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Figure 1: Principal curvatures and creases computed at scales 2e and 10e, with e the average length of mesh edges. Color map combines
principal curvatures with a non-linear mapping designed to enhance small variations: red convex; yellow flat-convex; green saddle; cyan
flat-concave; blue concave; white flat. At the large scale, the two ridges along the nose merge into one ridge that extends downwards to the
chin; transverse creases along lips and eyelids disappear; and a new crease along the convex ridge through cheekbones-cheeks-chin appears.

Abstract

We consider the problem of multi-scale estimation of principal cur-
vatures and crease lines on a surface represented with a mesh of
triangles and affected by noise. We show that curvature at different
scales can be efficiently and accurately estimated by modifying a
fitting technique and applying it to neighborhoods of various size,
depending on scale: we discard bending portions of surfaces during
fitting, and we apply Monte-Carlo sampling to speed up computa-
tion. Next we propose a new technique for extracting crease lines
and we show how such lines can summarize shape features at the
various scales. This is a first step towards building a scale-space of
surface features.

Keywords: geometric mesh, curvature estimation, crease estima-
tion, multi-scale surface analysis

1 Introduction

Several problems in computer graphics, geometric modeling and
engineering involve the computation of differential properties of
surfaces that are smooth in principle, while most often they are ap-
proximated with polygonal meshes. This subject has been treated
by many authors in different contexts during the last twenty years,
and several algorithms have been proposed for computing differen-
tial properties on geometric meshes or clouds of points.

Many real datasets, e.g., those generated from range scanning, are
affected by noise. Processing noisy meshes to estimate the differen-
tial properties of surfaces they represent can be a very challenging
task, since the effect of noise is highly amplified by differentia-
tion. This fact drastically restricts the range of applicability of most
methods for differential surface analysis.

The problem of noise can be addressed in a more general way by
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multi-scale analysis, which has been successfully and extensively
applied in image processing and computer vision [Lindberg 2009;
Koenderink 1994]. Scale is a parameter to be used while analyzing
the surface, which implicitly introduces a smoothing effect: multi-
scale differential analysis of a surface is in fact analogous to dif-
ferential analysis of different versions of the surface smoothed with
filters at various scales.

In this framework, both noise and true shape features that are too
small for the purpose of a given application can be filtered out. The
finest relevant scale for a given representation cannot be finer than
the scale σn of noise. Therefore, if the surface is analyzed at a
scale smaller than σn, estimates shall be unreliable; if it is analyzed
at a scale σ > σn, estimates should be robust to noise, while also
disregarding surface features at scales smaller than σ.

Multi-scale surface analysis may eventually lead to the construction
of a scale-space of surfaces [Pauly et al. 2006]. Careful scale-space
analysis may provide scale-persistent features to be used for diverse
purposes such as surface simplification and remeshing, surface de-
scription and retrieval, non-photorealistic rendering, etc.

In [Yang et al. 2006; Pottmann et al. 2007], Pottmann et al. pro-
posed a method for evaluating the curvature of a mesh at different
scales without prior smoothing the mesh, but simply considering
point neighborhoods of various sizes to perform integral computa-
tions. In line with their work, we present here a different approach
to multi-scale estimation of curvatures, and we extend it to multi-
scale extraction of creases (i.e., third order differential properties).

The contribution of our work is threefold. First, we show how a fit-
ting technique for curvature estimation can be made efficient, accu-
rate and robust to noise, and we show its application to multi-scale
surface analysis. Second, we propose a new discrete and efficient
method for estimating multi-scale creases, which exploits the re-
sults obtained during curvature estimation. Finally, we show the
behavior of creases extracted at the various scales, thus paving the
way for the construction of a scale-space of surface features. Ex-
tensive experiments are presented to test our methods on real data
and to compare them with existing methods.



The rest of the paper is organized as follows. In Section 2 we dis-
cuss related work. In Section 3 we give the necessary background.
In Section 4 we describe the method for curvature estimation, while
in Section 5 we describe the method for crease extraction. In Sec-
tion 6 we present experimental results. Finally, in Section 7 we
make some concluding remarks.

2 Related work

The literature on computing curvatures and other differential quan-
tities on surfaces and meshes is huge and many different methods
have been developed in engineering, geometric modeling and com-
puter graphics. Some recent accounts on the subject can be found,
e.g., in [Costa Batagelo and Wu 2007; Gatzke and Grimm 2006;
Grinspun et al. 2006]. In the following we briefly discuss just is-
sues directly related to multi-scale estimation of differential quan-
tities on surfaces potentially affected by noise.

Methods for estimating surface curvature can be broadly divided in
two categories: fitting methods that fit analytic surfaces to data and
derive differential properties analytically; and discrete methods that
are all based on concepts of discrete differential geometry [Desbrun
et al. 2005].

Discrete methods are usually fast and accurate in capturing the lo-
cal surface properties, but most of them are very sensitive to noise.
Moreover, most such methods are based on very local information
(e.g., from the 1-ring of each vertex) and they can be hardly ex-
tended to a multi-scale approach. Notable exceptions are: the Inte-
gral invariant method proposed by Pottmann et al. [Pottmann et al.
2007; Yang et al. 2006]; the Normal cycles method proposed by
Cohen-Steiner and Morvan [Cohen-Steiner and Morvan 2003]; and
the method based on adaptive curve sampling proposed by Agam
and Tang [Agam and Tang 2005]. The former method has been de-
signed specifically for multi-scale computation, while the latter two
can be easily extended to the purpose.

Fitting methods are overall more robust to noise and they naturally
extend to multi-scale computation by considering larger neighbor-
hoods for fitting. On the other hand, they are usually slower than
discrete methods, and they introduce smoothing effects even at
small scales. Moreover, they can become very inaccurate if fitting
assumptions (e.g., on the projectability of the surface to a reference
plane) are violated.

Different fitting methods are characterized by the type and degree of
functions that they fit and by the information they use. Many meth-
ods assume that the surface normal is either available, or reliably
estimated during pre-processing, and they fit a polynomial defined
with respect to the tangent plane at the surface in a given point.
One notable example is the method proposed by Goldfeather and
Interrante [Goldfeather and Interrante 2004], which use cubic poly-
nomials to fit both the position and the surface normal of data from
the 1-ring of each vertex. As reported in [Gatzke and Grimm 2006],
this method is very accurate if the surface normal is computed ana-
litically, but it is very sensitive to error in estimating the normals.
Cazals and Pouget [Cazals and Pouget 2005a] show that in fact ac-
curacy of the estimated normal may have a high influence on the
computation of higher order differential quantities. Thus, they pro-
pose the Osculating Jets method [Cazals and Pouget 2005a; Cazals
and Pouget 2008], which fits polynomials of arbitrary degree, de-
fined on a reference plane that goes through the given point, but is
not necessarily tangent to the surface. They show the convergence
of the method for analytic surfaces. Our method for estimating the
normal direction and curvature tensor is a variation of the Osculat-
ing Jets.

Douros and Buxton [Douros and Buxton 2002] fit implicit func-

tions locally to data and derive differential properties analytically
from them. This approach could be extended to a multi-scale by
using neighborhoods of various size, but it is computationally more
involved - thus less efficient - than the Osculating Jets. Ohtake
et al. [Ohtake et al. 2004] fit an implicit function to the whole
dataset and derive differential properties analytically from it. Since
the implicit function is generated from a sequence of approxima-
tions of the original data at different scales, this method can also
be extended to a multi-scale one. On the other hand, generating
the implicit function is equivalent to resolving a problem of surface
reconstruction from a point cloud, which is far more complicated
than the problem of estimating differential quantities.

Less works have been proposed to evaluate higher order differen-
tial quantities, such as creases. Ohtake et al. [Ohtake et al. 2004]
evaluate extremalities (i.e., curvature derivatives, which are third
order differential quantities - see Section 3) analytically from the
implicit function they fit to data, then they extract the intersections
of ridges with mesh edges by linear interpolation. They also pro-
pose a simple technique for filtering spurious ridges on the basis
of the integral of curvature along each ridge. We adopt their filter
in our work. Yoshizawa et al. [Yoshizawa et al. 2005] use the cu-
bic fit technique of [Goldfeather and Interrante 2004] to estimate
extremalities analytically, then they use variations of the method
in [Ohtake et al. 2004] to extract and filter ridges. Hildebrandt et
al. [Hildebrandt et al. 2005] use discrete and very local methods to
evaluate all differential quantities. Once curvatures and curvature
directions have been computed, they estimate extremalities on each
triangle of the mesh by linear interpolation, and they extend such
extremalities to each vertex by averaging values obtained at its in-
cident triangles. Laplacian smoothing is performed on the resulting
piecewise-linear scalar field, and creases are extracted triangle by
triangle by linear interpolation.

Cazals and Pouget [Cazals and Pouget 2008] compute third and
fourth order differential quantities necessary to compute extremali-
ties analytically from a polynomial of order four (at least) fitted to
data via the Osculating Jets. Once such coefficients have been com-
puted, ridges are extracted with an algorithm described in [Cazals
and Pouget 2005b], which also detects umbilical points and cor-
rectly manages ridges in their vicinity.

We are not aware of any work on extracting creases and higher order
differential quantities at multiple scales.

3 Background

We summarize basic notions of differential geometry, which can be
found in detail in any textbook, e.g., [Porteous 2001].

Let S be a smooth surface and let NS : S → R3 be its normal
field (aka Gauss map), i.e., the field associating to each point P ∈
S its surface normal NS(P ). The shape operator is the negative
differential of the Gauss map, i.e.:

S = −dNS

that associates to each pointP ∈ S a linear operator describing how
the normal vector changes along any direction on the tangent plane
of S at P . The shape operator is a tensor which can be described at
each point P by a 2× 2 matrix SP , referred to a local orthonormal
frame (u,v,n) having its origin at P and n = NS(P ). Vectors u
and v are a basis of the tangent space T (P ) at P . The eigenvalues
k1 and k2 and eigenvectors t1 and t2 of matrix SP (in the local
frame) define the values and directions of the principal curvatures
of S at P , respectively. The principal directions of curvature are
mutually orthogonal and lie on the tangent plane T (P ). Note that
principal curvatures define line fields, rather than vector fields, on



the surfaces of S, therefore the orientations of t1 and t2 are defined
arbitrarily. Hereafter we will assume k1 ≥ k2 and we will select
an orientation for curvature directions such that (t1, t2,n) form a
right-handed coordinate system, called the Monge frame.

Given P ∈ S, the surface in a neighborhood of P can be expressed
in parametric form as X(u, v) with (u, v) ∈ Ω ⊆ R2. In this case,
the shape operator at P can be described in terms of the first and
second fundamental forms of X.

The first fundamental form is the inner product on the tangent space
T (P ): let P = X(u, v) and let v and w be two vectors in T (P ),

I(v,w) = vT

[
E F
F G

]
w,

with E =< Xu,Xu >, F =< Xu,Xv > and G =< Xv,Xv >,
where Xu and Xv denote the first derivatives of the parametric
function X computed at (u, v) and < ·, · > denotes the inner prod-
uct in R3. The first derivatives of X at (u, v) span the tangent space
T (P ), so the surface normal at P can be defined in terms of their
cross product:

n = NS(P ) =
Xu(u, v)×Xv(u, v)

|Xu(u, v)×Xv(u, v)| .

The second fundamental form is a tensor defined by projecting the
second partial derivatives of X on the normal direction n, which is
represented by the matrix:

II =

[
L M
M N

]
where L =< Xuu,n >, M =< Xuv,n >, N =< Xvv,n >
and Xuu,Xuv, and Xvv denote the second partial derivatives of X
computed at (u, v).

The partial derivatives of n with respect to u and v are defined in
terms of the coefficients of the first and second fundamental forms
by the Weingarten equations

nu =
FM −GL
EG− F 2

Xu +
FL− EM
EG− F 2

Xv

nu =
FN −GM
EG− F 2

Xu +
FM − EN
EG− F 2

Xv

from which we get the following expression of the shape operator
at P :

SP = (EG− F 2)−1

(
LG−MF ME − LF
ME − LF NE −MF

)
.

On a sufficiently small neighborhood of P , the surface can be
expressed in terms of an explicit function defined on a frame
(u,v,w) with origin at P and w axis not parallel to the tangent
plane T (P ). Note that w needs not be aligned with the surface
normal n. In this case, the parametric function X has the form

X(u, v) = (u, v, f(u, v)),

where f(u, v) is a bivariate scalar function. The coefficients of the
first and the second fundamental form, hence the shape operator,
are easily derived from the first and second partial derivatives of f .

A point P is said to be regular if the two principal curvatures at
P are different. Each principal curvature forms a line field that is
defined at all regular points and rules the surface. The points where
the two principal curvatures are equal correspond to singularities of

the curvature line fields and they are called umbilical points. Prin-
cipal directions are undefined at umbilical points.

Consider the principal curvatures k1 and k2 as scalar fields defined
on S. Then, the gradient ∇ki of curvature ki is a vector field on
the tangent bundle of S. The extremality ei at a regular point P is
defined as the inner product between the gradient of curvature ki
and its related direction, i.e.,

ei =< ∇ki, ti >=
∂ki
∂ti

(1)

where all quantities are evaluated at P . Note that the sign of ei
is not well defined, since it depends on an arbitrary orientation of
ti. Creases are defined as those regular points where extremalities
vanish, with the following additional constraints:

e1 = 0 ∧ ∂e1
∂t1

< 0 ∧ k1 > |k2| (2)

e2 = 0 ∧ ∂e2
∂t2

> 0 ∧ k2 > −|k1|. (3)

Creases defined by e1 are also called ridges, while creases defined
by e2 are also called valleys.

4 Curvature estimation

We take in input a mesh of triangles M and we evaluate the shape
operator, hence the principal curvatures and curvature directions,
at each vertex P of M by using a surface fitting method, which is
a variation of the Osculating Jets proposed in [Cazals and Pouget
2005a; Cazals and Pouget 2008].

The original method of [Cazals and Pouget 2005a] can be briefly
summarized as follows:

1. gather the vertices of M in a neighborhood of P (usually just
a few rings around P , depending on the selected degree of the
polynomial to be fitted);

2. set a local frame (u,v,w) - hereafter called the fitting frame -
centered at P with its w axis not parallel to the tangent plane
at P (an early implementation used a coordinate axis, while
a later implementation selects a better fitting frame by per-
forming principal component analysis (PCA) of the neighbor-
hood);

3. express gathered data in the local frame and fit a polynomial
f(u, v) of given degree m, by resolving a least square prob-
lem (usually with Singular Value Decomposition);

4. evaluate the shape operator, hence the principal curvatures and
directions, at (0, 0, f(0, 0)) in the local frame and set those
values to estimate the curvatures at P .

In our approach, we wish to estimate the local shape at various
scales by fitting a polynomial on a more or less extended neigh-
borhood of P . Similarly to [Yang et al. 2006], we use the radius r
of a neighborhood as a scale parameter. A fundamental assumption
of the Osculating Jets is that the input surface can be expressed in
explicit form in the neighborhood B of a point P . If this assump-
tion is violated, then the method may become highly inaccurate.
This hardly happens in small rings, but it is likely to occur, even
with slightly large neighborhoods, in the proximity of regions with
a high curvature. Since we wish to evaluate the curvature at quite
large scales, i.e., in the order of a few tenths of the diameter of the
bounding box of an object, we cannot be careless in gathering data
from a neighborhood. Thus, given a vertex P and a scale parameter
r, we proceed as follows:



• We perform a breadth-first traversal of the mesh, starting at P ,
until we get vertexes that lie in the ball of radius r centered at
P , and we gather all such vertices in a set VP ;

• Next we set the w axis of the fitting frame to be equal to the
average 1

|VP |
∑

i ni, where summation is on all elements of
VP and ni is a pseudo-normal of the surface estimated at vi
with a standard method (e.g., a weighted average of surface
normals of triangles in its 1-ring). Pseudo-normals are esti-
mated once and for all during pre-processing.

• For all i, we compute the scalar product < ni,w > and we
discard from VP each vertex vi giving a negative value (i.e.,
vertices corresponding to a flipping portion of surface).

Note that pseudo-normals ni are not used to set the fitting frame
at their respective vertexes. They are just used to either accept or
discard vertexes in the neighborhoodB. Now we are left with a rel-
atively large set of vertexes to be plugged into a least square prob-
lem. We improve efficiency and scalability by acting on the degree
of the polynomial and on the size of the data set.

Since we are wish to extract creases, a logical choice would be to
fit polynomials of degree at least three (for instance, polynomials of
order four are used in [Cazals and Pouget 2008]). However, poly-
nomials of degree three [four] would give us a least square problem
with ten [fifteen] unknowns. We can speed-up computation an or-
der of magnitude by fitting a polynomial of degree two, which is
sufficient to evaluate second order differential quantities, while re-
lying on a discrete approach for extracting higher order differential
quantities. Moreover, we constrain such a polynomial to go through
point P , thus forcing the coefficient of order zero to vanish. This
reduces the unknowns to just five coefficients, i.e.,

f(u, v) = au2 + bv2 + cuv + du+ ev. (4)

The loss of accuracy with respect to fitting a complete polynomial is
compensated by the fact that our polynomial goes exactly through
P , thus it is not necessary to approximate the differential quantities
at P with those computed at its footprint on the graph of f .

Second, we perform Monte-Carlo sampling on the set of data VP .
In fact, the amount of data necessary to obtain e reliable fit is not
a function of the size of the neighborhood, but rather a function
of the number of unknowns, which is fixed to five, provided that
data are sampled uniformly in the neighborhood. Therefore, we
can afford sampling a relatively small set of points. In Section 6,
we analyze the variation in estimates of curvatures and curvature
directions as a function of the number of sampled points, and we
show that sampling about 50 vertexes gives excellent results.

With these modifications, the Osculating Jets becomes robust and
fast enough to be used for multi-scale curvature estimation even at
large scales and with very noisy data, as we show in Section 6.

5 Extraction of creases

Once principal curvatures and curvature directions have been ex-
tracted, information we need for extracting creases already come
at the proper scale. This means that we do not need to extend our
computations to a large neighborhood. However, we must be care-
ful to make small use of mesh geometry, because this has not been
smoothed, while it still refers to the finest scale. Therefore, we
develop a discrete method that, at each vertex, makes use only of
information from its 1-ring, and relies on geometry of the quadric
surfaces fit to data during curvature computation, rather than on the
original mesh.

Figure 2: The quadric surface approximating the (smoothed) sur-
face in the neighborhood of a vertex P , obtained during curvature
estimation. The arc length of the curve joining P to P ′′j is used to
compute an approximation of the true distance between P and Pj

on the smoothed surface.

Let ki : S → R, for i = 1, 2 be the fields of principal curvature, es-
timated at all vertexes of mesh M . We first estimate their gradients
∇ki : S → TS , where TS denotes the tangent bundle of S.

Let P be a vertex ofM and let Pj , for j = 1 . . . h, be its neighbors.
Let P ′j be the projection of Pj on the tangent plane T (P ) and let tj
be the direction of P ′j − P . Note that this is the only datum from
the geometry of M that we use in our computation. Since mesh
smoothing displaces vertexes essentially in the normal direction,
this projection is not likely to change much through the scales. We
estimate the derivative of ki along tj with a finite difference, thus
obtaining the following equation:

< ∇ki(P ), tj >=
ki(Pj)− ki(P )

d(P, Pj)
, (5)

where d(P, Pj) denotes a distance between P and Pj . We collect
such equations for all j = 1 . . . h and we obtain the components of
∇ki by resolving the corresponding least square problem with two
unknowns and h equations.

Note that distance d(P, Pj) in Equation 5 should be measured on
the (unknown) smoothed version of S at scale r. The best approx-
imations that we have of that surface in the proximity of P and Pj

are provided by the quadric functions that we used at P and Pj ,
respectively, during curvature estimation, i.e.,

w =
k1
2
u2 +

k2
2
v2 (6)

where the equation is expressed in the Monge frame at either P or
Pj , respectively, and the values of k1 and k2 are taken at the cor-
responding point. Given one of these two surfaces - say the one
centered at P - we measure the arc length on this quadric surface
between P and the vertical projection of Pj on the same surface
(see Figure 2). This value is computed analytically by resolving
a line integral on the conic line obtained by sectioning the surface
with the vertical plane through direction tj . The formula can be
derived easily through a solver, like Maxima, and it involves Equa-
tion 6 as well as the coordinates of P ′j . We do not report it here for
brevity. We repeat the same computation by considering the sur-
face centered at Pj and we compute the average between the two
arc lengths.

Once the gradients of the principal curvatures have been computed
at each vertex, our method proceeds similarly to that of [Hilde-
brandt et al. 2005]:

1. Compute extremalities through Equation 1;

2. Extract creases triangle by triangle, by setting the orientation
of principal axes at the vertexes, so that corresponding axes
form acute angles (see also [Cazals and Pouget 2005b] about



the “acute rule”) and recomputing the signs of extremalities
accordingly. The sign of the derivative of extremalities, which
is required in Equations 2 and 3, is computed by finite differ-
ences along two edges of t, by applying the same method as
in Equation 5, where ki is replaced with ei. Each triangle t
can contain at most one crease segment, whose endpoints are
computed by linear interpolation on the edges of t;

3. Trace creases to form polylines.

Two optional steps can be performed to improve the shape of
creases: Laplacian smoothing on the field of extremalities can be
performed before Step 2; and creases can be filtered after Step 3, as
suggested in [Ohtake et al. 2004]. Creases are filtered by compting
the line integral of curvature magnitudes along each polyline, and
discarding polylines with a value below a given threshold.

6 Experimental results

We implemented our methods in C++ by using the VCG Library
[VCG ] for geometric data structures and the Eigen library [Eig ]
for numerical computations. Experiments were run on a PC with
a 2.67Ghz Core i5 processor equipped with 4Gb of memory, using
a single core. We tested our algorithms against other methods at
the state-of-the-art on some of the data sets available in the public
domain for benchmarks.

6.1 Curvature

We first consider smooth datasets to extract curvatures at various
scales. In each mesh, we use the average length of edges e as a
reference to set the scale r for fitting. An example of curvature
extracted at various scales from a large mesh is reported in Figure
3. The color map combines principal curvatures with a non-linear
mapping, designed to enhance variations also at small curvatures.
Color codes are as follows: red convex; yellow flat-convex; green
saddle; cyan flat-concave; blue concave; white flat. At the finest
scale the curvature map enhances the artifacts of object reconstruc-
tion on the blade, as well as the fine detail of the rugged bottom
part of the object. Curvature of such details, as well as small details
on the edges of the blade, and bas-relief letters on the bottom part,
progressively disappear at the larger scales, while the curvature of
larger details is correctly characterized throughout all scales.

We compare our method for curvature extraction with the classical
Osculating Jets and with the integral invariant method of Pottmann
et al. Curvatures are estimated at various scales, ranging from twice
to 16 times the average edge length in the mesh. Our method is
applied by performing Monte-Carlo sampling with a threshold of
50 vertexes.

An implementation of the classical Osculating Jets with degree two
is derived from the implementation of our method, the most impor-
tant difference being that the whole neighborhood is always used
for fitting. We do not report running times for this method, because
they are quite similar to ours.

For the integral invariant method, we use the implementation pro-
vided by the authors, which is based on efficient computation of
PCA on ball neighborhoods via FFT. The method performs a space
discretization, which has high memory requirements. The program
is an executable for Windows that cannot work beyond the allowed
threshold of 2Gb of memory. Therefore, we could not run it on any
dataset with a discretization step smaller than 0.005 times the size
of the bounding box. This fact puts a severe lower bound on the
meaningful scales that can be used: we have run experiments with
this method only when the scale was not finer than 5 times the size
of the voxel, i.e., 0.025 times the size of the bounding box.

Figure 4: Principal curvatures computed with our method (left)
and with Osculating Jets (right). Scale is 16e, which is about twice
the diameter of the fingers. The Osculating Jets incorrectly classi-
fies as convex (red) some cylindrical parts (yellow).

Numerical results are reported in Table 1, while visual results for
some examples are shown in Figure 4 and 5.

Dataset |M| 2e 4e 8e 16e
Gargoyle 25k 0.4 - 1.1 12.9 4.7 13.1 22.9 13.7
RockerArm 35k 0.5 - 1.8 14.0 3.8 14.1 28.1 14.6
David head 50k 0.9 - 2.6 30.7 9.7 31.7 37.6 30.5
Angel 237k 4.7 - 13.1 - 50.0 - 220.2 -
Turbin Blade 883k 12.9 - 33.7 - 128.0 22.9 809.6 23.5

Table 1: Running times (in seconds) for extracting curvatures on
various datasets at different scales with our method (left columns)
and with the integral invariant method (right columns). Sizes of the
datasets are given by the number of vertexes (in thousands). Scales
are expressed in terms of the average edge length e. The Angel
dataset could not be loaded with the integral invariant program.

The standard Osculating jets behaves similarly to our algorithm at
small enough scales, but it produces artifacts near small details at
higher scales, where a large enough neighborhood captures also
portions of surface that are flipped with respect to the fitting plane.
Some such artifacts can be seen in Figure 4, where Osculating Jets
marks as convex large cylindric parts of the mesh near the finger-
tips.

As shown in Figure 5, the discretization scale of the integral in-
variant method is too coarse to produce meaningful results at a fine
scale 2e, while our method correctly detects the curvature of small
features (note for example the bas-relief letters). At scale 4e dis-
cretization artifacts still appear (diagonal stripes on the flat part of
the object). At larger scales, both methods produce very smooth re-
sults, which are comparable and compatible with object features at
that scale. In terms of running times, the integral invariant method
is competitive on large objects at large scales, while our method is
faster at small scales and for objects of moderate size.

Next we show the effect of applying our method with Monte-Carlo
sampling against using the whole neighborhood. Since we do not
have any ground truth for curvatures on these data sets, we take the
computation with the whole neighborhood as a reference, and we
report the deviation from those results at different rates of Monte-
Carlo sampling. Numerical results are reported in Table 2, while
visual results are shown in Figure 6. Note that the loss of accuracy
is quite small, even at large scales, by using 100 samples, while
results with 200 samples are almost identical to those obtained with
the whole neighborhood, which fits to about 1200 data points on
average.

As expected, Monte-Carlo sampling drastically reduces the time re-
quired for fitting at large scale. Unfortunately, computation times
are dominated from the breadth-first traversal of the mesh, hence
the global speed-up is just moderate. We believe that a careful im-



Figure 3: Principal curvatures computed on the turbin blade dataset at scales 2e, 4e, 8e and 16e.

Time w/o M-C Number of Monte-Carlo samples
50 100 200

Dataset |M | Fit Total x̄ σ Fit Total x̄ σ Fit Total x̄ σ Fit Total
Gargoyle 25k 3.4 23.0 0.95 0.13 0.2 20.0 0.97 0.09 0.3 20.3 0.98 0.06 0.5 20.5
RockerArm 35k 3.7 28.3 0.97 0.09 0.3 25.2 0.99 0.06 0.4 25.4 0.99 0.04 0.7 25.7
David head 50k 7.1 37.3 0.96 0.12 0.4 31.3 0.98 0.08 0.6 31.6 0.99 0.06 1.0 32.0
Angel 237k 29.5 220.0 0.98 0.08 1.9 195.3 0.99 0.06 2.9 196.7 0.99 0.04 4.9 198.9
Turbin Blade 883k 108.6 809.5 0.96 0.12 6.7 719.0 0.98 0.09 10.4 724.3 0.99 0.07 18.0 733.1

Table 2: Average deviation, variance and computational time using different numbers of Monte-Carlo samples at scale 32e. Deviation is
measured as the scalar product between the principal directions of curvature: 1.0 means perfect match. Time is in seconds.

plementation of the search with ad hoc data structures could drasti-
cally reduce computation times, thus achieving a better scalability.

Next we test robustness by adding noise in the normal direction to
vertexes. Noise is generated by extracting random values in a range
[−σ, σ], where σ is defined as a fraction of the average edge length
in the mesh. We show results with σ = 0.25e, 0.5e, 1.0e at scales
8e and 16e. Our method is compared just to the integral invariant
method in this case. Each method takes as reference values the esti-
mates it obtains on the noiseless version of each dataset at the same
scale. Numerical results, reported in Table 3, show that the two
methods produce similar results, the integral invariant performing
slightly better for large error.

6.2 Creases

Finally, we test the performance of our method for extracting
creases against (our implementation of) the method proposed in
[Hildebrandt et al. 2005]. While the two methods produce com-
parable results on clean data and at small scales, our method per-
forms much better than the other one when data are noisy, or scale
is large, or both. Creases extracted with the method of [Hildebrandt
et al. 2005] from noisy data may be highly fragmented and they are
generally more irregular. Moreover, they do not always merge cor-
rectly to follow large scale features. A visual comparison at scale
8eis reported in Figure 7. In the clean dataset (top row), note how
our method correctly merges the parallel ridges around the rim of
the hole, and along the left rib, while such ridges remain separated
with the other method. Note that creases are drawn on the original
mesh, thus they necessarily follow the jagged surface in the noisy
case.

An example of the behavior of creases through different scales is
reported in Figure 8. Note how creases slide through the surface,
merge and disappear by increasing scale. For instance: the nose
ridge is marked by two creases at fine scale, which soon merge
into one crease that persists throughout the following scales. At the
highest scale, this crease extends to mark the bilateral symmetry of
the object. Creases that outline the arms of the Moai statue are de-
tected at the fine scale, then they disappear. At fine scales, the body
of the statue is outlined longitudinally by several creases, which
progressively merge, ending up to the central longitudinal crease.
Transverse creases at the eyebrows and at the top of the forehead
first merge, then disappear when scale gets bigger; the same hap-
pens with other transverse creases, such as those marking the chin,
the nostrils, and below the nose.

7 Concluding remarks

We have shown that fitting methods can be accurate in curvature
estimation at different scales, provided that the fitting frame is cho-
sen carefully and portions of surface bending away are discarded.
We have also shown that Monte-Carlo sampling can reduce the time
needed for fitting, without much loss of accuracy. However, at large
scales, computation is still dominated by the time needed to extract
vertex neighborhoods. This problem can be probably resolved by
developing suitable data structures for mesh traversal. We will ad-
dress this specific problem in our future work.

We have presented a new discrete method for extracting creases
that is accurate and robust, and combines nicely with our multi-
scale curvature estimation. We have demonstrated on some exam-
ples how creases subsume shape features at the various scales: they
may either disappear, or slide over the surface as scale increases,



Figure 5: Curvature extracted from the rockerarm dataset at scales 2e, 4e, 8e, 16e. Top row: our method; bottom row: integral invariant
method.

σ 0.25e 0.50e 1e
Scales 8e 16e 8e 16e 8e 16e

RockerArm 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.97 0.98 0.81 0.99
David head 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.93 0.97 0.94 0.98

Table 3: Average deviation of curvature directions at different scales and different noise σ. The error made by our method (left columns),
and by the integral invariant method (right columns) is measured as the scalar product between the principal directions of curvature.

and they may eventually merge.

It would be interesting to compare our results with respect to
creases extracted from progressively smoothed versions of the same
surface, e.g., with Gaussian smoothing applied at different scales.
More generally, it is an open issue to establish a formal mathemati-
cal relation between the radius r of the neighborhood used to eval-
uate curvature and the scale of a corresponding smoothing filter.

Our goal in the near future is to build a scale-space for surface
features, which can provide a flexible tool for shape analysis and
processing. In the scale space, creases are characterized with both
position and persistence through scales. Since creases evolve in a
quite complicated way, tracing them through the various scales is
likely to be a challenging task.
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