

Fast GPU-based image warping and

inpainting for frame interpolation

 Jakub Rosner1 Hannes Fassold2
 jakub.rosner@joanneum.at hannes.fassold@joanneum.at

 Peter Schallauer2 Werner Bailer2
 peter.schallauer@joanneum.at werner.bailer@joanneum.at

1 Silesian University of Technology, PhD faculty of Data Mining, Ulica Academicka 16, 44-100 Gliwice, Poland
2 JOANNEUM RESEARCH, Institute of Information Systems, Steyrergasse 17, 8010 Graz, Austria

ABSTRACT
Frame interpolation (the insertion of artificially generated images in a film sequence) is often used in post
production to change the temporal duration of a sequence, e.g. to achieve a slow-motion effect. Most frame
interpolation algorithms first calculate the motion field between two neighboring images and scale it
appropriately. Afterwards, the images are warped (mapped) with the scaled motion field, and regions to which no
source pixel was mapped are filled up (image inpainting). In this paper, we will focus on the latter two steps, the
warping of the images and the image inpainting. We present simple and fast algorithms for image warping and
inpainting, and discuss their efficient implementation to GPUs, using the NVIDIA CUDA technology. We
compare the CPU and corresponding GPU routines and notice a speedup factor of approximately 6 - 10 for
image warping and image inpainting. Significantly higher speedups can be expected for the latest NVIDIA GPU
generation codenamed Fermi due to several architectural improvements (faster atomic operations, L1/L2 cache).
When comparing the result images of the CPU and GPU routine visually, practically no difference can be seen.

Keywords
Image warping, image inpainting, frame interpolation, GPU, CUDA, GPGPU

1. INTRODUCTION
Frame interpolation (the insertion of artificially
generated frames in a film sequence) is a commonly
used method in video and film post production. It can
be used for converting a given film sequence to a
slow-motion sequence (also known as retiming). Also
when doing film restoration, one can replace missing
frames, or frames which have been badly damaged,
by artificial frames created by frame interpolation.

 Typical frame interpolation algorithms operate in the
following way (see Figure 1): As a first step, the
pixel-wise motion (optical flow) between the two
temporally neighboring images of the interpolated

image (which is to be calculated) is estimated. A
dense motion field is retrieved, whose motion vectors
then are scaled linearly according to the desired
temporal position of the interpolated image. After
that, one neighbor image is warped with the scaled
motion field to get the interpolated image. The term
image warping means that each pixel of the source
image is mapped (translated) with its motion vector
and written into a destination image. The interpolated
image typically has holes, regions in the image to
which no source pixel was mapped to. So the last step
is to fill these regions with an image inpainting
algorithm. One can apply this procedure to both
neighbor images and gets two interpolated images,
which can be combined to one image e.g. by some
sort of blending . In this work, we will focus on the
last two steps, image warping and inpainting, and on
their efficient implementation on the GPU using the
CUDA technology. We will not describe the
calculation of the motion field, as there are efficient
GPU-based algorithms available (e.g. [Wer09]) which
we will take advantage of.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Note that CUDA3 is an acronym for Compute Unified
Device Architecture and is a general-purpose GPU
programming environment introduced by NVIDIA,
allowing the programmer to utilize the massive
processing power of current generation GPUs.

In this document, we first give an introduction into
GPU programming and CUDA (see next section). In
section 3 we discuss shortly previous work on
implementing image warping and image inpainting on
the GPU. In section 4 and 5, we give an description
of the algorithms we developed in our research group
for image warping and image inpainting. After that,
in section 6 we describe how we ported our CPU
algorithms to CUDA. Finally, in section 7
experiments are done to compare the algorithms and
their respective GPU implementations in terms of
quality and speed.

2. GPU PROGRAMMING & CUDA
In the last years, GPUs have gained significant
importance in computer vision and other scientific
fields. A number of basic computer vision algorithms
has already been implemented efficiently on GPUs,
be it optical flow calculation [Wer09], feature point
tracking [Fas09] or SIFT features [Sin06]. Typically
they provide a speedup of an order of magnitude with
respect to a reference CPU implementation,
depending on the algorithm’s ability to be executed in
a massively parallel way. Most GPU implementations
use CUDA as it is currently the best supported
programming environment.

A CUDA program is typically composed of a control
routine, which calls a couple of CUDA kernels. A
kernel is similar to a function, but is executed on the
GPU in parallel by a larger number of threads
(typically thousands). Groups of 32 consecutive
threads are organized into warps. Furthermore, sets
of up to 512 threads are grouped into thread blocks,
which then form a grid.

An important property of NVIDIA GPUs is shared
memory, which is a small, but very fast cache which

3 http://www.nvidia.com/object/cuda_home_new.html

has to be managed by the user. There are also other
important memory types with different properties,
e.g. texture memory (read-only, cached), constant
memory and global memory (read-write, high
latency). Also atomic functions are very helpful when
different threads try to access the same memory
location.

For a more detailed description we refer to the
publications [Fas09] and [Ryo08] where GPU/CUDA
programming is explained more in depth and
guidelines are given for porting algorithms efficiently
to CUDA.

3. RELATED WORK
Although the literature for image inpainting
algorithms is huge (e.g. see [Ber00][Bor07][Che10]
[Cri03][Fid08]), there are not many algorithms which
have been reported to run on the GPU. This might be
because a significant amount of them have a rather
complicated workflow or an implicit serial nature
which can not be easily mapped to a GPU. In fact, to
our knowledge only for one algorithm [Har01] a
corresponding GPU implementation has been
described5. It is implemented in shading language6,
having the disadvantage that the algorithm has to be
adapted to fit to the computer-graphics oriented
render pipeline. This adaption typically leads to a
more complicated implementation and performance
degradation. Regarding image warping, a survey of
various warping methods can be found in [Wol90].

4. IMAGE WARPING

Algorithm
Image warping is a fundamental task in image
processing. Given an source image I and a dense
motion field, one wishes to generate a warped image
Iwarped where all the pixels in I have been translated by
their corresponding motion vector.

Note that, depending on the motion field, multiple
pixels of the source image may map to the same place
in the warped image. On the other hand, there may be
areas in the warped image to which no source pixel
was mapped to, leading to holes in the warped image.
Filling up those areas will be described later in this
document in section 5.

The algorithm we propose for image warping needs
an additional accumulator image and a weight image.
Both are floating point (fixed-point is also possible)
and are initially set to zero. Now for each source
pixel its destination position is calculated, using the
mapping defined by the dense motion field. As we

5 http://www.eecs.harvard.edu/~hchong/goodies/inpaint.pdf
6 http://www.opengl.org/documentation/glsl/

moriginal

I1 I2 Iint

mscaled

Figure 1: Illustration of the workflow for frame
interpolation. Iint is the interpolated image, I1 and
I2 its neighbors, moriginal the calculated motion
field between I1 and I2 and mscaled the scaled
motion field.

can not write directly to the destination position (it
typically has non-integer coordinates), we instead
‘write’ into the four surrounding pixels of the
destination position (one can imagine this as sort of
‘bilinear writing’). For that, we increment the four
surrounding pixels in the accumulator image and also
in the weight image. The amount of increment
depends on the distance of the destination position to
the specific pixel neighbor.

The usage of an accumulator image solves the
problem that multiple source pixels possibly map to
the same destination pixel. The resultant intensity in
the warped image will be a weighted combination of
the source pixels intensities.

Finally, the intensity values of the warped image
Iwarped is calculated by dividing the accumulator
image pixel-wise by the weight image. Areas to
which no source pixel was mapped (holes) are
identified by having a zero value in the weight image.
A hole mask is generated which is needed for the
inpainting process, which is described in the next
section. Note that the proposed image warping
algorithm is quite fast as it has has linear complexity
with respect to the number of image pixels.

5. IMAGE INPAINTING

Algorithm
The input for the image inpainting algorithm is an
intensity image I and a hole mask H which defines the
areas of then intensity image, which should be
inpainted. In the following, we give an outline of our
proposed inpainting method. It needs an additional
floating-point accumulator image A and weight image
W. Both are initially set to zero. For multi-channel
images, each channel is calculated separately.

First, the set of border pixels of all holes are
determined. Now for each border pixel, its intensity
is propagated into the hole in a fixed set of directions
(typically 16, equally distributed over the 360 degree
range). See Figure 3 for an illustration of the process.
The propagation is done in the following way: For a
specific border pixel and a specific direction, a line-
tracing using the Bresenham algorithm [Bre65] is
performed, starting at the border pixel and ending
when the line hits the opposite side of the hole. The
Bresenham algorithm is slightly modified so that
during line-tracing it updates also the approximate
distance dcurr from the current pixel to the start
border pixel. Now, for each visited pixel p during
line-tracing, its corresponding accumulator image
value A(p) and weight image value W(p) are

incremented according to b
curr

g
d

pApA
1

)()(+= and

currd
pWpW

1
)()(+= , where gb denotes the intensity

value of the start border pixel. One can see from this
that border pixels which are nearer to a given hole
pixel have a higher contribution to its intensity value,
as the increment in the accumulator image will be
higher for them.

After having done the propagation for all hole border
pixels and all directions, the intensities values for the
regions to be inpainted can be calculated simply by
dividing the accumulator image pixel-wise by the
weight image.

A problem of the proposed method is that due to
using a fixed set of directions, it can introduce star-
shaped artefacts into the inpainted regions. In order to
reduce these artefacts, we enforce an additional post-
processing step.

 Figure 2: From top to bottom: input image,
warped image, final interpolated image where
holes have been inpainted.

For this purpose, we first calculate a distance map for
the hole regions, which gives for each hole pixel
approximately its distance to the nearest hole border
pixel. Note that fast algorithms for calculating the
distance map are available [Bor86]. Now each hole
pixel is blurred with a distance-adaptive box kernel,
with kernel sizes ranging from 3 (for hole pixels near
the border) to 9 (inner hole pixels).

One can increase the quality of the inpainted regions
by using more directions in the propagation step. On
the other hand, also the runtime increases linearly
with the number of directions. According to
experiments, a value of 16 seems to be a good
compromise between quality and runtime.

In Figure 4 the results of proposed image inpainting
algorithm (using 16 directions) for some commonly
used test images8 can be seen. As the algorithm is
solely diffusion-based, blurring can be observed in
the inpainted regions. Note that the proposed
algorithm shares some loose similarities with
inpainting methods using radial basis functions (RBF)
[Uhl06].

6. CUDA IMPLEMENTATION
The following section describes some CUDA -
specific issues resolved while implementing the
image warping and inpainting algorithms for GPU.

The first step is to transfer the source data from CPU
memory to GPU memory, unless it already resides in
GPU memory. E.g. when the optical flow is
calculated with a GPU-based method, then the
motion field is already on the GPU and doesn’t have
to be transferred.

In order to minimize allocation and deallocations of
GPU memory, we use a context object which holds
the necessary temporary data buffers throughout the
whole sequence. The context object can be used for
both algorithms (warping and inpainting).

Image warping

8www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.zip

The image warping algorithm has been implemented
in CUDA in two steps. The first one calculates the
accumulator and weight images and the second one
then calculates the warped image.

The first step of this algorithm, while being quite
straightforward to implement efficiently on the CPU,
turns out to be problematic to optimize on graphics
processor. The reason is that, multiple GPU threads
possibly try to increment the same value in the weight
or accumulator images simultanously, leading to
read-write hazards. To handle this we have to use
atomic increment operations which serialize the
workflow, but at a large cost in performance.

To reduce this penalty, each thread block (usually
16x16 threads) determines an approximate region in
the destination image where its threads will likely be
mapped to. As the runtime for executing operations
using shared memory is much lower than executing

Figure 4: Image inpainting results for the images
Eye, Girls, New Orleans and Parrot.

 Figure 3: A specific hole border pixel is propagated
into the hole in a fixed set of directions.

them using global memory, each thread atomically
increments the four pixels around the destination
position in global memory only if this position falls
outside the approximated region. Otherwise it
increments the appropriate values in shared memory,
and after all the threads are completed, the whole
region is copied into the destination image. Note that
the more ‘regular’ the motion field is, the the more
atomic operations in fast shared memory are done.

The final step of the warping algorithm, unlike the
first one, is pretty straightforward. It should be noted
that for performance reasons, computing the
destination value from accumulator and weight image
is performed in shared memory.

Image inpainting
As first step of the image inpainting process, we have
to determine the position of all hole border pixels.
For this, we first do a 3x3 dilation operation followed
by subtraction of the original mask. In the resultant
image only hole border pixels have non-zero value.
To get a list of their positions, we apply a compaction
operation which filters out zero-valued pixels. The
first two operations are relatively easy to implement
on a GPU and a highly efficient compaction
algorithm for GPU which was used by us can be
found in the CUDA performance primitives
(CUDPP) library9 .

As the next step, the line tracing, involves
propagation in different directions, we would
encounter cases where multiple threads try to modify
the same value at the same time, which would
demand the usage of slow atomic functions.In order
to avoid this, we split the algorithm into separate
kernels, each tracing lines in exactly one direction
from each border pixel and therefore prevent
multiple-way access hazards. Note that in the line
tracing process, each hole border pixel is assigned to
one CUDA thread.

To calculate the intensity value for each hole pixel
from the accumulator and weight image we use a
similar kernel to the one used in image warping, but
modify it slightly to compute only the hole regions.

In the last step, the distance-adaptive blurring of the
hole regions, for every hole pixel the neighbor pixels
for the maximum possible box kernel window size
(9x9) are read in, to avoid divergent threads. After
that, only the actual needed neighbor pixels
(according to the window size for the hole pixel) are
used for calculating the result value of the box filter.

9 http://www.gpgpu.org/developer/cudpp

7. EXPERIMENTS AND RESULTS
In this section we will describe the results from
comparing our CUDA implementation against a
optimized CPU implementation. The runtime
measurements were done on a 3.0 GHz Intel Xeon
Quad-Core machine, equipped with a NVIDIA
GeForce GTX 285 GPU. The tests have been
performed for two commonly used resolutions:
Standard Definition (SD) with 720x576 pixels and
High Definition 1080p (HD) with 1920x1080 pixels.
Note that all the test images are 3-channel color
images with 8 bit per channel.

Quality test
The quality results show that our CUDA
implementation of image warping provides the same
results in term of quality as the corresponding CPU
routine, yet there are some minor differences in the
image inpainting. Those differences however are
visually indistinguishable and occur only for a small
fraction of pixels (on average 8 pixels for SD and 50
pixels for HD have a difference which is higher than
a few gray values).

Runtime test
For doing the runtime comparison, we simulate the
frame interpolation scenario. For that, we calculate
the motion field between neighboring frames of a
short video sequence (10 frames) with the method
described in [Wer09] and then do the image warping
and inpainting.

In the warped image, on average 1.4 % of the pixels
are to be inpainted. For the image inpainting, 16
directions are used. The allocation and deallocation
of the context object altogether takes approximately
0.3 milliseconds for SD and 0.6 milliseconds for HD.
These times and the time needed for transferring the
input image to GPU memory are not included in the
given runtime of the GPU implementations. Note that
in our application, the input images are already on the
GPU as the first step (the calculation of the motion
field) was also done on the GPU.

The average speedup (see Figure 5 and Figure 6)
which is achieved by the GPU implementations of the
algorithms is up to an order of magnitude, clearly
demonstrating how advantageous the usage of GPUs
can be for sufficiently parallizable algorithms. All
runtime numbers are given in milliseconds.

Figure 5: Runtime of the image warping.

Figure 6: Runtime of the image inpainting.

Note that the speedup for image warping is larger for
smaller formats, which is counter-intuitive as usually
algorithms running on the GPU are more effective for
larger sets of data. The reason is that for smaller
images the part of image covered by the thread
block’s shared memory window is relatively larger.

8. CONCLUSION
Simple and fast algorithms for image warping and
image inpainting for usage in frame interpolation
have been presented, and their efficient
implementation to the GPU was described.
Experiments were done which show an significant
speedup factor of 6 – 10 for the GPU
implementations of image warping and inpainting. It
is expected that in the future this factor keeps the
same or even increases as currently GPU generation
cycles are shorter than CPU generation cycles.

9. ACKNOWLEDGMENTS
This work has been funded partially under the 7th
Framework program of the European Union within
the project “PrestoPRIME” (FP7-ICT-231161).

Furthermore, the work of Jakub Rosner was partially
supported by the European Social Fund.

10. REFERENCES
[Ber00] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester,

Image inpainting, International Conference on
Computer Graphics and Interactive Techniques, 2000

[Bre65] J. E. Bresenham, Algorithm for computer control
of a digital plotter, IBM Systems Journal 4, 1965

[Bor86] G. Borgefors, Distance transformations in digital
images, Computer Vision, Graphics, and Image
Processing, Volume 34, 1986

[Bor07] F. Bornemann, T. März, Fast image inpainting
based on coherence transport, Journal of Mathematical
Imaging and Vision, Volume 28, 2007

[Che10] X. Chen, F. Xu, Automatic image inpainting by
heuristic texture and structure completion, 16th
International Multimedia Modeling Conference, 2010

[Cri03] A. Criminisi, P. Perez, K. Toyama, Region filling
and object removal by exemplar-based inpainting,
IEEE Transactions on Image Processing, Volume 28,
No. 9, 2004

[Fas09] H. Fassold, J. Rosner, P. Schallauer, W. Bailer,
Realtime KLT Feature Point Tracking for High
Definition Video, GravisMa workshop, Plzen, 2009

[Fid08] I. Fidaner, A survey on variational image
inpainting, texture synthesis and image completion,
Bogazici University, 2008

[Har01] P. Harrison, A non-hierarchical procedure for re-
synthesis of complex textures, Proceedings of WSCG,
Plzen, 2001

[Ryo08] S. Ryoo, Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA, 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008

[Sin06] S. Sinha, J. Frahm, M. Pollefeys, Y. Genc, GPU-
Based Video Feature Tracking and Matching, EDGE
workshop, 2006

[Uhl06] K. Uhlir, V. Skala, Radial basis function use for
the restoration of damaged images, Computational
Imaging and Vision, Volume 32, 2006

[Wer09] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D.
Cremers, H. Bischof, Anisotropic Huber-L1 Optical
Flow, Proceedings of the British Machine Vision
Conference, London, UK, 2009

[Wol90] G. Wolberg, Digital Image Warping, IEEE
Computer Society Press, 1990

