
Advances in Metric-neutral Visualization
Charles Gunn

Institüt der Mathematik MA 3-2
Technische Universität Berlin

ABSTRACT

We describe a visualization system in which the two classical noneuclidean spaces – elliptic and hyperbolic – are integrated
as equal citizens along with euclidean space. Such software we call metric-neutral. After surveying previous work in this
direction, we review the mathematical foundations, particularly the projective models for these spaces. We give an overview
of the issues involved in converting euclidean visualization software to be metric-neutral, beginning with non-interactive issues
before turning to interaction, and finally, to immersive environments. We describe how the metric-neutral visualization system
under discussion solves these challenges, highlighting a number of innovative features, including metric-neutral tubing, metric-
neutral realtime shading, and metric-neutral tracking.

Keywords: projective geometry, noneuclidean geometry, noneuclidean tracking, curved spaces, metric-neutral software,
visualization, Cayley-Klein geometry

1 INTRODUCTION
The discovery of noneuclidean geometries in the
nineteenth century is one of the most exciting and
important chapters in modern mathematics. It has
had significant consequences in the development not
only of mathematics itself but also natural science
and philosophy. The alternative experience of space
provided by these geometries exerts a fascination
accessible to non-mathematicians. The circle-limit
prints of the M. C. Escher have helped popularize the
underlying concepts. There is a widening circle of
scientific research based on noneuclidean geometry,
ranging from cosmology ([Wee90]) to the study of
large graphs ([Mun98]) to the classification of 3D
manifolds ([Thu97]) to the perceived structure of the
human visual experience ([Hee83]).

The current work is the outgrowth of research cen-
tered on the challenge of visualizing three-dimensional
manifolds and orbifolds with geometric structures
([Gun93]). The recent solution of the Poincare Conjec-
ture and the more general Geometrization Conjecture
([Mac06]) establishes that all three-dimensional mani-
folds can be decomposed into submanifolds that have
geometric structures. Hence, software systems such as
the one described in this article can be used to visualize
all three-dimensional manifolds.

In this article we present a unified approach to vi-
sualization of these geometries alongside euclidean ge-
ometry, based on their common ancestry within projec-
tive geometry. We show how through this approach,
much of the theory and practice of euclidean visual-
ization science can be transferred with minimal effort

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

to these noneuclidean spaces. We first survey previous
work in this direction, and then give a review of the es-
sential mathematics which underlies the current work.

1.1 Comparison with previous work
The current work builds upon the theory and practice
described in [Gun92], [PG92], [Gun93] and [Wee02].
This article goes beyond existing literature by introduc-
ing the concept of metric neutrality. Our discussion of
metric neutrality provides software practitioners for the
first time a theoretical and practical framework for up-
grading a general-purpose euclidean visualization sys-
tem to handle noneuclidean geometries as equal citi-
zens.

The visualization system used to implement the
metric-neutral ideas presented in this article is jReality
([jr06], [WGH+09]), an open-source, Java-based,
general-purpose 3D scene graph package. Geomview
([MLP+]) was an earlier attempt in the direction of
metric-neutral visualization system dating from the
early 1990’s. jReality extends Geomview in a number
of ways, which are described in the course of the
article.

Earlier attempts to visualize noneuclidean spaces
in immersive environments ([GH97], [FGK+03]),
retained standard euclidean tracking. The present work
describes and implements a noneuclidean tracking
solution which significantly improves the quality of the
noneuclidean immersive experience.

This article only considers metrics of constant cur-
vature. The extension of this approach to non-constant
curvature manifold visualization ([WSE04]) is a natural
goal for further work.

2 NONEUCLIDEAN GEOMETRY
One of the standard practices of computer graphics is
the use of homogeneous coordinates to represent points



Figure 1: Immersive experience of elliptic space.

in euclidean space. A point P = (x,y,z)∈R3 is assigned
the homogeneous coordinates (x,y,z,1). The term ho-
mogeneous comes from the equivalence relation given
by (x,y,z,1) ∼= (λx,λy,λ z,λ ) for λ ∈ R,λ 6= 0. Com-
puter graphics practicioners learn that, using homoge-
neous coordinates, every euclidean isometry can be rep-
resented as a single 4x4 matrix.

Homogeneous coordinates also play a crucial role in
the perspective transformation of computer graphics.
In the typical case, the camera position (0,0,0,1) is
mapped to the point (0,0,1,0). The latter point is not
equivalent to any point in R3! The practical result is
that the trapezoidal viewing frustum is mapped to the
familiar rectangular box form for 3D normalized de-
vice coordinates from which a rendered image can con-
veniently be calculated.

A search for the deeper significance of homogeneous
coordinates leads to an important chapter in the history
of mathematics. Homogeneous coordinates are the nat-
ural coordinates for projective geometry, a branch of
mathematics developed in response to the birth of per-
spective painting. Projective geometry includes a set
of points such as the point (0,0,1,0) mentioned above
which are not elements of R3, the so-called ideal points
or points at infinity. The inclusion of these new points
results in a geometry in which euclidean measurement
is no longer possible. Analogous to a motion of eu-
clidean space which preserves distances, a projectivity
is a transformation of projective space which maps lines
to lines and preserves geometric incidence.

At the same time as projective geometry was devel-
oped in its modern form, independent research estab-
lished the existence of other metric geometries. Eu-
clidean geometry is distinguished by one of its axioms,
the so-called Parallel Postulate. A logically equiva-
lent form states: given a point and a line in a plane,
there is exactly one line in the plane passing through
the point which is parallel to the given line.The discov-
ery of other geometries was based on the demonstration
that this postulate can be replaced by two different alter-

natives, and the resulting geometry is a consistent sys-
tem, satisfying the other axioms. The two alternatives
are first, that there are no such parallels (yielding ellip-
tic geometry) or that there are infinitely many (yielding
hyperbolic geometry). The credit for this discovery was
shared by Gauss, Bolyai, and Lobachevsky.

Projective geometry was originally developed syn-
thetically (without coordinates). It was then shown that
one could begin with homogeneous coordinates and ar-
rive at projective geometry. This geometry exists in ev-
ery dimension n > 0 and is written RPn. Closely re-
lated to RPn is PGL(n+1,R), the group of all invertible
(n + 1) by (n + 1) matrices, subject to a homogeneous
equivalence relation (hence the P in the name). The el-
ements of this matrix group act on points of RPn by
matrix multiplication.1 Every projectivity can be repre-
sented by an element of PGL(n+1,R), and vice-versa.

The final important step in the history came as Cay-
ley discovered, in his words, "Projective geometry is all
geometry." He did this – in modern terminology and re-
stricting to the case n = 3 – by introducing a quadric
surface, termed the Absolute, within RP3. He showed
different choices for the Absolute lead to models for eu-
clidean, elliptic, and hyperbolic geometry within pro-
jective geometry. The mathematical details related to
this construction have been collected in Appendix A.

2.1 Isometry groups
All projectivities which preserve the metric relation-
ships established by the Absolute, form a group called
the isometry group of the geometry. The isometry
groups of these three geometries are then subgroups of
PGL(n + 1,R). The isometry group for elliptic space
is SO(4) while that of hyperbolic space is SO(3,1) fa-
miliar as the isometry group of Minkowski space in
relativity theory.2 The euclidean group SE(3) is more
complicated than the two noneuclidean cases, since the
euclidean metric involves a degenerate quadric and re-
quires a delicate limiting process to be fully defined.

All three groups are 6-dimensional Lie groups which
contain the rotation group SO(3), fixing the point
(0,0,0,1), as a subgroup. Here’s a few facts about
non-euclidean isometries needed for later. A non-
euclidean isometry3 is characterized by two invariant
lines, the axes of the isometry, which are polar pairs
(see Appendix A) with respect to the metric quadric.
The isometry can be factored as the product of two
(commuting) rotations around these axes. This is in
general a screw motion. A rotation around a line l is

1 Since the points are homogeneous, it is immediately obvious that the
matrices which act on the points also can be multiplied by an arbitrary
non-zero factor without disturbing the equivalence relation defined on
the points.

2 Note Minkowski space does not use homogeneous coordinates hence
is a true 4-dimensional space.

3 with the exception of so-called Clifford translations in elliptic space



then an isometry in which l and its polar line l̂ are the
axes, such that the rotation around l̂ is the identity. A
translation carrying a point A to another point B, on the
other hand, is an isometry with the lines l :=

←→
AB and

its polar line l̂ as axes, such that the rotation around l is
the identity.

2.2 Elliptic space and spherical space
In popular accounts of noneuclidean geometry, ellip-
tic space Elln and spherical space Sn are sometimes not
clearly distinguished. Mathematically, Sn is the simply-
connected covering space of Elln, and can be decom-
posed as two copies of Elln. For n = 2, for example, the
ordinary sphere can be decomposed as two hemispheres
(each one a Ell2). Spherical space does not satisfy the
axiom (inherited from Euclid) that two lines intersect in
at most one point (the lines of spherical space are great
circles which always intersect in two antipodal points).
For this reason, the existence of the sphere did not play
a significant role in the discovery of noneuclidean ge-
ometry, even though with hindsight it can be used as
an effective example. See Section 3.3 for visualization
issues related to these two spaces.

3 NONEUCLIDEAN VISUALIZATION
Modern GPU’s were designed to provide hardware sup-
port for perspective rendering of euclidean space. The
euclidean subgroup and the perspective transformation,
together, generate the full projective group PGL(n +
1,R). Hence, GPU’s also can handle the isometries of
the projective models of the noneuclidean geometries.
What is required in order to make perspective render-
ings in these noneuclidean spaces as well? We first es-
tablish that the projective models of noneuclidean ge-
ometry have a special status in visualization science,
based on their roots in perspective painting.

3.1 The insider’s view
There are numerous models for noneuclidean geometry,
for example, conformal models ([Thu97]). All models
naturally each have their advantages and disadvantages.
But in a certain sense – to be made more specific below
– we argue that the projective one is the right one for a
wide range of visualization tasks.

Visualization theory can be understood as an attempt
to simulate images which an observer situated in the
scene would actually see, or an embedded camera might
form. We can think of such images as representing
the insider’s view of the scene – as opposed to images
which might present another way of rendering the scene
but not in a way in which such an imbedded observer
would actually see via a perspective rendering. For ex-
ample, in one dimension lower, standard images of a
sphere imbedded in three-dimensional space do not rep-
resent the insider’s view of the sphere since the camera
lies outside the sphere itself.

Due to its close connection to perspective painting,
the projective model described above is ideally suited to
generate the insider’s view. Consider first the perspec-
tive operation as a physical phenomena, for example, in
a camera, in which paths of light (geodesics) through
the center of perspective are mapped onto points of the
image plane. Next, consider the perspective operation
as it is implemented in hardware. The latter can be
characterized as an operation in which lines through the
center of perspective are transformed into points on the
image plane.

The projective model is the only model in which
these two conditions are naturally consistent. The other
models all involve curved geodesics; any realistic ren-
dering process must then first uncurve these geodesics
before the hardware perspective operation can be ap-
plied. And even if one chooses to avoid the projec-
tive model altogether and ray trace with the curved
geodesics, one arrives in the end at identical pictures
to the ones which the projective model yields, since the
insider’s view is well-defined and independent of the
model chosen to represent the geometry. Hence, the
projective model and GPU technology are related as
theory is to practice, and the resulting rendered images
represent what an insider in these metric spaces sees.
In the next section we demonstrate that this implies that
cameras are projective, not metric, objects.

3.2 Cameras are projective, not metric
Once a camera is positioned within a scene and the
scene has been shaded, the construction of a perspective
image proceeds without any metrical considerations.
True to its roots in perspective painting, the perspec-
tive transformation is a purely projective transforma-
tion, and can be applied as well in a noneuclidean space
as in a euclidean space. Even the viewport, which we
normally think of as a euclidean rectangle, is properly
seen as a projective quadrilateral without metric prop-
erties.

One might argue that how this quadrilateral is sam-
pled, is metric dependent. That is, the solid angle sub-
tended by a pixel might be different according to the
metric. But in fact this is not so. The solid angles can
be thought of as determined by tangent vectors belong-
ing to the point (0,0,0,1) (the canonical position of the
camera), and the tangent space of vectors at this point
is metrically identical in all three metrics! Hence we
don’t need to do sample any differently when rendering
in a noneuclidean scene.

A confirmation of the projective nature of the cam-
era is provided by practical experiences with clipping
planes. Normally, one considers the near and far clip-
ping planes as defined by two positive z-values 0 < zn <
z f . But to clip effectively in elliptic space one must
use affine coordinates on the z-axis, which includes the
value ∞, where the z-coordinate shifts to be large and



negative. Typical values for elliptic clipping planes are
then z f =−zn. The resulting viewing frustum includes
the plane w = 0, the equator of elliptic space, and con-
tinues almost to the antipodal point of the camera posi-
tion. 4 See [Wee02] for details.

3.3 Visualization issues with elliptic space
As described above, the hardware layer of today’s GPU
is designed to handle the standard homogeneous coor-
dinates needed for euclidean rendering. For this rea-
son, one has slight reason to expect then that Sn would
be faithfully implemented in hardware. However, due
to a technical detail in how clipping to normalized de-
vice coordinates is implemented, it is indeed possible
with a little extra work to represent and render Sn cor-
rectly also. To be precise, at this point in the ren-
dering pipeline, half of S3 (where w < 0) is clipped
away. By rendering the scene twice, once after trans-
forming by the negative identity matrix −1, one gets a
correct, complete rendering of S3. For more details see
[Wee02].

Being able to render spherical space is a mixed bless-
ing, since it means one also has to expend a little extra
work to render correctly in elliptic space. Elliptic points
for which w < 0 as described above, will be clipped
away. Even if your coordinates are good, if you’ve writ-
ten an elliptic fly tool with a natural parametrization of
an elliptic line using circular functions5 , then half the
time you’ll probably be flying in the w < 0 hemisphere
and won’t see anything either. To avoid these clipping
problems, one solution is to adjust the scene graph to
include two copies of the scene, one transformed by the
identity matrix 1, the other transformed by −1. This
guarantees that one complete copy of the world will be
in the w > 0 hemisphere and will be rendered. Ellipti-
cally the two copies are identical so correct images will
be rendered.

Related problems of this nature arise when drawing
line segments. One of the oddities of projective space
is that two points determine not one but two line seg-
ments along the line. Viewed with euclidean lenses, one
of these is finite and the other contains the ideal point
of the line, so its easy to tell the difference and avoid
the problem in euclidean space. The problem doesn’t
appear in hyperbolic space either, for the same reason.
But in Ell3, there are always two possible line segments
between two points. The situation is complicated by the
w-clipping issue described above. The proper solution
to this dilemma is a topic of current research.

4 OpenGL correctly implements such clipping planes but other render-
ing systems display a euclidean bias here.

5 That is, flying along the z-axis using the parametrization
(0,0,sin(t),cos(t)) for this line).

4 METRIC-NEUTRAL INFRASTRUC-
TURE

This and the following section are intended to serve as
a practical guide for progammers interested in extend-
ing conventional visualization software to be metric-
neutral. In this section we describe changes which have
to be made without taking user interaction into account.
We term this the infrastructure layer. The next sec-
tion focuses on ensuring metric-neutral user interac-
tions, including picking. We term this the interaction
layer. Finally, we devote a third section to the chal-
lenges of metric-neutral visualization in immersive en-
vironments: the immersive layer.

4.1 Infrastructure challenges
There are a number of areas where the implicit eu-
clidean bias of visualization software makes itself felt.
Typically the problems are of two sorts: either one can
directly generalize a given euclidean feature (for exam-
ple, distance between points); or one cannot (for exam-
ple, free vectors in euclidean space; or, similarity trans-
formations in euclidean space). We term the former a
metric-neutral feature, and the latter, a metric-specific
feature. There are also metric-specific features of ellip-
tic and hyperbolic space but they lie outside the scope
of this introductory treatment. For a metric-specific fea-
ture, one must then design a solution where the feature
is maintained as a special case.

Accompanying this discussion, we present a refer-
ence implementation which presents a metric-neutral
solution for each of the identified problem areas. This
software framework is jReality, an open-source, 3D
Java scene graph [WGH+09]. We restrict our discus-
sion here to the jReality features relevant to metric neu-
trality; see the jReality web-site and Wiki for further
documentation for the software, including a tutorial ex-
ample illustrating noneuclidean usage.

This discussion can not aim to be exhaustive given
the great variety of modern visualization systems. Our
aim here is to give an overview and make a convincing
case that most – if not all –euclidean infrastructure can
be extended to be metric-neutral by following a simple
set of patterns.
Geometric representation The system needs to sup-
port homogeneous coordinates for points while main-
taining backward compatibility with non-homogeneous
representations. Certain geometric entities, such as free
vectors, are euclidean metric-specific.

The core space for jReality is RP3, not R3. jReal-
ity also supports nonhomogeneous coordinates for tra-
ditional applications; users interested in noneuclidean
geometry will work with homogeneous coordinates for
points, normals, and other geometric entities. Points are
promoted to be homogeneous (by appending a 1) when
operations on mixed types are requested. A free vector



(x,y,z) is handled by converting it into homogeneous
coordinates as the ideal point (x,y,z,0).
Geometric operations There are a subset of operations
which are purely projective, such as the join and meet
operators. Implementations of these operations how-
ever often do not handle the case of parallel elements
in a projective way, hence often lead to incorrect results
when used with other metrics. Many other operations
based on geometric primitives depend on the ambient
metric. For example: distances between points, angles
between planes, normal vector to a plane, inner product
of two vectors, and orthogonal complement and projec-
tion.

Modeling operations based on such primitive opera-
tions must also be considered. For example, consider
a tube around a line segment. A tube is an equidistant
surface – the set of points a given distance from a line
segment. In euclidean space, such an equidistant sur-
face is a cylinder, but in the other metric spaces, tubes
take analogous but different forms6.

In jReality, purely projective operations are imple-
mented within RP3. The intersection point of three
planes, for example, is calculated correctly even if two
of the planes happen to be euclidean parallel. Subse-
quent metric operations can signal errors if these pro-
jective values are not metrically valid. Additionally, all
the metric operations mentioned above plus many oth-
ers are available in metric-neutral form. Implementa-
tion details can be found below (Section 4.2). The stan-
dard tubing option for the default jReality line shader
uses such built-in features to create (for the first time)
accurate noneuclidean tubes around polylines in noneu-
clidean space. See Figure 2.
Isometries Scene graphs are typically built up by ap-
plying a transformation at each node in the graph. Ex-
cept in the case of the camera node, where a perspec-
tive transformation is applied, these transformations are
typically either euclidean isometries or isotropic scal-
ing operations. A metric-neutral system must provide
support for generating noneuclidean isometries in place
of the euclidean ones. The user himself must be care-
ful when applying scaling transformations. In general,
scaling can only be applied in a metric-neutral way to
the leaves of the scene graph.

jReality includes support for calculating projectivi-
ties in PGL(n + 1,R) including: central projections,
harmonic homologies, affine transformations (includ-
ing scales); and metric isometries including transla-
tions, rotations, reflections and glide-reflections, and
screw motions (in all three metrics). Factorization of
isometries is also supported.

6 Note that spheres (equidistant surfaces to a point) do not provide the
same problem, since a noneuclidean sphere centered at the origin
(0,0,0,1) is also a euclidean sphere, and this sphere can be translated
to an arbitrary center using a noneuclidean isometry.

Figure 2: Hyperbolic, euclidean, and elliptic tubes
around a horizontal line segment

Figure 3: Real-time hyperbolic shading implemented
with an OpenGL Shading Language vertex shader

Shading Standard real-time shading algorithms are
local calculations based on the geometric and mate-
rial properties of the object and the position and at-
tributes of the light sources. All these properties are
well-defined in the noneuclidean setting also.

jReality includes a GPU vertex shader (written in
the OpenGL Shading Language) which extends a stan-
dard euclidean polygon shader to handle noneuclidean
metrics. It operates with homogeneous coordinates for
points and normals as provided by jReality, and calcu-
lates distances and angles using the appropriate inner
product. It also implements light attenuation and fog
in a noneuclidean fashion. This shader is similar to the
Renderman shader described in [Gun93]. The result is
the first real-time realistic rendering integrated into a
metric-neutral visualization system. See Figure 3.
3D Audio Although technically not part of visual-
ization systems, spatial audio can also be implemented
in a metric-neutral way. Euclidean biases in spatial au-
dio express themselves in amplitudes, delays, echoes,



and other effects involving distance and angle measure-
ment.

jReality supports noneuclidean spatial audio. All dis-
tances required for audio effects, such as the Doppler
effect, are calculated in a metric-neutral fashion.

4.2 Implementation details
jReality uses a flexible attribute inheritance mechanism
within the scene graph to define an attribute which takes
one of three values corresponding to hyperbolic, eu-
clidean, or elliptic. Any operation defined within the
scene graph is carried out using the current value of
this attribute. Through this mechanism it is possible
to mix metrics in the scene graph. For example, one
could model a mathematical museum in our ordinary
euclidean space that includes a non-euclidean exhibit
(as a subgraph). See also the discussion of 3D GUI be-
low (Section 6.6). Note that the metric is attached to the
parent scene graph component rather than to the geom-
etry node itself, which can be considered as a projective
object modified by the enclosing metric attribute.

The mathematical infrastructure in jReality is orga-
nized via a set of Java classes which offer functionality
via static methods. The principle functional classes are
Rn and Pn, corresponding to the euclidean vector space
Rn and real projective space RPn, resp. Roughly speak-
ing, Rn expects nonhomogeneous coordinates for geo-
metric entities; Pn on the other hand is based upon ho-
mogeneous coordinates. Within Pn there are two types
of methods: purely projective ones, and metric-neutral
ones, parametrized by the metric. The class P5 (rep-
resenting 5-dimensional real projective space) provides
metric-neutral methods for calculating with lines using
Plücker coordinates, see [Kle27].

4.3 Geometric algebra
We have embarked upon a project to upgrade the
metric-neutral infrastructure to be based on the 3D
homogeneous model of geometric algebra ([DFM07],
[Sel05]). This has the advantage that it handles opera-
tors and operands in a single unified form with built-in
metric neutrality. For example, if m is the element of
the geometric algebra representing a line, and X is an
element representing a point, line or plane, then the
rotation of X around the line m by angle 2α can be
written as a versor, or sandwich operator:

X → eαm X e−αm

where juxtaposition of elements represents the geomet-
ric product of the geometric algebra, which also ex-
presses the metric relations. Readers familiar with the
quaternion calculus for representing rotations around
the origin in R3 should recognize a similarity which is
more than coincidental. This approach promises to be
the right form for handling kinematics and dynamics,
too. For an account of the current state of this work see
[Gun10].

5 METRIC-NEUTRAL INTERACTION
In this section we turn our attention to how human
movements originating in a euclidean world can be used
to control interaction with a virtual noneuclidean world.
We first describe how picking is handled, before turning
to tool construction.

5.1 Metric-neutral Picking
Picking is generally understood as finding the intersec-
tions of a ray with the objects in the scene, sorted in
increasing distance from the origin of the ray. To ex-
press this operation in a metric-neutral way, one must
first replace the ray (a euclidean concept) with a projec-
tive line segment [Ps,Pe], typically the intersection of
an oriented line with the viewing frustum. Since two
points on a projective line determine two segments, one
must take care segment is intended. Furthermore, one
cannot, in general, use the euclidean distance along this
segment as the sorting key. And, since jReality allows
different metrics to coexist in the same scene graph, it’s
also not possible to replace the euclidean distance by
some other single metric distance.

Instead, jReality implements picking by calculating,
for each intersection, an affine coordinate along the pick
segment which can be used for sorting purposes. First,
it calculates (u,v) barycentric coordinates of the hit
point P with respect to the start and end points along
the segment: P = uPs + vPe. The homogeneous repre-
sentatives for Ps and Pe must be chosen so the signs of
u and v are the same for points lying on the segment.
Then it uses the ratio α = v

u as the affine coordinate; α

takes the value 0 at Ps, +∞ at Pe, and runs through all
positive values in between. Negative values correspond
to hits which lie outside the pick segment.

5.2 Mouse-based tools
Standard desktop interaction occurs via a 2D motion of
a mouse or stylus. A series of 2D points are fed as in-
put to an interactive tool which uses them to generate a
3D motion: rotation or dragging of selected parts of the
scene or flying through the scene, for example. For ex-
ample, when dragging an object, the point of the object
under the cursor when the mouse is depressed, remains
under the cursor as the cursor is moved, and remains
in the same plane parallel to the viewport plane of the
camera. Similar but less direct correspondences apply
to rotation and scaling tools.

Most, if not all, such interactive tools can be easily
converted to be metric-neutral. In the dragging example
above, the tools behaves identically except that it uses
a noneuclidean translation in place of the euclidean one
(see Section 2.1). The case of a rotation tool is even
simpler. A rotation tool acting on a given object in the
scene is typically implemented by conjugating a rota-
tion around the origin of the object coordinate system



Figure 4: Immersive experience of hyperbolic space in
a 3-walled CAVE.

with the world-to-object transformation. Since the ro-
tations around the origin are the same in all metrics,
such a rotation tool is almost metric-neutral to begin
with. Such noneuclidean tools were already included in
[MLP+].

6 METRIC-NEUTRAL IMMERSIVE
ENVIRONMENTS

By an immersive environment we mean an environment
featuring 3D glasses, multiple displays, and tracked
movement which produce for the user the illusion of be-
ing immersed in a virtual world. jReality provides sup-
port for such environments via its flexible backend con-
cept. Figures 1, 4 show jReality applications running in
a CAVE-like theatre. Such environments present spe-
cial challenges for metric-neutral software. We con-
sider first the challenge presented by generalizing in-
teraction based on a 2D mouse to interaction based on
a 3D wand.

6.1 Wand-based tools
Instead of using the position of a 2D cursor to determine
the picking ray into the scene, the 3D line determined
by the wand is used. But since there may be multi-
ple screens, interactive tools cannot depend on a dis-
tinguished direction to constrain motion (like the drag
tool above which moves the object parallel to the plane
of the viewport). Since this problem is orthogonal to
metric neutrality, we do not handle it further.

Metric-neutral picking, however, does present a prob-
lem in immersive environments, since the pick segment
cannot simply be chosen as the intersection of the pick
segment with the viewing frustum: in an immersive
environment there may be several such frustums, in
each of which valid pick hits can occur. (This prob-
lem doesn’t arise when picking with a ray since then the
frustum doesn’t play a role.) The correct solution is to
pick in each frustum separately and then combine the
picks together. Once these problems have been iden-

tified, metric-neutral wand-based tools can be (and in
jReality have been) reliably written and used.

6.2 Metric-neutral tracking
Perhaps the most important ingredient in virtual reality
comes from tracking the real motion of the observer.
Tracking systems typically provide a euclidean frame
(position and orientation) for each tracked object (for
example, head and hand). Each frame is equivalent to a
euclidean isometry that moves the standard frame at the
origin to the current position and orientation of the ob-
ject. The illusion of motion in a virtual euclidean world
is achieved as follows: the left (right) eye, positioned
slightly to the left (right) of the origin, is transformed
by the tracking isometry to yield its moved position P.
Then a euclidean translation Te is used to move a vir-
tual (off-axis) camera from the origin to this position
and images are rendered for each display wall, creating
the illusion of moving around in the virtual world7.

In this section we will consider the metric-neutral
tracking problem: how can the above process be
adapted so as to produce the illusion of motion in a
noneuclidean virtual world?

Previous experiments with noneuclidean virtual real-
ity ([FGK+03]) used this euclidean translation to move
around within the noneuclidean scene. This is equiv-
alent to the situation mentioned above in Section 4.2,
where a noneuclidean exhibit is viewed by an museum
visitor in euclidean space. This can be a useful mode of
investigation but it does not represent the insider’s view
discussed above.

We describe a metric-neutral tracking solution below.
The explanation consists of two parts. First we state and
solve the so-called scaling problem, and then the track-
ing problem proper. We then discuss this solution in or-
der to clarify some of the perhaps unfamiliar concepts
involved.

6.3 Unit lengths and the scaling problem
For the purposes of this discussion, we assume we
are dealing with a CAVE-like immersive environment
(hereafter referred to as the room) shaped like a cube,
with the origin of the coordinate system in the middle
of the cube.

As mentioned above, we cannot use scaling transfor-
mations in a metric-neutral scene graph. So, if the phys-
ical dimensions of the tracking system are inappropri-
ate, we can’t scale the world to correct this. For exam-
ple, a tracking system that reports lengths in inches will
be inappropriate for viewing hyperbolic space, since the
standard model of hyperbolc space will occupy a ball

7 The orientation matrix for the head does not appear in the scene graph
directly, since the images projected on the walls only depend on the
location of the eye. But it does play a role in determining the position
of the eye.



with radius 1 inch. We can however change these di-
mensions themselves in a metric-neutral way.

This is simple within the jReality tool system. We
insert a virtual device between the raw tracking device
(in meters or inches) and the tools themselves. This
virtual device scales the entries of the translation vector
by a fixed scale factor; the rotational part is left alone.
We can choose the scale factor to shrink or expand the
virtual room so that it occupies the desired subset of the
space in question. This flexible unit length is metric-
neutral since it avoids inserting scaling transformations
into the scene graph itself. It can be carried out in real-
time.

Any parameters in the system which depend on the
unit length must then be updated when the unit length is
changed, for example, the eye separation of the tracked
observer.

6.4 Metric-neutral tracking
With this flexible coordinate system for the immersive
environment in place, it is straightforward to adapt the
tracking process to be metric-neutral. First, we inspect
the metric attribute of the virtual camera node to deter-
mine in which metric the tracking should be done. If
it’s noneuclidean, construct the unique non-euclidean
translation Tn that moves the origin (0,0,0,1) to the
same homogeneous point P as Te does (see Section
2.1) and apply this to the virtual camera instead of Te.
All cumulative transformations in the scene graph re-
main valid noneuclidean isometries, so the images on
the walls remain valid views for a noneuclidean insider.

Suppose there is a feature of interest located at P. Tn
will bring the observer to this point, as Te does. Fur-
thermore, and in contrast to the use of Te, as one moves
nearer to or away from P, the feature will appear to
increase or decrease in size in a correct noneuclidean
way. For example, in hyperbolic space, as the observer
backs up away from the front wall, the objects seen on
the front wall will tend to reduce their apparent size ex-
ponentially quickly. Using a euclidean tracking transla-
tion misses this effect. The next section explores this in
more depth.

6.5 Discussion
Suppose we include in our scene a representation of the
room. Call this the virtual room. Assume that the illu-
sion of immersion is not complete, and that we can see
both the physical room and the virtual room as we move
around. For a euclidean observer, the virtual room will
coincide with the physical room, if the immersive en-
vironment is functioning correctly. What will a noneu-
clidean observer see?

When standing in the middle of the room, Tn = Te, so
the virtual and physical coincide. If the observer backs
up until his head is the middle of the back wall, the vi-
sual angle subtended by the front wall will depend on

Figure 5: How the front wall appears from the middle
of the back wall with a unit length of 1.73m, in the three
metrics. Red outline is the physical wall.

0.1 0.2 0.3 0.4 0.5

50

55

60

Figure 6: Graph of visual angle in degrees (vertical
axis) vs. scaling factor (horizontal). The elliptic case
is the red curve; the hyperbolic, blue.

the metric and the unit length chosen. Figure 6 shows
the dependence of this visual angle on the scaling fac-
tor. The maximum scaling factor on this graph corre-
sponds to a unit length of

√
3, the smallest unit length

such that the room contains all of hyperbolic space.
Figure 5 compares the view for this maximum value
in the three metrics.

A similar effect can be detected in the dihedral angles
of the physical walls of the room. An observer carrying
a virtual noneuclidean protractor could measure the di-
hedral angle between the walls of the room. He would
discover a deviation from the euclidean right angle. The
hyperbolic angle would be less, and the elliptic angle
greater.

The noneuclidean orientation matrix The foregoing
discussion has focused on the translational part of the
tracking information, since that is crucial in the head-
tracking strategy. What can be said about the orienta-
tion part in the noneuclidean setting? This information
is important for example in implementing wands and
other pointing devices in noneuclidean spaces.

View the orientation part of the euclidean frame as a
basis for the tangent space at the origin, and decompose
the total frame as Fe = Te◦Re where Re is the orientation
matrix and Te the euclidean translation (acting as usual
on column vectors positioned on the right of the expres-
sion). Define a noneuclidean frame Fn := Tn ◦Rn, where
Tn is as above. Note we can assume Rn = Re since this
is a rotation at the origin, where all three metrics agree.

For a tracked wand, one gets reasonable results by
using Fn to transform the scene graph node representing
the wand. However, Fn is just one of many possible
choices. One might do better by choosing the unique
noneuclidean isometry with the same axis and angle of
rotation as Fe. This will in general be different from



Figure 7: 2D Java GUI embedded as euclidean element
in elliptic space.

Fn. But in our experience, the difference to Fn is not
significant.

6.6 Metric-neutral immersive 3D GUI
jReality has the capability to embed stan-
dard 2D Java GUI elements (most instances of
java.awt.Component) as 3D surfaces in the 3D
scene graph. See Figure 7. This feature is designed
for immersive environments where the standard 2D
display surface is absent. The embedding is achieved
in a straightforward way by means of texture-mapping
and forwarding of input events ([WGH+09]).

We have found that these GUI elements work best
in a immersive environment when they are positioned
as if they are paintings hung on the walls of the room.
The user can then drag and resize these canvases while
keeping them on the wall.

7 FURTHER WORK
There a no shortage of directions for extending this
work. The general program is to identify metric-neutral
features and extend the euclidean functionality accord-
ingly, while respecting metric-specific features. The
extension to geometric algebra has already been men-
tioned. Kinematics, rigid body motion, and subdivision
surfaces are three further areas of current activity.

8 CONCLUSION
We have introduced and characterized a metric-neutral
visualization system as one that supports infrastructure,
interaction, and immersion for euclidean, hyperbolic
and elliptic metrics. We have described a specific im-
plementation fulfilling these requirements, and demon-
strated a number of specific innovations, including:
metric-neutral tubing, metric-neutral realtime shading,
and metric-neutral tracking. The resulting system pro-
vides researchers and educators with significant im-
provement in the quality and ease of visualization of

these fundamental mathematical spaces in a metric-
neutral context. Furthermore, programming within this
system offers an excellent opportunity for students and
researchers to deepen their appreciation of the many
interesting connections among these three fundamental
geometries.

A CAYLEY-KLEIN METRICS
The following provides the essential knowledge involv-
ing construction and calculation of the metric spaces
featured in the article. We simplify to dimension n = 3.
Points in RP3 are written with homogeneous coordi-
nates as x = (x,y,z,w).

A.1 From quadratic form to projective
metric

To obtain metric spaces inside RP3 we begin with a
symmetric quadratic form Q on R4. By standard results
of linear algebra we can assume that we have chosen
coordinates in which Q takes a diagonal form when ex-
pressed as a matrix. The quadric surface associated to Q
is then defined to be the points {x | xQε xt = 0}. Since
Q acts homogeneously on the coordinates, we can con-
sider it also defined on RP3.

We can use the same matrix Q to define an inner prod-
uct by interpreting it as a symmetric bilinear form. For
our purposes we restrict attention to a special family of
Q parametrized by a real parameter ε , and use this to
define an inner product between points as follows:
〈x0,x1〉ε := xQε xt = x0x1 + y0y1 + z0z1 + εw0w1 (1)

〈,〉1 gives the inner product for elliptic space, and 〈,〉−1
for hyperbolic. For brevity we write these two inner
products as 〈,〉+ and 〈,〉−, resp.

The inner products above are defined on the points of
space; there is an induced inner product on the planes of
space formally defined as the adjoint of the matrix Qε .
For ε ∈ {1,−1} this is identical to the original matrix
and we can use the same notation for both points and
planes in the formulae below.

The quadric for elliptic space is {x | 〈x,x〉+ = 0}.
There are no real solutions; this is called a totally imag-
inary quadric. The points x | 〈x,x〉+ > 0 constitute the
projective model of elliptic space: all of RP3. The
quadric for hyperbolic space is {x | 〈x,x〉− = 0}, the
unit sphere in euclidean space. The points x | 〈x,x〉− <
0 constitute the projective model of hyperbolic space:
the interior of the euclidean unit ball. The sphere itself
is sometimes called the sphere at infinity for hyperbolic
space. The euclidean metric is a limiting case of the
above family of metrics as ε grows larger and larger. In
the limit for limε→∞, we arrive at the euclidean metric.
Here the quadratic form for planes is diag(1,1,1,0),
that for points becomes diag(0,0,0,1).The projective
model of euclidean space consists of RP3 with the plane
w = 0 removed, the so-called plane at infinity.



A.2 Polarity on the metric quadric
A correlation of projective space is a projective trans-
formation that maps points to planes; and planes to
points. To the absolute quadric Qε is associated a cor-
relation Π which maps a point x to the set Π(x) :=
{y | yQε xt = 0}. When the dimension of Π(x) is 2, x is
said to be a regular point. In this case, Π(x) is called the
polar plane of x, and is sometimes written x⊥, since it
is the orthogonal subspace of x with respect to the met-
ric. The image of a regular plane under Π is called its
polar point. When the quadric is non-degenerate, all
points and planes are regular and Π is an involution. In
the euclidean case, the polar plane of every finite point
is the plane at infinity; the polar point of a finite plane is
the point at infinity in the normal direction to the plane.
Points at infinity and the plane at infinity are not regular
and have no polar partner.

The polar plane of a point is important since it can be
identified with the tangent space of the point when the
metric space is considered as a differential manifold.
Many of the peculiarities of euclidean geometry may
be elegantly explained due to the degenerate form of
the polarity operator.

A.3 Distance and Angle Formulae
In general a line will have two (possibly imaginary) in-
tersection points I1 and I2 with the absolute quadric.
The original definition of distance of two points A and
B in these noneuclidean spaces relied on logarithm of
the cross ratio of the points A,B, I1,and, I2 ([Cox65]).
By straightforward functional identities these formulae
can be brought into alternative form. The distance d
between two points x and y in the elliptic (resp. hyper-
bolic) metric is then given by:

d = cos−1(
〈x,y〉+√

(〈x,x〉+〈y,y〉+)
)

d = cosh−1(
−〈x,y〉−√

(〈x,x〉−〈y,y〉−)
)

The familiar euclidean distance between two points:

d =
√

(x0− x1)2 +(y0− y1)2 +(z0− z1)2

can be derived by carefully evaluating by parametrizing
the above formulas and evaluating the limit as as ε→∞.
See [Kle27], page 179.

In all three geometries the angle α between two ori-
ented planes u and v is given by (where 〈,〉 represents
the appropriate inner product):

α = cos−1(
〈u,v〉√

(〈u,u〉〈v,v〉)
)

Guide to literature To learn more about the math-
ematics, see [Kle27], [Cox87] and [Cox65], and
[Thu97]. For details on how to construct non-euclidean
isometries see [PG92], [Gun93], and [Wee02].

REFERENCES
[Cox65] H.M.S. Coxeter. Non-Euclidean Geometry. University

of Toronto, Toronto, 1965.

[Cox87] H.M.S. Coxeter. Projective Geometry. Springer-Verlag,
New York, 1987.

[DFM07] Leo Dorst, Daniel Fontljne, and Stephen Mann. Geo-
metric Algebra for Computer Science. Morgan Kauf-
mann, San Francisco, 2007.

[FGK+03] George Francis, Camille Goudeseune, Henry Kacz-
marski, Benjamin Schaeffer, and John M. Sullivan. Al-
ice on the eightfold way: Exploring curved spaces in an
enclosed virtual reality theater (cube). In Visualization
and Mathematics III, pages 304–316. Springer Verlag,
2003.

[GH97] Charles Gunn and Randy Hudson. Mathenautics: Us-
ing virtual reality to visit three-dimensional manifolds.
In Proceedings of 1997 Symposium on Interactive 3D
Graphics, pages 167–171, Monterey, CA, 1997. ACM.

[Gun92] Charles Gunn. Visualizing hyperbolic geometry. In
Computer Graphics and Mathematics, pages 299–313.
Eurographics, Springer Verlag, 1992.

[Gun93] Charles Gunn. Discrete groups and the visualization
of three-dimensional manifolds. In SIGGRAPH 1993
Proceedings, pages 255–262. ACM SIGGRAPH, ACM,
1993.

[Gun10] Charles Gunn. Geometric algebra and metric-
neutral visualization, kinematics, and dynamics.
In Applications of Geometric Algebra to Com-
puter Science and Engineering, Amsterdam, 2010.
To appear 2011; extended abstract available at
http://www.math.tu-berlin.de/~gunn/
Documents/Papers/ga2010-02.pdf.

[Hee83] Patrick Heelan. Space-Perception and the Philosophy of
Science. University of California Press, 1983.

[jr06] jreality, 2006. http://www.jreality.de.

[Kle27] Felix Klein. Vorlesungen ueber Nichteuklidische Ge-
ometrie. Chelsea, New York, 1927.

[Mac06] Doug MacKenzie. The poncare conjecture – solved.
Science, 314:1848–1849, 2006.

[MLP+] Tamara Munzner, Stuart Levy, Mark Phillips, Nathaniel
Thurston, and Celeste Fowler. Geomview — an inter-
active viewing program. For Linux PC’s. Available via
anonymous ftp on the Internet from geom.umn.edu.

[Mun98] Tamara Munzner. Exploring large graphs in 3d hyper-
bolic space. IEEE Computer Graphics and Applica-
tions, 18:18–23, 1998.

[PG92] Mark Phillips and Charles Gunn. Visualizing hyperbolic
space: Unusual uses of 4x4 matrices. In 1992 Sympo-
sium on Interactive 3D Graphics, pages 209–214. ACM
SIGGRAPH, ACM, 1992.

[Sel05] Jon Selig. Geometric Fundamentals of Robotics.
Springer, 2005.

[Thu97] William Thurston. The Geometry and Topology of 3-
Manifolds. Princeton University Press, 1997.

[Wee90] Jeff Weeks. The Shape of Space. Dekker, 1990.

[Wee02] Jeff Weeks. Real-time rendering in curved spaces. IEEE
Comput. Graph. Appl., 22(6):90–99, 2002.

[WGH+09] S. Weissmann, C. Gunn, T. Hoffmann, P. Brinkmann,
and U. Pinkall. jreality: a java library for real-time in-
teractive 3d graphics and audio. In Proceedings of 17th
International ACM Conference on Multimedia 2009,
pages 927–928, (Oct. 19-24, Beijing, China), 2009.

[WSE04] D. Weiskopf, T. Schafhitzel, and T. Ertl. Gpu-based
nonlinear ray tracing. Computer Graphics Forum,
23(3):625–633, 2004.


