∧ e∞ 2
15 e3 ∧ e0 2
16 e∞ ∧ e0 2

index blade grade

17 e1 ∧ e2 ∧ e3 3
18 e1 ∧ e2 ∧ e∞ 3
19 e1 ∧ e2 ∧ e0 3
20 e1 ∧ e3 ∧ e∞ 3
21 e1 ∧ e3 ∧ e0 3
22 e1 ∧ e∞ ∧ e0 3
23 e2 ∧ e3 ∧ e∞ 3
24 e2 ∧ e3 ∧ e0 3
25 e2 ∧ e∞ ∧ e0 3
26 e3 ∧ e∞ ∧ e0 3

27 e1 ∧ e2 ∧ e3 ∧ e∞ 4
28 e1 ∧ e2 ∧ e3 ∧ e0 4
29 e1 ∧ e2 ∧ e∞ ∧ e0 4
30 e1 ∧ e3 ∧ e∞ ∧ e0 4
31 e2 ∧ e3 ∧ e∞ ∧ e0 4

32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Table 1: The 32 blades of 5D Conformal Geometric
Algebra, that compose a multivector.

1.2 High Level Programming Languages
Modern very high level software development tools,
like Java [15], define a very abstract language, on which
programmers and scientists can work in a natural way
and with results of moderate performance. Machine
level languages on the other hand, like Assembler, tend
to produce very fast results, but with less intuition,
which often leads to longer and more costly develop-
ment cycles.

In order to shorten development time and to pro-
duce fast code at the same time, the solution lies some-
where in between. Object oriented programming lan-
guages like C++, C#, Objective Pascal and Smalltalk
provide a good level of abstraction, but also excellent
performance. They seem to be a good choice for most
modern scientific and business projects and are there-
fore the most common languages, leaded by C and



C++. Recently NVIDIA’s Compute Unified Architec-
ture (CUDA) programming language enabled users to
utilize the very high computing power of modern graph-
ics chips. CUDA device code is a subset of the common
C language with some extensions added to it.

We strongly believe, that the applications of Confor-
mal Geometric Algebra are most likely to be found in
high performance applications, such as games, indus-
trial or scientific software. Since, as described above,
C-like languages are leading the field of high perfor-
mance computing, possible integration of CGA code
into C/C++/CUDA has the most advantage.

2 RELATED WORK
Combining both the aspects of Conformal Geometric
Algebra and Modern Programming Languages (namely
C++ and CUDA), promises to have a high potential for
scientific work. Unfortunately CGA has such a high
level of abstraction, that it does not naturally fit into
C++ and CUDA programs. In order to solve this prob-
lem and to make CGA run fast, recent approaches try to
wrap CGA into templated multivector classes (Gaalet
[18]) or make use of a domain specific language (DSL)
as input language for a code generator (Gaigen2 [5],
GMac [4] and Gaalop [9]). All software tools are very
well suited in their domain and produce good results. In
the following, we will present the CLUScript language,
Gaalop and the Compiler Driver concept.

2.1 CLUScript
Conformal Geometric Algebra can not be expressed in
terms of regular mathematical syntax. CGA-specific
operators like the outer product ∧, inner product . and
geometric product ∗ require special treatment in regular
programming languages or the definition a completely
new domain specific language (DSL).

The DSL that powers this work is CLUScript. The es-
pecially designed integrated development environments
for CLUScript are called CLUCalc (old) and CLUViz
(new). In words of the author Dr. Christian Perwass
[17, 16].

CLUCalc/CLUViz is a freely (for non-
commercial use) available software tool for
3D visualizations and scientific calculations
that was conceived and written by Dr. Chris-
tian Perwass. CLUCalc interprets a script
language called CLUScript, which has been
designed to make mathematical calculations and
visualizations very intuitive.

Indeed, CLUScript is a very intuitive language and
we have found CLUCalc to be an advanced tool for
developing and testing Geometric Algebra algorithms.
It is easy to use, installs and runs smoothly on Mi-
crosoft Windows platforms. Unfortunately, the support

for Linux or Macintosh platforms is very limited, but it
may run with some effort.

2.2 Gaalop
The Geometric Algebra Algorithms Optimizer
(Gaalop) [9] was developed by TU Darmstadt (Ger-
many) and is a powerful tool for optimizing algorithms,
expressed in Conformal Geometric Algebra. It gen-
erates non CGA-specific code from code defined in
a CGA-specific language and symbolically optimizes
the algorithm on-the-fly, invoking a Computer Algebra
System (CAS). In this context, CGA can be seen as
a higher level mathematical language that is being
transformed into simple arithmetic mathematical
language by Gaalop. Philosophically spoken, Gaalop
could be defined as a math compiler.

CLUScript as an input language and C/C++ as out-
put language has proven to be an extremely powerful
combination. It is also possible to generate Field Pro-
grammable Array (FPGA), LaTex and CLUScript rep-
resentations. For evaluation purposes it is often helpful
to choose CLUScript output, then replace the original
CLUScript code with the optimized code and test the
result for the same functionality as the original code.
Generated Gaalop C/C++ code has to be pasted into the
final code and requires additional handwork.

2.3 Compiler Drivers and CUDA
The Compiler Driver concept is a very simple, but pow-
erful approach to extend the features of a program-
ming language. It has recently been used by NVIDIA’s
CUDA [14]. We will use CUDA as an example to
explain the usage of compiler drivers. A traditional
C++ program is separated into several source files. The
source files will then be converted to an intermediate
form by the C++ compiler. This intermediate form is
called an object file. All the object files are then linked
together by the linker, resulting in the final executable
file. For instance, see the following example in figure
1.

Figure 1: C++ compilation process.

The language syntax of CUDA is fully compatible
with C++. One may compile any C++ code with
NVIDIA’s NVCC compiler without any modifications



to the original code. The produced machine code,
however, will still run on the host.

In order to make use of the graphics chip’s high
number of streaming processors, we will have to
include CUDA-specific language extensions like the
__global__ or __device__ keywords and kernel call
statements, which are not part of the original C++
language. The compiled object file will seamlessly link
with the code compiled with the regular C++ compiler.
To make this clear, see the simplified diagram in figure
2. The solver.cu source file is CUDA code, all other
files are C++ code.

Figure 2: Simplified CUDA compilation process.

Notice how the CUDA compiler seamlessly inte-
grates with the C++ compiler. With the __global__ and
__device__ and other keywords NVIDIA has extended
the C++ language syntax. But instead of creating their
own C++ compiler from scratch, they came up with
the approach of reusing the existing C++ compiler and
linker. This is called the Compiler Driver concept.

From the NVIDIA CUDA Programming Guide 3.0
[3].

Source files compiled with nvcc can include a
mix of host code (i.e. code that executes on
the host) and device code (i.e. code that exe-
cutes on the device). nvcc’s basic workflow con-
sists in separating device code from host code
and compiling the device code into an assembly
form (PTX code) and/or binary form (cubin ob-
ject). The generated host code is output either as
C code that is left to be compiled using another
tool or as object code directly by letting nvcc in-
voke the host compiler during the last compila-
tion stage.

This way CUDA makes full usage of the existing
C++ compiler and linker features, extends them, but
separates both compilers at the same time. This enables
lower complexity and better maintenance of NVCC.
The full diagram can be seen in figure 3.

3 GAALOP COMPILER DRIVER
We have presented Conformal Geometric Algebra,
CLUScript, Gaalop and C++. All these aspects are
somehow related to each other, but simply not linked
yet. This is where the Compiler Driver concept comes

Figure 3: Full CUDA compilation process.

in and elegantly connects all parts. The diagram in
figure 4 shows, how this will be achieved in particular.

Figure 4: GCD C++ compilation process.

We now use the file extension .gcp for CLUScript-
extended C++ source files. The particular steps, that
occur when compiling .gcp-files, are the following.

1. The user issues the build command. This can happen
in an integrated development environment (IDE) us-
ing custom build rules, as well as using GNU make
[6] or other build automation tools.

2. The build tool passes .gcp-files to Gaalop Compiler
driver (GCD) over the command line.

3. GCD extracts the CLUScript parts of the .gcp-file
and writes them into separate files.

4. GCD invokes Gaalop over its new command line
interface, passing the extracted code files, one at a
time.

5. Gaalop symbolically simplifies the extracted code
files.

6. GCD merges the returned code into with the original
code, exactly where the pragmas are.

7. GCD invokes the regular C++ compiler passing the
merged C++ file.

8. Finally, the C++ compiler produces an object file,
which seamlessly integrates into the linking process.



3.1 Gaalop Compiler Driver for CUDA
Note that the concept is not restricted to C++. It can
be applied to CUDA or other programming languages
in the same manner. The resulting diagram in figure 5
for CUDA is slightly more complex, as GCD passes its
data to NVCC, which itself is a compiler driver.

Figure 5: GCD CUDA compilation process.

We choose the file extension .gcu for CLUScript-
extended CUDA programs. The compilation process
steps remain the same as with C++ GCD, with the ex-
ception of passing the generated file to NVCC instead
of the C++ compiler in steps 7 and 8.

4 A GUIDE TO GAALOP GCD
The following section shows, how to make use of GCD
in real world-applications. It is intended as a quick
start-guide, described by three example code snippets.

4.1 The Test Case
The code in the following listings was extracted from
a Molecular Dynamics Simulation currently under de-
velopment by us and the High Performance Comput-
ing Center Stuttgart (HLRS) and is partially optimized
with Gaalop and GCD. A molecular dynamics simula-
tion models the point-pair interactions of a system of
molecules, each one consisting of several atoms, and
numerically solves Newton’s and Euler’s equations of
motion for each molecule.

The aim of the project is a runtime comparison be-
tween a conventional solver and several implementa-
tions of a new formalism based on Hestenes’ work on
screw mechanics described in CGA [7], including a
compact formulation of combined translational and ro-
tational dynamics within a velocity verlet algorithm.
Details of the Molecular Dynamics formalism used as a
test case in the present work is intended to be part of a
future publication. The CGA solvers were implemented

with Gaalet, Gaalop and GCD running on the CPU,
as well as Gaalop and GCD running on CUDA.The
listings show code extracted from both the CPU and
CUDA versions of the Gaalop and GCD solvers.

4.2 Code examples for C++
The whole simulation was firstly implemented in CLU-
Calc using the CLUScript language and later ported
to C++ using Gaalop. Listing 1 shows the initializa-
tion of a particular molecule, taken from the origi-
nal CLUScript. Location and orientation are defined
through the molecule’s versor D_result (refer to [7]).
Linear and angular velocity are defined through the
molecule’s velocity screw V_result. The consecutive
simulation steps start with the values computed in this
initialization code.

/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ ( l p x∗e1 + l p y∗e2 + l p z∗e3 ) ^ e i n f ;
? D _ r e s u l t = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
? V _ r e s u l t = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

Listing 1: Original CLUScript input for Gaalop.

Note that D_result and V_result are already declared
for export in Gaalop indicated by the question marks.
The resulting Gaalop output code is then directly pasted
into the target C++ file, as can be seen in listing 2.

/ / map m o l e c u l e da ta t o gaa lop da ta
c o n s t f l o a t l p x = m o l e c u l e . l p o s [ 0 ] ;
c o n s t f l o a t l p y = m o l e c u l e . l p o s [ 1 ] ;
c o n s t f l o a t l p z = m o l e c u l e . l p o s [ 2 ] ;
c o n s t f l o a t arw = m o l e c u l e . a r o t [ 0 ] ;
c o n s t f l o a t a r x = −m o l e c u l e . a r o t [ 1 ] ;
c o n s t f l o a t a r y = −m o l e c u l e . a r o t [ 2 ] ;
c o n s t f l o a t a r z = −m o l e c u l e . a r o t [ 3 ] ;
c o n s t f l o a t l v x = m o l e c u l e . l v e l [ 0 ] ;
c o n s t f l o a t l v y = m o l e c u l e . l v e l [ 1 ] ;
c o n s t f l o a t l v z = m o l e c u l e . l v e l [ 2 ] ;
c o n s t f l o a t avx = m o l e c u l e . a v e l [ 0 ] ;
c o n s t f l o a t avy = m o l e c u l e . a v e l [ 1 ] ;
c o n s t f l o a t avz = m o l e c u l e . a v e l [ 2 ] ;

/ / gaa lop g e n e r a t e d code
f l o a t D _ r e s u l t _ o p t [ 3 2 ] = { 0 . 0 f } ;
D _ r e s u l t _ o p t [ 1 ] = arw ;
D _ r e s u l t _ o p t [ 7 ] = a r z ;
D _ r e s u l t _ o p t [8]=− a r y ;
D _ r e s u l t _ o p t [ 9 ] = 0 . 5∗ l p y∗arz −0.5∗ l p x∗arw−0.5∗ l p z∗ a r y ;
D _ r e s u l t _ o p t [ 1 1 ] = a r x ;
D _ r e s u l t _ o p t [ 1 2 ] = 0 . 5∗ l p z∗arx −0.5∗ l p y∗arw−0.5∗ l p x∗ a r z ;
D _ r e s u l t _ o p t [14]=−0.5∗ l p z∗arw +0.5∗ l p x∗ary −0.5∗ l p y∗ a r x ;
D _ r e s u l t _ o p t [27]=−0.5∗ l p y∗ary −0.5∗ l p z∗arz −0.5∗ l p x∗ a r x ;

/ / gaa lop g e n e r a t e d code
f l o a t V _ r e s u l t _ o p t [ 3 2 ] = { 0 . 0 f } ;
V _ r e s u l t _ o p t [7]=− avz ;
V _ r e s u l t _ o p t [ 8 ] = avy ;
V _ r e s u l t _ o p t [9]=− l v x ;
V _ r e s u l t _ o p t [11]=− avx ;
V _ r e s u l t _ o p t [12]=− l v y ;
V _ r e s u l t _ o p t [14]=− l v z ;

/ / map gaa lop da ta t o m o l e c u l e da ta
GaalopMapVersor (D, D _ r e s u l t _ o p t ) ;
GaalopMapVeloc i tyScrew (V, V _ r e s u l t _ o p t ) ;

Listing 2: Merged Gaalop and C++ code.



Notice that the result code not only contains the gen-
erated Gaalop code, but also several variable and array
assignments. Those assignments are data mappings be-
tween the original molecule data structure and the gen-
erated Gaalop code. They are quite common for most
Gaalop-powered applications.

The function GaalopMapVersor assigns the elements
1,7,8,9,11,12,14,27 of array D_result_opt to the ele-
ments 0,1,2,3,4,5,6,7 of array D, that was previously
declared with size 8. The function GaalopMapVeloc-
ityScrew assigns the elements 7,8,9,11,12,14 of array
V_result_opt to the elements 0,1,2,3,4,5 of array V, that
was previously declared with size 6. The code in be-
tween the two mapping blocks is the actual Gaalop out-
put code.

One may modify the array indices and variable names
by hand to improve speed and to avoid data mappings.
For reasons of transparency this is usually not a good
choice, meaning that if we might discover a bug or
we would like to include a new feature in one of our
CLUScript files, we again have to modify the gener-
ated code by hand. As there might be a large number
of Gaalop-generated code snippets in a GGA-powered
C++ program, this process will increase the probability
of bugs and development time. Using data-mappings
enables us to re-paste modified code at any time.

Also notice that even without the data mappings, the
generated code is hardly interpretable by human means.
Keeping this in mind, review the following code.

/ / map m o l e c u l e da ta t o gaa lop da ta
. . .

#pragma gcd b e g i n
/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ ( l p x∗e1 + l p y∗e2 + l p z∗e3 ) ^ e i n f ;
? D _ r e s u l t = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
? V _ r e s u l t = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

#pragma gcd end

/ / map gaa lop da ta t o m o l e c u l e da ta
GaalopMapVersor (D, D _ r e s u l t ) ;
GaalopMapVeloc i tyScrew (V, V _ r e s u l t ) ;

Listing 3: Gaalop Compiler Driver for C++ input code.

Note: The preceding variable mappings were re-
moved in order to keep the size of this document small.
Please consider them to be in place when evaluating the
code.

The CLUScript code is now directly embedded in the
C++ code in between the gcd pragmas, instead of the
pasted Gaalop code. As result, this reduces the source
code size and makes it much better readable.

Since the code now contains CLUScript statements,
which are apparently not part of the C++ standard, we
will not be able to compile it with a regular C++ com-
piler. To be specific, the C++ standard is being extended

using the Compiler Driver concept, as stated in section
3.

4.3 Code example for CUDA
The example above was chosen, because it includes a
lot of CGA-statements and is easy to understand. It is
also possible to include this code into a CUDA-Kernel,
but not meaningful here. The code shown is only called
once for each molecule before the simulation, and never
called again. Wisely chosen CUDA-Kernels are called
one or many times per frame, as the one in listing 4.
Again, it is taken from the original simulation, with
some parts removed.
_ _ d e v i c e _ _ void addMoleculeForceAndTorque (

f l o a t ∗ mol_lmom ,
f l o a t ∗ mol_amom ,
c o n s t f l o a t ∗ v e r s o r 1 ,
c o n s t f l o a t 3& l o c a l P o s ,
c o n s t f l o a t 3& g l o b a l F o r c e ,
. . . )

{
/ / map m o l e c u l e da ta t o gaa lop da ta
c o n s t f l o a t Di = v e r s o r 1 [ 0 ] ;
c o n s t f l o a t D12 = v e r s o r 1 [ 1 ] ;
c o n s t f l o a t D13 = v e r s o r 1 [ 2 ] ;
c o n s t f l o a t D1x = v e r s o r 1 [ 3 ] ;
c o n s t f l o a t D23 = v e r s o r 1 [ 4 ] ;
c o n s t f l o a t D2x = v e r s o r 1 [ 5 ] ;
c o n s t f l o a t D3x = v e r s o r 1 [ 6 ] ;
c o n s t f l o a t D123x = v e r s o r 1 [ 7 ] ;

c o n s t f l o a t px = l o c a l P o s . x ;
c o n s t f l o a t py = l o c a l P o s . y ;
c o n s t f l o a t pz = l o c a l P o s . z ;

c o n s t f l o a t fgx = g l o b a l F o r c e . x ;
c o n s t f l o a t fgy = g l o b a l F o r c e . y ;
c o n s t f l o a t f g z = g l o b a l F o r c e . z ;

#pragma gcd b e g i n
/ / i n p u t v a l u e s
m o l e c u l e V e r s o r = Di + D23∗e2 ^ e3 + D13∗e1 ^ e3

+ D12∗e1 ^ e2 + D1x∗e1 ^ e i n f
+ D2x∗e2 ^ e i n f + D3x∗e3 ^ e i n f
+ D123x∗e1 ^ e2 ^ e3 ^ e i n f ;

p o s L o c a l = px∗e1 + py∗e2 + pz∗e3 ;
f o r c e G l o b a l = fgx∗e1 + fgy∗e2 + f g z∗e3 ;

/ / f i n a l v a l u e s
? r e s u l t _ f o r c e = ~ m o l e c u l e V e r s o r

∗ f o r c e G l o b a l
∗ m o l e c u l e V e r s o r ;

? r e s u l t _ t o r q u e = p o s L o c a l ^ r e s u l t _ f o r c e ;
#pragma gcd end

/ / add r e s u l t i n g f o r c e and t o r q u e t o m o l e c u l e ’ s da ta
. . .
}

Listing 4: Gaalop Compiler Driver for CUDA input code.

5 RESULTS
5.1 Performance and Compile Time
Figure 6 shows the performance of the GCD solver ver-
sus the Conventional solver for the Test Case in sec-
tion 4.1 on a quadcore machine. The GCD solver is
slightly faster or equally fast compared to the Conven-
tional solver, which is not self-evident for CGA-based
implementations of such complexity. Additionally, the
GCD solver has a more compact code, as described



in section 4.1. Notice, that section 6 shows ways to
achieve more than two times faster results, by remov-
ing unused memory and caching artifacts (figure 7).

Figure 6: Performance Results - GCD solver is slightly
faster or equally fast compared to Conventional solver.
Much higher Performance is achieved in figure 7, Fu-
ture Work section 6.

Compilation time is 1.920s for the Conventional ver-
sus 10.426s for the GCD solver. The prolonged com-
pile time is due to the Gaalop-performed symbolic op-
timizations in the background.

5.2 CMake Support
Development with most programming languages, es-
pecially C++, is highly dependent on specifying build
logic. Build logic explicitly defines which source files
need to be compiled with which tool, and how the re-
sulting intermediate files get linked together into the fi-
nal executable or library file. Integrated development
environments (IDE) like Microsoft Visual Studio [13]
or Code::Blocks [1] automatically manage the default
parts of the build logic.

However, with a rising number of operating systems,
compilers and build tools, it has become very difficult
to maintain the build logic for every possible combi-
nation of operating system and compiler. CMake [12]
elegantly solves this problem by acting as a build logic
generator. More detailed, CMake defines a script lan-
guage, that is independent of the build platform. This
script language, is then transformed into the target plat-
form definition, e.g. *.sln project files for Visual Studio
or Makefiles for GNU make [6].

CMake is rapidly becoming the de facto standard
for cross platform build tools. It also supports auto-
matic unit testing (CTest), install and deploy mecha-
nisms (CPack), and web-based error reporting (CDash).

CMake support for GCD is provided by a CMake-
script named FindGCD.cmake. If the script is installed
in CMake’s Modules subdirectory, it can be invoked
by CMake’s FIND_PACKAGE(GCD) command.
Libraries and executables containing GCD code

may be built using GCD_CPP_ADD_LIBRARY and
GCD_CPP_ADD_EXECUTABLE commands. GCD
for CUDA builds use GCD_CUDA_ADD_LIBRARY
and GCD_CUDA_ADD_EXECUTABLE.

An example CMakeLists.txt build script is shown in
listing 5.
CMAKE_MINIMUM_REQUIRED(VERSION 2 . 8 )
FIND_PACKAGE(GCD)
GCD_CPP_ADD_EXECUTABLE( t e s t 1 " T e s t 1 _ P o i n t T r i a n g l e . gcp " )
ADD_TEST(NAME " T e s t 1 _ P o i n t T r i a n g l e " COMMAND t e s t 1 )

Listing 5: Example CMake build script using GCD.

Given this definition, CMake compiles and links the
GCD source file "Test1_PointTriangle.gcp" into an ap-
plication test1, and specifies it as a runtime test. CTest
runs the executable and reports it as PASSED, if its re-
turn value is zero, or FAILED, if it is non-zero. Tests
like this one are an important part of software quality
assurance.

5.3 GCD helper library
The goal behind GCD helper library is to assist users
of GCD by providing essential functions, that simplify
development of CGA-powered applications. It is in-
tended as a multi-purpose library, adaptable to a broad
range of applications working with Conformal Geomet-
ric Algebra. Reoccurring tasks, like the mapping of ver-
sors (GaalopMapVersor from section 4.2), are imple-
mented within the library. It also provides C++-macros,
that state the position of a particular multivector entry,
e.g. e1∧ e2 is listed as "#define E12 6". For example,
D[E12] returns the blade e1∧e2 of a multivector D (see
table 1 for a refresh of the 32 blades of CGA).

The GCD helper library is automatically linked when
using CMake, as described in section 5.2. However, the
library’s header files have to be included with "#include
<gcd.h>" in *.gcp (GCD for C++) or *.gcu (GCD for
CUDA) source files.

6 FUTURE WORK
The presented approach still has a lot of potential to im-
prove on. Further work has to be put into simplifying
data mappings and advancing memory usage. Gaalop
automatically allocates arrays of 32 floating point num-
bers to make space for all possible multivector entries,
which results in a memory usage of 128 bytes per mul-
tivector (see subsection 1.1). Most multivectors usually
contain about up to 8 entries, which results in about 24
unused multivector entries and 96 bytes of unneeded
memory. It is not trivial to reduce the required space,
because we must deal with the theoretical assumption,
that all multivector entries could be assigned.

Using data mappings, the effect can be hidden, and
no useless data will be saved and read from RAM, but
it still occupies register space and cache, which has an
effect on performance. This turned out to to be a major
bottleneck in our Molecular Dynamics simulation.



Listing 6 shows an outlook of how future GCD code
may look like.

/ / map m o l e c u l e da ta t o gaa lop da ta
. . .

#pragma gcd b e g i n
/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ ( l p x∗e1 + l p y∗e2 + l p z∗e3 ) ^ e i n f ;
?D = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
?V = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

#pragma gcd end

Listing 6: Future GCD code without subsequent data mappings.

Notice that D and V do not need to be saved into tem-
porary arrays D_result and V_result anymore. They are
directly stored into the final arrays, saving additional
copy time, register and cache usage. Preliminary tests
on this subject reduced the runtime of our test case
down to 36 percent of its original value and are very
promising (figure 7).

Figure 7: Future Performance Results

Ongoing work is being put into symbolically op-
timizing larger parts of the CLUScript-syntax with
Gaalop. For example, while-loops can be unrolled and
symbolically treated in the same way as other code.

Apart from C++ and CUDA, other languages like
OpenCL [11], Microsoft DirectCompute and shading
languages (CG, HLSL) are interesting target languages
for GCD and promising topics for further research.

The GCD helper library will be expanded in future
work to support direct rendering of multivectors similar
to CLUCalc (see figure 8 for example). That is, given
a particular multivector m, the helper library will firstly
determine its representation in three-dimensional space
(e.g. sphere, plane, circle, line, point-pair or point).
Given the representation and its parameters, the library
will render the appropriate object with OpenGL [10] or
other rendering APIs.

Figure 8: An example of CLUCalc generated graphics

7 CONCLUSION
Code simplicity, elegance and intuitiveness are the ma-
jor goals of this work. Recalling the code examples
shows that these goals were reached. As GCD directly
profits from any improvements within Gaalop through
its invocation, a high runtime performance is achieved
on-the-fly.

Gaalop GCD symbolically optimizes the embedded
CLUScript code in order to improve runtime. A longer
compile time is a natural consequence of the concept.
However, we do not recommend putting much research
into this aspect, as the build process can already be
parallelized in many build automation tools like GNU
make [6]. We found, that in reality, using parallelized
builds, longer compile time is not a problem.

We would like to conclude, that Gaalop Compiler
Driver has the potential to change the way program-
mers work with Conformal Geometric Algebra inclu-
sions in their code. Instead of separating code genera-
tion and code compilation into two distinct processes, it
is now a single simplified process. Especially the com-
bination of CGA and CUDA enables new methods for
research. As it is now easier to develop with, we hope
that more scientists, game and software programmers
will find their way into the applications of Conformal
Geometric Algebra.
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