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ABSTRACT

In recent years, Geometric Algebra (GA) has become more and more popular in fields of science and engineering
due to its potential for compact algorithms. However, the execution of GA algorithms and the related need for high
computational power is still the limiting factor for these algorithms to be used in practice. Therefore, it would be
desirable to automatically detect parts that can be calculated in parallel by a software tool. In this paper, we present
Gaalop 2.0, a Geometric Algebra Algorithm Compiler, which takes as input the description of a GA algorithm,
symbolically optimizes the output multivectors and compiles the optimized code into a target language source file
such as C++, for instance. For each output multivector the code for the different coefficients is generated, which
is finally adjusted to contain only basic arithmetic operations instead. This allows the optimized output to be
compiled for parallel computing platforms like FPGAs, for instance.

Keywords: Geometric Algebra, Geometric Computing, Compiler, Optimization, FPGA, Parallel Computing.

1 INTRODUCTION

Geometric Algebra is a mathematical framework that
facilitates the development of algorithms in different
fields of engineering and research. Algorithms in GA
are geometrically intuitive and very compact compared
to conventional approaches. Examples for how Geo-
metric Algebra can be applied in engineering or com-
puter graphics are described in [4], [12], [7] or [15], for
instance. A major drawback is the increased runtime,
which is an implication of high dimensions in multi-
vectors of geometric algebras (2n for dimension n). In
order to make GA algorithms comparable to standard
implementations, it is necessary to find optimizations
that lead to a better runtime performance. Fortunately,
the components of a multivector can be calculated in
parallel. Implementing multivectors as a set of coef-
ficients with associated basis blades makes it possible
to find algebraic expressions for each coefficient sepa-
rately. Blades are the basic geometric entities in geo-
metric algebras. Multivectors consist of a linear combi-
nation of blades of different grades. Multivector coef-
ficients can actually be calculated simultaneously, e.g.
using parallel computing devices such as FPGAs. This
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paper presents Gaalop (Geometric Algebra Algorithm
Optimizer), a compiler that calculates the very expres-
sions for multivector components.

Gaalop optimizes Geometric Algebra algorithms
written with the help of the CLUCalc software [13],
using symbolic simplification backed by the Maple [10]
Computer Algebra System (CAS), and compiles the
output to different target languages, currently C/C++,
CLUCalc, Verilog, DOT and LaTeX. The optimized
code has no more Geometric Algebra operations and
is ready to be run efficiently on various platforms,
particularly on parallel computing architectures. This
software is based on [8], a proof-of-concept imple-
mentation for high performance computing based on
Conformal Geometric Algebra with a preliminary
version of Gaalop.

This paper introduces Gaalop 2.0, a new version
which has been completely rewritten in Java in order to
extend the feature set of previous versions and to sup-
port multiple operating systems. Gaalop 2.0 incorpo-
rates multiple new features, primarily the support for
control flow instructions and code generation for paral-
lel computing platforms. We describe the optimization
and compilation process performed by Gaalop 2.0.

This document is organized as follows: Section 2
shows related work in the field of GA implementations,
Section 3 describes the input format based on CLUCalc.
Section 4 gives an overview of the intermediate repre-
sentation that is used between the compilation steps.



Section 5 shows the optimization process. Section 6
describes different code generators. Finally, Section
7 concludes this paper and gives an outlook to future
work.

2 RELATED WORK

There are a lot of pure hardware or pure software so-
lutions in order to optimize the performance of GA al-
gorithms. The first FPGA (Field Programmable Gate
Array) solution was described in [14], focusing only
on geometric products. In [6], the CliffoSor solution
was presented, implementing products with a restric-
tion to 4-dimensional Geometric Algebras. [11] is the
first solution without an integer restriction for coeffi-
cients. All of these pure hardware solutions are focus-
ing on the implementation of general Geometric Alge-
bra operations but do not use the high potential of sym-
bolic optimizations. Pure software approaches are es-
pecially based on expression templates libraries (espe-
cially boost::math::clifford) or the Gaigen approach.

Gaigen [5] is a Geometric Algebra implementation
generator that focuses on the generation of C++ code
for specified algebra definitions. Given a signature and
metric of a Geometric Algebra, Gaigen generates code
that can be embedded into C++ applications directly.
Generating code is a simple operation that does not re-
quire too much knowledge of Geometric Algebra fea-
tures. However, implementations do not contain opti-
mizations by default and thus suffer from performance
lacks that can only be eliminated by applying optimiza-
tions manually. This requires to identify special cases
in which multivectors can be reduced in size (called
specializations), for instance geometric entities such as
spheres which have only 1-dimensional blades (rather
than bivectors, trivectors, etc.). Therefore, detailed
knowledge is required from the user, since specializa-
tions cannot be deduced automatically. Gaalop does not
require the step of manual optimization because multi-
vectors are decomposed into their coefficients of basis
blades.

3 INPUT FORMAT

Gaalop 2.0 supports a subset of CLUScript, a script lan-
guage for the 3D visualization and scientific calculation
software CLUCalc/CLUViz [13].With CLUCalc it is
possible to develop algorithms visually, allowing rapid
prototyping. This enables the user to create Geometric
Algebra algorithms step by step, supported by visual
output. Previous versions of Gaalop supported only se-
quential algorithms without conditional branches, loop
statements or user-defined function calls. Table 1 com-
pares the supported and new features in Gaalop 1.0 and
2.0. Algorithms to be optimized by Gaalop have to use
Conformal Geometric Algebra only.

Version
CLUScript feature 1.0 2.0
algebra definition no yes
pre-defined algebra functions yes yes
macros no yes
null-space definition yes yes
inner / outer / geometric products yes yes
if-statements no yes
loops no yes
variable lists / scopes / references no no
point operators no no
drawing / plotting functionality no no
LATEX rendering no no

Table 1: Comparsion of CLUScript support in Gaalop 1.0 and 2.0.

Restrictions to the full set of CLUScript features
mainly concern visualization features, variable refer-
ences or scopes. Note that the ? operator is inter-
preted in a slightly different way than in CLUScript.
In Gaalop, this operator is used as a marker for lines
of the input code for which the optimized output code
should be generated. Therefore, this operator will be
referenced to as the optimization marker throughout
this document. Variables or lines that are not marked
accordingly will be processed by Gaalop to find sim-
plified expressions for multivector coefficients but not
explicitly generated as output code. This makes it pos-
sible to optimize only crucial parts of an algorithm in-
stead of each line which might not be important in the
output.

Example

DefVarsN3();
P = VecN3(px,py,pz); // view point
M = VecN3(mx,my,mz); // center point of earth
S = M-0.5*r*r*einf; // sphere representing earth
K = P+(P.S)*einf; // sphere around P
?C=S^K; // intersection circle

Listing 1: Sample input code showing a CLUScript file. Variables
px, py, pz and mx, my, mz are free variables that will be handled
symbolically.

Listing 1 shows a sample input script in Conformal
Geometric Algebra. To illustrate the compilation pro-
cess step by step, this code is taken as an example
throughout this document. The task is to calculate an
algebraic expression of the horizon on the earth viewed
from an arbitrary point P . The earth is represented by
a sphere S with center M and radius r (line 3). Line 4
defines a sphere K around P . The radius of this sphere
is defined by the inner product of P and S, which corre-
sponds to the squared distance between P and any point
on S that touches a tangent through P . Thus, K has ex-
actly the radius that matches the distance of the horizon



Figure 1: Screenshot of the CLUViz visualization window. Slid-
ers can be used to modify input parameters. The check box on the
bottom right allows to switch between original code and Gaalop opti-
mized code. Errors in the optimized code would immediately become
visible when switching modes.

to P . Finally, line 5 calculates the intersection circle C
modeling the horizon.

Figure 1 shows how the CLUViz visualization win-
dow looks like. The earth sphere S is drawn in dark
grey, the view point P in shown on the right-hand
side. The sphere K around P is indicated in light grey.
The intersection circle is finally indicated between both
spheres.

4 INTERMEDIATE REPRESENTA-
TION

Gaalop parses input files and transforms the input
into an intermediate representation, on which different
compilation steps operate. For the parser implementa-
tion, the ANTLR parser generator tool has been used.
Gaalop 2.0 uses two kinds of intermediate representa-
tions (IR), a control flow graph (CFG) and a data flow
graph (DFG) to represent the algorithmic structure of
the input program and related arithmetic operations
such as assignments or application of mathematic
functions, respectively. In fact, Gaalop builds a control
dataflow graph, representing arithmetic expressions in
terms of a DFG whose nodes themselves are referenced
in CFG nodes. Hence, the DFG is not a graph of its
own but rather implicitly contained in CFG nodes.
Previous versions of Gaalop used a very simple type
of control flow graph, which contained only sequential
nodes, since real control flow like branches or loops
was not supported.

4.1 Control Flow Graph
The control flow graph represents the overall structure
of the input program. It distinguishes sequential state-

ments such as assignments or procedure calls and con-
trol flow elements like if-statements or macros. As op-
posed to the data flow graph, the CFG does not repre-
sent details of arithmetic operations (e.g. additions, ge-
ometric products, etc.). Concrete types of CFG nodes
are outlined below.

Assignments represent a variable to which an arbitrary
expression is assigned. Both variable and expression
are represented by an appropriate DFG node.

Optimization markers encapsulate a variable for
which the optimized output code will be generated.

If-statements consist of a condition, a positive branch
and a negative branch. Conditions are modeled via
a DFG expression, branches as an (implicit) list
of other CFG nodes. This type of node is self-
contained, so nested statements are possible.

Loops contain the statements from the body, including
termination conditions which are usually related to
if-statements. Optionally, a number of iterations can
be given which is used to unroll the loop.

Macros are represented by a name and associated list
of statements. The name is further used to identify
usages of this macro in the input code. This can be
used to inline the use of macros in order to augment
the range of optimization by replacing the call of a
macro by its actual code.

Some CFG nodes contain references to arithmetic ex-
pressions which are related to the respective code in the
input program. These expressions are modeled by the
data flow graph.

Example

Figure 2 shows the control flow graph which corre-
sponds to the input file from Listing 1. For each as-
signment there is an according node in the CFG. The
optimization marker is represented by a dedicated node.

4.2 Data Flow Graph
The data flow graph represents the arithmetic parts of
the input code. Elements of an assignment, such as
variable and value, are modeled via DFG nodes. For
each mathematical operation supported by Gaalop there
exists a corresponding type of nodes, outlined below.
The common basis of DFG nodes is an expression type.
Concrete nodes can be placed on any location where an
expression is expected.

Unary operations model operations like negation or
dualization that take only one expression as argu-
ment.
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Figure 2: Control flow graph corresponding to the input file from
section 3. The algebra definition from the input code is handled sep-
arately. Start and end node are special marker nodes.

Binary operations model operations like addition,
subtraction or inner / outer / geometric products
which take two expressions as argument. Each
binary operation has a left and right operand.

Language elements consist of pre-defined function
calls (e.g. VecN3 to define a conformal point)
or mathematic functions like sin, cos or sqrt.
These functions take different numbers and types of
arguments, each of which is another expression.

Identifiers are the actual parameters of functions, op-
erations and relations. These can be variables, inte-
ger or float constants and basis vectors.

Other CLUCalc relevant language elements such as
null space definitions or algebra selection are not mod-
eled as dedicated DFG nodes. These are handled by
a separate type which will be referenced to as alge-
bra signature. This signature is directly referenced by
the control flow graph, since contained properties are
global to the input code and not related to single CFG
or DFG nodes.

Gaalop supports Conformal Geometric Algebra,
defined by the DefVarsN3 function in CLUScript.
This algebra has an associated signature and blade list,
which defines the elementary basis blades. Table 2
lists the 32 basis blades of the Conformal Geometric
Algebra in the canonical ordering. This table can also
be seen as a lookup table for the association between

Assignment:
S

-

M *

*

*

0.5 r

r

einf

Figure 3: Data flow graph corresponding to the assignment to vari-
able S in the input file from section 3.

multivector coefficient and the related blade, as it is
used by the code generators (Section 6).

Example

Figure 3 shows the data flow graph which corresponds
to the assignment to variable S in the input file from
Listing 1.

5 OPTIMIZATION
Gaalop 2.0 has been re-designed to have a strictly mod-
ular interface. In previous versions, different parts of
the program such as parser, optimizer and code genera-
tor have been hardwired and were neither exchangeable
or extensible. In Gaalop 2.0, these parts are modeled
as plugins which can easily be exchanged and extended
without modifying the main program. Especially the
intermediate representation has been separated to be ac-
cessible from all modules that read, modify or write this
structure.

The compilation process from input file to the opti-
mized output code consists of three major passes. Start-
ing with the input file, Gaalop parses this file to pro-
duce the intermediate representation (CFG / DFG), op-
timizes the input by symbolic manipulation and gener-
ates the output code depending on the selected target
language. These passes are explained below.

The optimizer is responsible for symbolic simpli-
fication and calculation of optimized multivector co-
efficients for expressions marked with the optimiza-
tion marker (?) in the input code. This compila-
tion pass is implemented using the OpenMaple inter-
face of the Maple Computer Algebra System (CAS)
[10] with the CLIFFORD library by Rafal Ablamow-
icz [1] for Geometric Algebra calculations. This allows



index blade grade
0 1 0
1 e1 1
2 e2 1
3 e3 1
4 e∞ 1
5 e0 1
6 e1 ∧ e2 2
7 e1 ∧ e3 2
8 e1 ∧ e∞ 2
9 e1 ∧ e0 2
10 e2 ∧ e3 2
11 e2 ∧ e∞ 2
12 e2 ∧ e0 2
13 e3 ∧ e∞ 2
14 e3 ∧ e0 2
15 e∞ ∧ e0 2
16 e1 ∧ e2 ∧ e3 3
17 e1 ∧ e2 ∧ e∞ 3
18 e1 ∧ e2 ∧ e0 3
19 e1 ∧ e3 ∧ e∞ 3
20 e1 ∧ e3 ∧ e0 3
21 e1 ∧ e∞ ∧ e0 3
22 e2 ∧ e3 ∧ e∞ 3
23 e2 ∧ e3 ∧ e0 3
24 e2 ∧ e∞ ∧ e0 3
25 e3 ∧ e∞ ∧ e0 3
26 e1 ∧ e2 ∧ e3 ∧ e∞ 4
27 e1 ∧ e2 ∧ e3 ∧ e0 4
28 e1 ∧ e2 ∧ e∞ ∧ e0 4
29 e1 ∧ e3 ∧ e∞ ∧ e0 4
30 e2 ∧ e3 ∧ e∞ ∧ e0 4
31 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Table 2: Blades of the 5D conformal geometric algebra and their
ordering.

to use Maple for symbolic calculations from Java di-
rectly. The Maple optimizer traverses the input control
dataflow graph as it has been set up by the parser in the
previous compilation pass (Figures 2, 3). On each opti-
mization step, parts of the control or data flow graph are
removed or replaced by expressions representing sim-
plified calculations. After the optimization pass, the
CFG and DFG contain only optimized code. Assign-
ments which have not been marked for optimization are
not contained in the graph anymore. Gaalop optimizes
the input trying to achieve two objectives:

• Symbolic simplification. Each assignment of the in-
put script is translated to Maple syntax and sent to
the Maple engine. Maple keeps track of commands
executed by the engine and symbolically simplifies
assignments where appropriate. The original assign-
ments from the input CFG are removed and replaced
in favor of new assignments, which calculate the in-
dividual multivector coefficients using scalar arith-
metic operations only.

• Preparation for parallel computing platforms. Mul-
tivector components, i.e. coefficients of a multivec-

tor’s linear combination of basis blades, can be cal-
culated in parallel. This holds potential for paral-
lel execution of instructions calculating the non-zero
coefficients. For an overview of the basis blades of
the Conformal Geometric Algebra, refer to Table 2.

To reach these goals, CFG nodes are translated to
Maple syntax and sent to the Maple engine. The con-
crete representation is a string value describing the
command to be executed by Maple. Therefore, control
flow nodes are processed in the following way.

Assignments are translated according to the syntax
rules of the CLIFFORDLIB package for Maple, e.g.
using the &c operator for the geometric product.

Optimization markers trigger the calculation of sim-
plified multivector coefficients for the selected vari-
able. Thus, a self-defined Maple procedure decom-
poses the multivector to its 2n components. For each
component, the relevant part of the linear combina-
tion of basis blades is selected. Finally, the related
coefficient is evaluated and symbolically simplified.
The resulting multivector is put into an array of mul-
tivector components which is used to return the ex-
pression into the control flow graph. Before return-
ing control to Gaalop, another procedure tries to re-
place variable references that have previously been
optimized, so results that have already been calcu-
lated can be reused in further calculations. After-
wards, Gaalop removes assignments to the old mul-
tivector and inserts new assignments for each non-
zero multivector component. Each of these assign-
ments represents the simplified expression that cal-
culates the coefficient of the respective basis blade
(Table 2).

If-statements are processed recursively by traversing
the instructions of their positive and negative
branches. In both branches, each line is optimized
automatically in order to eliminate Geometric
Algebra operations. This is necessary for the use of
backends which do not support Geometric Algebra.

Macros are inlined in a separate pass. For each macro
call, the corresponding code is copied and the call is
replaced by the actual return value.

Loops can be processed in two ways: either being un-
rolled by a fixed number of iterations or similar to
if-statements to eliminate Geometric Algebra oper-
ations. In each case, further information is required
which can be given in the input file using dedicated
#pragma comments. If the number of iterations for
the loop is known, the loop can be unrolled by copy-
ing the body n times. In the normal case where only
Geometric Algebra operations are removed, control



variables have to be given in order to correctly pro-
cess statements in the body. Due to the generalized
CLUCalc syntax for loops, which does not spec-
ify the concrete type of loop, Gaalop would other-
wise remove assignments to control variables like
counter variables, breaking termination conditions
in the output.

Listing 2 shows a simple example how a loop can be
defined in the input file to be unrolled in Gaalop. The
loop body is copied 10 times before the optimizer pro-
cesses assignments, making the original loop disappear
in the output. In the best case, the entire loop can be
reduced to a single statement.

p = VecN3(x,y,z);
i = 0;
//#pragma unroll 10
loop {

if (i > 9) {
break;

}
// do something

}
?p;

Listing 2: Simple code fragment showing the use of unrolling loops.

After this transformation, assignment nodes are re-
placed by the simplified expressions that have been cal-
culated by Maple and inserted into the CFG. Hence, the
CFG has been modified to contain the optimized code
instead.

Example
The modified control dataflow graph corresponding to
the example from Listing 1 is too large to be illustrated
here. Nevertheless, it is easy to imagine the general
structure of the graph after the optimization pass. Re-
member that only one variable has been marked by ? to
be printed in the optimized output (the intersection cir-
cle C). Hence, the assignments to other variables have
been removed without replacement (their contribution
to the result is implicitly contained in the value of C).
As the assignment to C has been replaced by the assign-
ments to its multivector components, there are 10 new
nodes now, representing the assignments to the bivector
parts of the multivector (indices 6-15, see Table 2). At
the end of the new graph there is an output (optimiza-
tion) node representing the overall multivector C.

6 CODE GENERATOR
After the optimization pass, the intermediate represen-
tation contains the simplified expressions calculating
the result multivectors that were marked in the input
file. The IR is now ready to be processed by code gener-
ators, also called backends of the compiler. Each back-
end is implemented as a plugin to Gaalop which can be
selected before the compilation process starts.

Code generators traverse the IR to translate the op-
timized code to the syntax rules of the target platform.
For backends that do not support parallel computing,
no modifications to the IR have to be performed. This
is the case for most backends implemented in Gaalop
2.0 such as CLUCalc, C++, DOT or LaTeX. The more
advanced Verilog backend performs additional manip-
ulations to the IR in order to prepare the output for par-
allel architectures such as an FPGA.

A common property of all backends is that no Ge-
ometric Algebra module has to be included. Since the
multivector descriptions have been optimized to expres-
sions containing only conventional scalar arithmetic op-
erators, no time-consuming operations, such as the ge-
ometric product, have to be executed. Generated output
always operates on lists or arrays of coefficients, which
are directly related to the blade indices in the canon-
ical ordering of Table 2, rather than on the geometric
entities (blades) themselves.

CLUCalc

Even if CLUCalc is the input language, it is also sen-
sible to offer it as backend, too. In this manner, the
correctness of the Gaalop compiler can be verified by
comparing the original and optimized code visually in
the CLUViz software (cf. Figure 1).

DefVarsN3();
C_opt = List(32);
C_opt(7) = -(my * px) + mx * py; // e1^e2
C_opt(8) = -(mz * px) + mx * pz; // e1^e3
C_opt(9) = (((mx * pz * mz + mx * py * my) - 0.5 *

mx^^3.0 + 0.5 * mx^^2.0 * px) - 0.5 * mx * my
^^2.0 - 0.5 * mx * mz^^2.0 + 0.5 * mx * r^^2.0)
- 0.5 * px * my^^2.0 - 0.5 * px * mz^^2.0 +
0.5 * px * r^^2.0; // e1^einf

C_opt(10) = -(1.0 * px) + mx; // e1^e0
C_opt(11) = -(mz * py) + my * pz; // e2^e3
C_opt(12) = (((my * px * mx + my * pz * mz) - 0.5 *

my^^3.0 - 0.5 * my * mx^^2.0 + 0.5 * my^^2.0 *
py) - 0.5 * my * mz^^2.0 + 0.5 * my * r^^2.0) -
0.5 * py * mz^^2.0 - 0.5 * py * mx^^2.0 + 0.5

* py * r^^2.0; // e2^einf
C_opt(13) = -(1.0 * py) + my; // e2^e0
C_opt(14) = (((mz * px * mx + mz * py * my) - 0.5 *

mz^^3.0 - 0.5 * mz * mx^^2.0 + 0.5 * mz^^2.0 *
pz) - 0.5 * mz * my^^2.0 + 0.5 * mz * r^^2.0) -
0.5 * pz * my^^2.0 - 0.5 * pz * mx^^2.0 + 0.5

* pz * r^^2.0; // e3^einf
C_opt(15) = -(1.0 * pz) + mz; // e3^e0
C_opt(16) = ((-(1.0 * px * mx) - 1.0 * py * my + my

^^2.0 + mz^^2.0) - 1.0 * r^^2.0 + mx^^2.0) -
1.0 * pz * mz; // einf^e0

?C = C_opt(7) * e1^e2 + C_opt(8) * e1^e3 + C_opt(9)

* e1^einf + C_opt(10) * e1^e0 + C_opt(11) * e2^
e3 + C_opt(12) * e2^einf + C_opt(13) * e2^e0 +
C_opt(14) * e3^einf + C_opt(15) * e3^e0 + C_opt
(16) * einf^e0;

Listing 3: Optimized CLUCalc output for the input file from Listing
1 in section 1. Multivector components and associated blades are
indexed according to Table 2 incremented by 1, since counting of list
elements in CLUCalc starts with 1.

As a concrete example, listing 3 shows the resulting
CLUCalc output code for the input file from section 1.



C is defined as a list of 32 entries with coefficients 7 to
16 set to the optimized expressions as calculated from
the optimizer, while other coefficients are zero. The
associated blade indices correspond directly to the ones
defined in Table 2, incremented by 1 to match the 1-
based counting of list elements in CLUCalc. In the last
line, C is reassembled using the coefficients and their
associated basis blades.

C/C++

The C/C++ backend optionally wraps the generated
code in a calculate method that takes the unknown
input variables and a reference to the output multivec-
tor as parameters. Multivectors are handled as float ar-
rays whose indices correspond to the ones from Table 2.
Code generated from this backend can be used in an ex-
isting C++ program. Passing the correct parameters to
the calculate function, the result can be calculated with-
out knowledge of GA operations.

Listing 4 shows the resulting C/C++ output code for
the input file from section 1. C is defined as an array of
float with 32 entries.

void calculate(float mx, float my, float mz, float
px, float py, float pz, float r, float C[32]) {

C[6] = mx * py - my * px; // e1^e2
C[7] = -(mz * px) + mx * pz; // e1^e3
C[8] = mx * py * my + mx * pz * mz - 0.5f * pow(

mx,3.0f) + 0.5f * mx * mx * px - 0.5f * mx *
my * my - 0.5f * mx * mz * mz + 0.5f * mx *
r * r - 0.5f * px * my * my - 0.5f * px *

mz * mz + 0.5f * px * r * r; // e1^einf
C[9] = -(1.0f * px) + mx; // e1^e0
C[10] = -(mz * py) + my * pz; // e2^e3
C[11] = my * px * mx + my * pz * mz - 0.5f * pow(

my,3.0f) + 0.5f * my * my * py - 0.5f * my *
mx * mx - 0.5f * my * mz * mz + 0.5f * my *
r * r - 0.5f * py * mz * mz - 0.5f * py *

mx * mx + 0.5f * py * r * r; // e2^einf
C[12] = -(1.0f * py) + my; // e2^e0
C[13] = mz * py * my + mz * px * mx - 0.5f * pow(

mz,3.0f) + 0.5f * mz * mz * pz - 0.5f * mz *
mx * mx - 0.5f * mz * my * my + 0.5f * mz *
r * r - 0.5f * pz * my * my - 0.5f * pz *

mx * mx + 0.5f * pz * r * r; // e3^einf
C[14] = -(1.0f * pz) + mz; // e3^e0
C[15] = -(1.0f * px * mx) - 1.0f * py * my - 1.0f

* pz * mz + mz * mz - 1.0f * r * r + mx *
mx + my * my; // einf^e0

}

Listing 4: Optimized C/C++ output for the input file from Listing
1 in section 1. Multivector components and associated blades are
numbered according to Table 2.

DOT

The DOT backend generates a .dot file for visualiza-
tion with the Graphviz Graph Visualization Software
[2]. This is helpful to inspect the intermediate represen-
tation as it has been modified by the optimizer. For ex-
ample, Figures 2 and 3 show parts of the input file’s IR
which was generated by the DOT code generator with
the Maple optimization disabled.

LaTeX

For scientific reports about algorithms optimized with
Gaalop, it has been necessary to manually transform the
output code to a human-readable text. The LaTeX back-
end automates this step by generating a description of
the output code in form of math formulae that can be
embedded in a .tex document. The equations from Fig-
ure 4 have been generated by Gaalop 2.0 according to
the example from Listing 1.

C6 = mx ∗ py −my ∗ px
C7 = −mz ∗ px+mx ∗ pz

C8 = −
1

2
mx ∗mz2 −

1

2
mx ∗my2 +

1

2
mx ∗ r2

+
1

2
mx2 ∗ px−

1

2
px ∗my2 −

1

2
px ∗mz2

+
1

2
px ∗ r2 −

1

2
mx3

+mx ∗ py ∗my +mx ∗ pz ∗mz

C9 = −1 ∗ px+mx

C10 = −mz ∗ py +my ∗ pz

C11 =
1

2
my2 ∗ py −

1

2
my ∗mz2 −

1

2
my ∗mx2

+
1

2
my ∗ r2 −

1

2
py ∗mz2 −

1

2
py ∗mx2

+
1

2
py ∗ r2 −

1

2
my3

+my ∗ pz ∗mz +my ∗ px ∗mx

C12 = −1 ∗ py +my

C13 =
1

2
mz2 ∗ pz −

1

2
mz ∗mx2 −

1

2
mz ∗my2

+
1

2
mz ∗ r2 −

1

2
pz ∗my2 −

1

2
pz ∗mx2

+
1

2
pz ∗ r2 −

1

2
mz3

+mz ∗ py ∗my +mz ∗ px ∗mx

C14 = −1 ∗ pz +mz

C15 = −1 ∗ py ∗my − 1 ∗ px ∗mx− 1 ∗ pz ∗mz

+mz2 − 1 ∗ r2 +mx2 +my2

Figure 4: LaTeX representation of the optimized output for the input
file from Listing 1 in section 1. The actual LaTeX code is wrapped
into an align environment.

Verilog

The Verilog Hardware Description Language (HDL) is
used to describe hardware circuits. The Verilog back-
end produces synthesizeable Verilog HDL code, i.e. it
can be used for the production of an application specific
circuit (ASIC) or it can be mapped on a reconfigurable
unit, like a field programmable gate array (FPGA). Sim-
ilar to the C/C++ backend an independent module is
generated, which does not rely on a specific architec-
ture or infrastructure.



As the generated hardware is fully spatial parallel and
pipelined, it consumes in each cycle a date and returns
a computation result. The latency of the computation
depends on the input program and the involved opera-
tions.

To generate the hardware, the backend transforms the
control flow graph into a pure data flow graph. As more
complex control flow like loops is currently not yet sup-
ported in this backend, this is always possible. The
nodes of the newly generated data flow graph consist
only of operators which can be mapped to Verilog via a
special library.

Before the final mapping to the operations is done,
some optimization is applied to reduce the required
silicon area: Constant Propagation, Constant Folding,
Common Subexpression Elimination, and in case the
user selected not to implement the computation as float-
ing point but as fixed point a Monte-Carlo-Simulation
for word length optimization.

Optimization continues while mapping hardware.
Multiplications and division by a power of two can
be replaced in hardware with a new wiring, and each
operator is instantiated with the right size to minimize
area requirements.

7 CONCLUSION & FUTURE WORK
We presented Gaalop 2.0, an advanced version of the
Gaalop compiler. Written in Java, Gaalop 2.0 can be
used on any platform where Maple is installed. We have
introduced CLUScript as the input language for algo-
rithms to be optimized with Gaalop, giving an overview
of supported language features. After introducing the
intermediate representation for the internal handling of
the input code, we focused on the optimization process,
giving details about the input parser, Maple simplifier
and different code generators. We showed how Gaalop
2.0 transforms the input code to an optimized represen-
tation that goes without explicit Geometric Algebra op-
erations. Exploiting the fact that multivector compo-
nents can be calculated simultaneously, we have imple-
mented a Verilog code generator which produces code
that compiles the input algorithm to an FPGA hardware
description.

We plan to extend the set of code generators by back-
ends for general-purpose computing platforms. Differ-
ent standards for multicore architectures like OpenMP
(Open Multi-Processing) [3] or OpenCL (Open Com-
puting Language) [9] offer the opportunity to make
use of the huge processing power of modern comput-
ers. This is where two worlds come together: High-
dimensional Geometric Algebras offering an elegant
and intuitive way of describing algorithms, requiring
considerable computing performance, and multicore ar-
chitectures taking advantage of the increasing paral-
lelism in integrated circuits as compensation of lack-
ing performance of GA algorithms. The combination

of these approaches advances to the vision of a “Geo-
metric Algebra Computer” that accelerates standard im-
plementations while keeping algorithms compact and
intuitive.
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