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ABSTRACT 
Frame interpolation (the insertion of artificially generated images in a film sequence) is often used in post 
production to change the temporal duration of a sequence, e.g. to achieve a slow-motion effect. Most frame 
interpolation algorithms first calculate the motion field between two neighboring images and scale it 
appropriately. Afterwards, the images are warped (mapped) with the scaled motion field, and regions to which no 
source pixel was mapped are filled up (image inpainting). In this paper, we will focus on the latter two steps, the 
warping of the images and the image inpainting. We present simple and fast algorithms for image warping and 
inpainting, and discuss their efficient implementation to GPUs, using the NVIDIA CUDA technology. We 
compare the CPU and corresponding GPU routines and notice a speedup factor of approximately 6 - 10 for 
image warping and image inpainting. Significantly higher speedups can be expected for the latest NVIDIA GPU 
generation codenamed Fermi due to several architectural improvements (faster atomic operations, L1/L2 cache). 
When comparing the result images of the CPU and GPU routine visually, practically no difference can be seen. 
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1. INTRODUCTION 
Frame interpolation (the insertion of artificially 
generated frames in a film sequence) is a commonly 
used method in video and film post production. It can 
be used for converting a given film sequence to a 
slow-motion sequence (also known as retiming). Also 
when doing film restoration, one can replace missing 
frames, or frames which have been badly damaged, 
by artificial frames created by frame interpolation. 

 Typical frame interpolation algorithms operate in the 
following way (see Figure 1): As a first step, the 
pixel-wise motion (optical flow) between the two 
temporally neighboring images of the interpolated 

image (which is to be calculated) is estimated. A 
dense motion field is retrieved, whose motion vectors 
then are scaled linearly according to the desired 
temporal position of the interpolated image. After 
that, one neighbor image is warped with the scaled 
motion field to get the interpolated image. The term 
image warping means that each pixel of the source 
image is mapped (translated) with its motion vector 
and written into a destination image. The interpolated 
image typically has holes, regions in the image to 
which no source pixel was mapped to. So the last step 
is to fill these regions with an image inpainting 
algorithm. One can apply this procedure to both 
neighbor images and gets two interpolated images, 
which can be combined to one image e.g. by some 
sort of blending . In this work, we will focus on the 
last two steps, image warping and inpainting, and on 
their efficient implementation on the GPU using the 
CUDA technology. We will not describe the 
calculation of the motion field, as there are efficient 
GPU-based algorithms available (e.g. [Wer09]) which 
we will take advantage of. 

Permission to make digital or hard copies of all or part of 
this work for personal or classroom use is granted without 
fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this 
notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to 
redistribute to lists, requires prior specific permission 
and/or a fee. 



Note that CUDA3 is an acronym for Compute Unified 
Device Architecture and is a general-purpose GPU 
programming environment introduced by NVIDIA, 
allowing the programmer to utilize the massive 
processing power of current generation GPUs.  

In this document, we first give an introduction into 
GPU programming and CUDA (see next section). In 
section 3 we discuss shortly previous work on 
implementing image warping and image inpainting on 
the GPU. In section 4 and 5, we give an description 
of the algorithms we developed in our research group 
for image warping and image inpainting. After that, 
in section 6 we describe how we ported our CPU 
algorithms to CUDA. Finally, in section 7 
experiments are done to compare the algorithms and 
their respective GPU implementations in terms of 
quality and speed.  

2. GPU PROGRAMMING & CUDA 
In the last years, GPUs have gained significant 
importance in computer vision and other scientific 
fields. A number of basic computer vision algorithms 
has already been implemented efficiently on GPUs, 
be it optical flow calculation [Wer09], feature point 
tracking [Fas09] or SIFT features [Sin06]. Typically 
they provide a speedup of an order of magnitude with 
respect to a reference CPU implementation, 
depending on the algorithm’s ability to be executed in 
a massively parallel way. Most GPU implementations 
use CUDA as it is currently the best supported 
programming environment. 

A CUDA program is typically composed of a control 
routine, which calls a couple of CUDA kernels. A 
kernel is similar to a function, but is executed on the 
GPU in parallel by a larger number of threads 
(typically thousands). Groups of 32 consecutive 
threads are organized into warps. Furthermore, sets 
of up to 512 threads are grouped into thread blocks, 
which then form a grid.  

An important property of NVIDIA GPUs is shared 
memory, which is a small, but very fast cache which 
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has to be managed by the user. There are also other 
important memory types with different properties, 
e.g. texture memory (read-only, cached), constant 
memory and global memory (read-write, high 
latency). Also atomic functions are very helpful when 
different threads try to access the same memory 
location. 

For a more detailed description we refer to the 
publications [Fas09] and [Ryo08] where GPU/CUDA 
programming is explained more in depth and 
guidelines are given for porting algorithms efficiently 
to CUDA. 

3. RELATED WORK 
Although the literature for image inpainting 
algorithms is huge (e.g. see [Ber00][Bor07][Che10] 
[Cri03][Fid08]), there are not many algorithms which 
have been reported to run on the GPU. This might be 
because a significant amount of them have a rather 
complicated workflow or an implicit serial nature 
which can not be easily mapped to a GPU. In fact, to 
our knowledge only for one algorithm [Har01] a 
corresponding GPU implementation has been 
described5. It is implemented in shading language6, 
having the disadvantage that the algorithm has to be 
adapted to fit to the computer-graphics oriented 
render pipeline. This adaption typically leads to a 
more complicated implementation and performance 
degradation. Regarding image warping, a survey of 
various warping methods can be found in [Wol90]. 

4. IMAGE WARPING 

Algorithm 
Image warping is a fundamental task in image 
processing. Given an source image I and a dense 
motion field, one wishes to generate a warped image 
Iwarped where all the pixels in I have been translated by 
their corresponding motion vector.  

Note that, depending on the motion field, multiple 
pixels of the source image may map to the same place 
in the warped image. On the other hand, there may be 
areas in the warped image to which no source pixel 
was mapped to, leading to holes in the warped image. 
Filling up those areas will be described later in this 
document in section 5.  

The algorithm we propose for image warping needs 
an additional accumulator image and a weight image. 
Both are floating point (fixed-point is also possible) 
and are initially set to zero. Now for each source 
pixel its destination position is calculated, using the 
mapping defined by the dense motion field. As we 
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Figure 1: Illustration of the workflow for frame 
interpolation. Iint is the interpolated image, I1 and 
I2 its neighbors, moriginal the calculated motion 
field between I1 and I2 and mscaled the scaled 
motion field. 



can not write directly to the destination position (it 
typically has non-integer coordinates), we instead 
‘write’ into the four surrounding pixels of the 
destination position (one can imagine this as sort of 
‘bilinear writing’). For that, we increment the four 
surrounding pixels in the accumulator image and also 
in the weight image. The amount of increment 
depends on the distance of the destination position to 
the specific pixel neighbor.  

The usage of an accumulator image solves the 
problem that multiple source pixels possibly map to 
the same destination pixel. The resultant intensity in 
the warped image will be a weighted combination of 
the source pixels intensities. 

Finally, the intensity values of the warped image 
Iwarped is calculated by dividing the accumulator 
image pixel-wise by the weight image. Areas to 
which no source pixel was mapped (holes) are 
identified by having a zero value in the weight image. 
A hole mask is generated which is needed for the 
inpainting process, which is described in the next 
section. Note that the proposed image warping 
algorithm is quite fast as it has has linear complexity 
with respect to the number of image pixels. 

5. IMAGE INPAINTING 

Algorithm 
The input for the image inpainting algorithm is an 
intensity image I and a hole mask H which defines the 
areas of then intensity image, which should be 
inpainted. In the following, we give an outline of our 
proposed inpainting method. It needs an additional 
floating-point accumulator image A and weight image 
W. Both are initially set to zero. For multi-channel 
images, each channel is calculated separately. 

First, the set of border pixels of all holes are 
determined. Now for each border pixel, its intensity 
is propagated into the hole in a fixed set of directions 
(typically 16, equally distributed over the 360 degree 
range). See Figure 3 for an illustration of the process. 
The propagation is done in the following way: For a 
specific border pixel and a specific direction, a line-
tracing using the Bresenham algorithm [Bre65] is 
performed, starting at the border pixel and ending 
when the line hits the opposite side of the hole. The 
Bresenham algorithm is slightly modified so that 
during line-tracing it updates also the approximate 
distance dcurr  from the current pixel to the start 
border pixel. Now, for each visited pixel p during 
line-tracing, its corresponding accumulator image 
value A(p) and weight image value W(p) are 
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value of the start border pixel. One can see from this 
that border pixels which are nearer to a given hole 
pixel have a higher contribution to its intensity value, 
as the increment in the accumulator image will be 
higher for them.  

After having done the propagation for all hole border 
pixels and all directions, the intensities values for the 
regions to be inpainted can be calculated simply by 
dividing the accumulator image pixel-wise by the 
weight image.  

A problem of the proposed method is that due to 
using a fixed set of directions, it can introduce star-
shaped artefacts into the inpainted regions. In order to 
reduce these artefacts, we enforce an additional post-
processing step. 

 

 

 
 Figure 2: From top to bottom: input image, 
warped image, final interpolated image where 
holes have been inpainted. 



For this purpose, we first calculate a distance map for 
the hole regions, which gives for each hole pixel 
approximately its distance to the nearest hole border 
pixel. Note that fast algorithms for calculating the 
distance map are available [Bor86]. Now each hole 
pixel is blurred with a distance-adaptive box kernel, 
with kernel sizes ranging from 3 (for hole pixels near 
the border) to 9 (inner hole pixels). 

One can increase the quality of the inpainted regions 
by using more directions in the propagation step. On 
the other hand, also the runtime increases linearly 
with the number of directions. According to 
experiments, a value of 16 seems to be a good 
compromise between quality and runtime.  

In Figure 4 the results of proposed image inpainting 
algorithm (using 16 directions) for some commonly 
used test images8 can be seen. As the algorithm is 
solely diffusion-based, blurring can be observed in 
the inpainted regions. Note that the proposed 
algorithm shares some loose similarities with 
inpainting methods using radial basis functions (RBF) 
[Uhl06]. 

6. CUDA IMPLEMENTATION 
The following section describes some CUDA - 
specific issues resolved while implementing the 
image warping and inpainting algorithms for GPU. 

The first step is to transfer the source data from CPU 
memory to GPU memory, unless it already resides in 
GPU memory. E.g. when the optical flow is 
calculated with a GPU-based method, then the 
motion field is already on the GPU and doesn’t have 
to be transferred. 

In order to minimize allocation and deallocations of 
GPU memory, we use a context object which holds 
the necessary temporary data buffers throughout the 
whole sequence. The context object can be used for 
both algorithms (warping and inpainting). 

Image warping 
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The image warping algorithm has been implemented 
in CUDA in two steps. The first one calculates the 
accumulator and weight images and the second one 
then calculates the warped image. 

The first step of this algorithm, while being quite 
straightforward to implement efficiently on the CPU, 
turns out to be problematic to optimize on graphics 
processor. The reason is that, multiple GPU threads 
possibly try to increment the same value in the weight 
or accumulator images simultanously, leading to 
read-write hazards. To handle this we have to use 
atomic increment operations which serialize the 
workflow, but at a large cost in performance. 

To reduce this penalty, each thread block (usually 
16x16 threads) determines an approximate region in 
the destination image where its threads will likely be 
mapped to. As the runtime for executing operations 
using shared memory is much lower than executing 

 

 

 

 

 
Figure 4: Image inpainting results for the images 
Eye, Girls, New Orleans and Parrot. 

 Figure 3: A specific hole border pixel is propagated 
into the hole in a fixed set of directions. 



them using global memory, each thread atomically 
increments the four pixels around the destination 
position in global memory only if this position falls 
outside the approximated region. Otherwise it 
increments the appropriate values in shared memory, 
and after all the threads are completed, the whole 
region is copied into the destination image. Note that 
the more ‘regular’ the motion field is, the the more 
atomic operations in fast shared memory are done. 

The final step of the warping algorithm, unlike the 
first one, is pretty straightforward. It should be noted 
that for performance reasons, computing the 
destination value from accumulator and weight image 
is performed in shared memory. 

Image inpainting 
As first step of the image inpainting process, we have 
to determine the position of all hole border pixels. 
For this, we first do a 3x3 dilation operation followed 
by subtraction of the original mask. In the resultant 
image only hole border pixels have non-zero value. 
To get a list of their positions, we apply a compaction 
operation which filters out zero-valued pixels. The 
first two operations are relatively easy to implement 
on a GPU and a highly efficient compaction 
algorithm for GPU which was used by us can be 
found in the CUDA performance primitives 
(CUDPP) library9 . 

As the next step, the line tracing, involves 
propagation in different directions, we would 
encounter  cases where multiple threads try to modify 
the same value at the same time, which would 
demand the usage of slow atomic functions.In order 
to avoid this, we split the algorithm into separate 
kernels, each tracing lines in exactly one direction 
from each border pixel and therefore prevent 
multiple-way access hazards. Note that in the line 
tracing process, each hole border pixel is assigned to 
one CUDA thread. 

To calculate the intensity value for each hole pixel 
from the accumulator and weight image we use a 
similar kernel to the one used in image warping, but 
modify it slightly to compute only the hole regions.  

In the last step, the distance-adaptive blurring of the 
hole regions, for every hole pixel the neighbor pixels 
for the maximum possible box kernel window size 
(9x9) are read in, to avoid divergent threads. After 
that, only the actual needed neighbor pixels 
(according to the window size for the hole pixel) are 
used for calculating the result value of the box filter. 
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7. EXPERIMENTS AND RESULTS 
In this section we will describe the results from 
comparing our CUDA implementation against a 
optimized CPU implementation. The runtime 
measurements were done on a 3.0 GHz Intel Xeon 
Quad-Core machine, equipped with a NVIDIA 
GeForce GTX 285 GPU. The tests have been 
performed for two commonly used resolutions: 
Standard Definition (SD) with 720x576 pixels and 
High Definition 1080p (HD) with 1920x1080 pixels. 
Note that all the test images are 3-channel color 
images with 8 bit per channel.  

Quality test 
The quality results show that our CUDA 
implementation of image warping provides the same 
results in term of quality as the corresponding CPU  
routine, yet there are some minor differences in the 
image inpainting. Those differences however are 
visually indistinguishable and occur only for a small 
fraction of pixels (on average 8 pixels for SD and 50 
pixels for HD have a difference which is higher than 
a few gray values). 

Runtime test 
For doing the runtime comparison, we simulate the 
frame interpolation scenario. For that, we calculate 
the motion field between neighboring frames of a 
short video sequence (10 frames) with the method 
described in [Wer09] and then do the image warping 
and inpainting.  

In the warped image, on average 1.4 % of the pixels 
are to be inpainted. For the image inpainting, 16 
directions are used. The allocation and deallocation 
of the context object altogether takes approximately 
0.3 milliseconds for SD and 0.6 milliseconds for HD. 
These times and the time needed for transferring the 
input image to GPU memory are not included in the 
given runtime of the GPU implementations. Note that 
in our application, the input images are already on the 
GPU as the first step (the calculation of the motion 
field) was also done on the GPU. 

The average speedup (see Figure 5 and Figure 6) 
which is achieved by the GPU implementations of the 
algorithms is up to an order of magnitude, clearly 
demonstrating how advantageous the usage of GPUs 
can be for sufficiently parallizable algorithms. All 
runtime numbers are given in milliseconds. 

 



 
Figure 5: Runtime of the image warping. 

 
Figure 6: Runtime of the image inpainting. 

Note that the speedup for image warping is larger for 
smaller formats, which is counter-intuitive as usually 
algorithms running on the GPU are more effective for 
larger sets of data. The reason is that for smaller 
images the part of image covered by the thread 
block’s  shared memory window is relatively larger. 

8. CONCLUSION 
Simple and fast algorithms for image warping and 
image inpainting for usage in frame interpolation 
have been presented, and their efficient 
implementation to the GPU was described. 
Experiments were done which show an significant 
speedup factor of 6 – 10 for the GPU 
implementations of image warping and inpainting. It 
is expected that in the future this factor keeps the 
same or even increases as currently GPU generation 
cycles are shorter than CPU generation cycles.  
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