
2nd International Workshop on

Computer Graphics, Computer Vision and
Mathematics

in co-operation with

EUROGRAPHICS

GraVisMa 2010

Workshop Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic
Eckhard M. Hitzer, University of Fukui, Japan

2nd International Workshop on

Computer Graphics, Computer Vision and
Mathematics

in co-operation with

EUROGRAPHICS

GraVisMa 2010

Workshop Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic
Eckhard M. Hitzer, University of Fukui, Japan

Václav Skala – UNION Agency

GraVisMa 2010 Proceedings

Editor-in-Chief: Vaclav Skala
c/o University of West Bohemia, Univerzitni 8
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by:
Vaclav Skala – Union Agency
Na Mazinách 9
CZ 322 00 Plzen
Czech Republic

Hardcopy: ISBN 978-80-86943-85-5

Foreword

Goals of the GraVisMa workshops are to bring the theories of the Projective Geometry,
Geometric Algebra and Conformal Geometry to practical application especially in the
fields related to Computer Graphics and Vision, Scientific Computation and Visualization.

The 2nd International workshop on Computer Graphics, Computer Vision and
Mathematics was held at Brno University of Technology at Brno, Czech Republic on
September 7.- 10, 2010.

GraVisMa workshops are a unique forum of researchers, practitioners, developers and
academic experts to discuss new approaches and methods in Computer Graphics,
Computer Vision, Scientific Computation, Scientific, Medical and Information Visualization
(and other relevant fields) with application of the latest developments in Mathematics
and Physics and vice versa.

GraVisMa workshops bring new impulses related to computer science, especially in
the development of new approaches and algorithms and stimulate research cooperations
between mathematicians and computer science experts.

GraVisMa workshop proceedings contain full papers, communication papers and
posters presented at the workshop that were commented, reviewed by participants and
external reviewers. Papers accepted for publication were further improved after the
workshop due to discussions and comments during the event.

GraVisMa 2010 attendees

At the Gr

• tw

• fo

• 23

Inform
betwe
intern

The co-c

• w
• w

th
• sp

The ne
industria
is planne

V
Universit

Cz

Mic

Advanc

raVisMa 201

wo keynotes
o Rockw

indust
o Scheu

Germa
our tutorials

o Tachib
o Seybo
o Hilden

algebr
Arabia

o Heide
3 research p

mal atmosp
een researc
national res

hairs would

who contribu
who helped s
he workshop
ponsoring o

ext GraVisM
l with heavy

ed for Septe

Václav Skala
ty of West B
zech Republ

crosoft s.

 AMD
ced Micro D

10 workshop

s
wood,A.: Fea
trial design
uermann,G.
any

bana,K., Hit
old,F.: Gaale
nbrand,D., R
ra and its ef
a & USA
krüger,A.: I
papers

phere of the
chers and pr
earch collab

 like to than

ted to this w
so that this w
p,
rganizations

Ma 2010 wor
y industry a
mber 2011.

a
Bohemia
ic

GraVisM
Unive

Brno U

r.o.

Devices

p were pres

ature based
and terrain
: New devel

tzer,E.: Geo
et, Germany
Rockwood,A
fficient impl

Introduction

 GraVisMa 2
ractitioners t
borations an

nk to all:

workshop, e
workshop co

s.

rkshop will b
and coal min
.

Co-

Ma 2010
rsity of W
niversity o

NI

ented:

d, transfinite
 modeling, S
lopments in

ometric alge
y

A.: Introduct
ementation

n to OpenCL

2010 worksh
that will hop

nd common

especially th
ould be held

be held in th
nes with ma

Chairs

 was supp
West Bohem

of Techno

IVIDIA

e interpolatio
Saudi Arabia
 mathemati

bra neural n

tion to (conf
 using Gaalo

L (AMD), Ge

hop stimulat
pefully lead
 project pro

he reviewers
d and to peo

he Ostrava c
ny historica

ported by
mia Plzen
logy, Brno

Z

SI

on with app
a & USA
ical visualiza

networks, Ja

formal) geo
op, German

rmany

ted scientifi
 to further r
posals.

s,
ople that he

city, which
al places. Th

Eckhard M
University o

Japa

y:

o

oner Softw

LICON G
s.r.

plications to

ation,

apan

ometric
ny, Saudi

c discussion
research

elped during

is very
he workshop

M.Hitzer
of Fukui
n

ware a.s.

RAPHICS
o

ns

g

p

S

Co-Chairs

Eckhard M.S. Hitzer (Japan)
Vaclav Skala (Czech Republic)

International Program Committee

Ablamowicz,Rafal (United States)
Bayro-Corrochano,Eduardo (Mexico)
Dorst,Leo (Netherlands)
Gavrilova,Marina (Canada)
Groeller,Eduard (Austria)
Hildenbrand,Dietmar (Germany)
Hitzer,Eckhard (Japan)
Horn,Martin Erik (Germany)
Lasenby,Joan (United Kingdom)
Skala,Vaclav (Czech Republic)
Sojka,Eduard (Czech Republic)
Torrens,Francisco (Spain)
Zemcik,Pavel (Czech Republic)

Organization Committee

Hildebrand,Dietmar (Germany)
Skala,Vaclav (Czech Republic)
Zemcik,Pavel (Czech Republic)

Members
Herout,Adam (Czech Republic)
Kolcun,Alexej (Czech Republic)
Lavicka,Miroslav (Czech Republic)
Sojka,Eduard (Czech Republic)

Board of Reviewers

Ablamowicz,Rafal (United States)
Bayro-Corrochano,Eduardo (Mexico)
Bell,Ian (United Kingdom)
Benger,Werner (United States)
Cibura,Carsten (Netherlands)
De Floriani,Leila (Italy)
Deul,Crispin (Germany)
Dorst,Leo (Netherlands)
Fassold,Hannes (Austria)
Fuchs,Laurent (France)
Gain,James (South Africa)
Gavrilova,Marina (Canada)
Hasegawa,Makoto (Japan)
Havemann,Sven (Austria)
Herout,Adam (Czech Republic)

Hildenbrand,Dietmar (Germany)
Hitzer,Eckhard (Japan)
Horn,Martin Erik (Germany)
Isokawa,Teijiro (Japan)
Jolly,Raphael (France)
Jung,Yvonne (Germany)
Kapec,Peter (Slovakia)
Kohout,Josef (Czech Republic)
Kolcun,Alexej (Czech Republic)
Kooijman,Adrie (Netherlands)
Kortenkamp,Ulrich (Germany)
Lasenby,Anthony (United Kingdom)
Lasenby,Joan (United Kingdom)
Lavicka,Miroslav (Czech Republic)
Li,Hongbo (China)
Macdonald,Alan (USA)
Marais,Patrick (South Africa)
Michoud,Brice (France)
Panozzo,Daniele (Italy)
Puppo,Enrico (Italy)
Rocca,Luigi (Italy)
Rockwood,Alyn (Saudi Arabia)
Sabov,Alexander (Germany)
Saint-Jean,Christophe (France)
Sbert,Mateu (Spain)
Scheuermann,Gerik (Germany)
Schwinn,Christian (Germany)
Skala,Vaclav (Czech Republic)
Sojka,Eduard (Czech Republic)
Stork,Andre (Germany)
Tachibana,Kanta (Japan)
Torrens,Francisco (Spain)
Tytkowski,Krzysztof (Poland)
Vanecek,Petr (Czech Republic)
Vasa,Libor (Czech Republic)
Wiebel,Alexander (Germany)
Yuan,Linwang (China)
Zemcik,Pavel (Czech Republic)

GraVisMa 2010

Keynotes

Rockwood,A.: Feature based, transfinite interpolation with applications to industrial
design and terrain modeling, Saudi Arabia & USA

Scheuermann,G.: New Developments in Mathematical Visualization, Germany

Tutorials

Tachibana,K., Hitzer,E.: Geometric Algebra Neural Networks, Japan
Seybold,F.: Gaalet, Germany
Hildenbrand,D., Rockwood,A.: Introduction to (Conformal) Geometric Algebra and its

efficient implementation using Gaalop, Germany, Saudi Arabia & USA
Heidekrüger,A.: Introduction to OpenCL (AMD), Germany

Contents

Plenary Papers Page

Schwinn,C., Hildenbrand,D., Stock,F., Koch,A.: Gaalop 2.0 - A Geometric
Algebra Algorithm Compiler, Germany

 1

Panozzo,D., Puppo,E., Rocca,L.: Efficient Multi-scale Curvature and Crease
Estimation

 9

Gunn,C.: Advances in Metric-neutral Visualization 17

Rosner,J., Fassold,H., Schallauer,P., Bailer,W.: Fast GPU-based Image Warping
and Inpainting for Frame Interpolation

 27

Bin,L., Goel,V., Peters,J.: DirectX 11 Reyes Rendering, United States 33

Hitzer,E.: Angles between Subspaces 41

Charrier,P., Hildenbrand,D.: Gaalop Compiler Driver 49

Goerlitz,A., Sieber,H., Hildenbrand,D.: Registration of Multichannel Images
using Geometric Algebra

 57

Kovacic,M., Guggeri,F., Marras,S., Scateni.,R.: Fast Approximation of the Shape
Diameter Function

 65

Comic,L., De Floriani,L., Iuricic,F.: Multi-Resolution Morse Complexes in
Arbitrary Dimensions

 73

Benger,W.; Ritter,M.: Using Geometric Algebra for Visualizing Integration
Curves

 81

Communication Papers

Kotas,P.; Praks,P.; Valek,L.: Automatic texture classification of metallographic
images by Gabor Filter

 89

Diaz-Tula,A., Castaneda-Garay,M., Belmonte-Fernandez,O.: Parallelization of
a method for detecting non-stationary photometric perturbations in
projection screens with CUDA

 93

Havel,J., Herout,A.: Rendering Pipeline Modelled by Category Theory 101

Noborio,H., Yoshida,Y., Sohmura,T.: Development of Human Interface Software
in our Dental Surgical System based on Mixed Reality

 107

Ukrop,L., Jakubeci,M., Kapec,P.: Metaphorical Visualizations of Graph Structures 115

Horn,M.E.: Reconsidering and Rethinking Quaternionic Special Relativity 123

Degirmenci,M., Ashyralyev,S.: Impact Crater Detection on Mars Digital Elevation
and Image Model

 131

Poster Papers

Srubar,S.: Toward Objective Segmentation Evaluation 139

Zuzanak,J., Zemcik,P.: Knowledge representation using graph grammar
rewriting system

 143

Zabiniako,V., Rusakov,P.: Graph Drawing in Lightweight Software: Conception
and Implementation

 151

Yu,Z., Yuan,L., Luo,W.: Clifford Algebra and GIS Spatial Analysis Algorithms -
the Case Study of Geographical Network and Voronoi Analysis

 155

Gaitto Pereira,F.: Linking 2D data to a 3D architectural model 159

Tachibana,K., Pham,M.T., Yoshikawa,T., Furuhashi,T.: A Note on Geometric
Algebra and Neural Networks

 163

Gaalop 2.0 - A Geometric Algebra Algorithm Compiler

Christian Schwinn
TU Darmstadt, Germany

Department of Computer Science
schwinn@rbg.informatik.tu-darmstadt.de

Dietmar Hildenbrand
TU Darmstadt, Germany

Department of Computer Science
Interactive Graphics Systems Group

dhilden@gris.informatik.tu-darmstadt.de

Florian Stock
TU Darmstadt, Germany

Department of Computer Science
Embedded Systems and Applications Group

stock@esa.informatik.tu-darmstadt.de

Andreas Koch
TU Darmstadt, Germany

Department of Computer Science
Embedded Systems and Applications Group

koch@esa.informatik.tu-darmstadt.de

ABSTRACT

In recent years, Geometric Algebra (GA) has become more and more popular in fields of science and engineering
due to its potential for compact algorithms. However, the execution of GA algorithms and the related need for high
computational power is still the limiting factor for these algorithms to be used in practice. Therefore, it would be
desirable to automatically detect parts that can be calculated in parallel by a software tool. In this paper, we present
Gaalop 2.0, a Geometric Algebra Algorithm Compiler, which takes as input the description of a GA algorithm,
symbolically optimizes the output multivectors and compiles the optimized code into a target language source file
such as C++, for instance. For each output multivector the code for the different coefficients is generated, which
is finally adjusted to contain only basic arithmetic operations instead. This allows the optimized output to be
compiled for parallel computing platforms like FPGAs, for instance.

Keywords: Geometric Algebra, Geometric Computing, Compiler, Optimization, FPGA, Parallel Computing.

1 INTRODUCTION

Geometric Algebra is a mathematical framework that
facilitates the development of algorithms in different
fields of engineering and research. Algorithms in GA
are geometrically intuitive and very compact compared
to conventional approaches. Examples for how Geo-
metric Algebra can be applied in engineering or com-
puter graphics are described in [4], [12], [7] or [15], for
instance. A major drawback is the increased runtime,
which is an implication of high dimensions in multi-
vectors of geometric algebras (2n for dimension n). In
order to make GA algorithms comparable to standard
implementations, it is necessary to find optimizations
that lead to a better runtime performance. Fortunately,
the components of a multivector can be calculated in
parallel. Implementing multivectors as a set of coef-
ficients with associated basis blades makes it possible
to find algebraic expressions for each coefficient sepa-
rately. Blades are the basic geometric entities in geo-
metric algebras. Multivectors consist of a linear combi-
nation of blades of different grades. Multivector coef-
ficients can actually be calculated simultaneously, e.g.
using parallel computing devices such as FPGAs. This

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

paper presents Gaalop (Geometric Algebra Algorithm
Optimizer), a compiler that calculates the very expres-
sions for multivector components.

Gaalop optimizes Geometric Algebra algorithms
written with the help of the CLUCalc software [13],
using symbolic simplification backed by the Maple [10]
Computer Algebra System (CAS), and compiles the
output to different target languages, currently C/C++,
CLUCalc, Verilog, DOT and LaTeX. The optimized
code has no more Geometric Algebra operations and
is ready to be run efficiently on various platforms,
particularly on parallel computing architectures. This
software is based on [8], a proof-of-concept imple-
mentation for high performance computing based on
Conformal Geometric Algebra with a preliminary
version of Gaalop.

This paper introduces Gaalop 2.0, a new version
which has been completely rewritten in Java in order to
extend the feature set of previous versions and to sup-
port multiple operating systems. Gaalop 2.0 incorpo-
rates multiple new features, primarily the support for
control flow instructions and code generation for paral-
lel computing platforms. We describe the optimization
and compilation process performed by Gaalop 2.0.

This document is organized as follows: Section 2
shows related work in the field of GA implementations,
Section 3 describes the input format based on CLUCalc.
Section 4 gives an overview of the intermediate repre-
sentation that is used between the compilation steps.

GraVisMa 2010 Full Papers

- 1 -

Section 5 shows the optimization process. Section 6
describes different code generators. Finally, Section
7 concludes this paper and gives an outlook to future
work.

2 RELATED WORK

There are a lot of pure hardware or pure software so-
lutions in order to optimize the performance of GA al-
gorithms. The first FPGA (Field Programmable Gate
Array) solution was described in [14], focusing only
on geometric products. In [6], the CliffoSor solution
was presented, implementing products with a restric-
tion to 4-dimensional Geometric Algebras. [11] is the
first solution without an integer restriction for coeffi-
cients. All of these pure hardware solutions are focus-
ing on the implementation of general Geometric Alge-
bra operations but do not use the high potential of sym-
bolic optimizations. Pure software approaches are es-
pecially based on expression templates libraries (espe-
cially boost::math::clifford) or the Gaigen approach.

Gaigen [5] is a Geometric Algebra implementation
generator that focuses on the generation of C++ code
for specified algebra definitions. Given a signature and
metric of a Geometric Algebra, Gaigen generates code
that can be embedded into C++ applications directly.
Generating code is a simple operation that does not re-
quire too much knowledge of Geometric Algebra fea-
tures. However, implementations do not contain opti-
mizations by default and thus suffer from performance
lacks that can only be eliminated by applying optimiza-
tions manually. This requires to identify special cases
in which multivectors can be reduced in size (called
specializations), for instance geometric entities such as
spheres which have only 1-dimensional blades (rather
than bivectors, trivectors, etc.). Therefore, detailed
knowledge is required from the user, since specializa-
tions cannot be deduced automatically. Gaalop does not
require the step of manual optimization because multi-
vectors are decomposed into their coefficients of basis
blades.

3 INPUT FORMAT

Gaalop 2.0 supports a subset of CLUScript, a script lan-
guage for the 3D visualization and scientific calculation
software CLUCalc/CLUViz [13].With CLUCalc it is
possible to develop algorithms visually, allowing rapid
prototyping. This enables the user to create Geometric
Algebra algorithms step by step, supported by visual
output. Previous versions of Gaalop supported only se-
quential algorithms without conditional branches, loop
statements or user-defined function calls. Table 1 com-
pares the supported and new features in Gaalop 1.0 and
2.0. Algorithms to be optimized by Gaalop have to use
Conformal Geometric Algebra only.

Version
CLUScript feature 1.0 2.0
algebra definition no yes
pre-defined algebra functions yes yes
macros no yes
null-space definition yes yes
inner / outer / geometric products yes yes
if-statements no yes
loops no yes
variable lists / scopes / references no no
point operators no no
drawing / plotting functionality no no
LATEX rendering no no

Table 1: Comparsion of CLUScript support in Gaalop 1.0 and 2.0.

Restrictions to the full set of CLUScript features
mainly concern visualization features, variable refer-
ences or scopes. Note that the ? operator is inter-
preted in a slightly different way than in CLUScript.
In Gaalop, this operator is used as a marker for lines
of the input code for which the optimized output code
should be generated. Therefore, this operator will be
referenced to as the optimization marker throughout
this document. Variables or lines that are not marked
accordingly will be processed by Gaalop to find sim-
plified expressions for multivector coefficients but not
explicitly generated as output code. This makes it pos-
sible to optimize only crucial parts of an algorithm in-
stead of each line which might not be important in the
output.

Example

DefVarsN3();
P = VecN3(px,py,pz); // view point
M = VecN3(mx,my,mz); // center point of earth
S = M-0.5*r*r*einf; // sphere representing earth
K = P+(P.S)*einf; // sphere around P
?C=S^K; // intersection circle

Listing 1: Sample input code showing a CLUScript file. Variables
px, py, pz and mx, my, mz are free variables that will be handled
symbolically.

Listing 1 shows a sample input script in Conformal
Geometric Algebra. To illustrate the compilation pro-
cess step by step, this code is taken as an example
throughout this document. The task is to calculate an
algebraic expression of the horizon on the earth viewed
from an arbitrary point P . The earth is represented by
a sphere S with center M and radius r (line 3). Line 4
defines a sphere K around P . The radius of this sphere
is defined by the inner product of P and S, which corre-
sponds to the squared distance between P and any point
on S that touches a tangent through P . Thus, K has ex-
actly the radius that matches the distance of the horizon

GraVisMa 2010 Full Papers

- 2 -

Figure 1: Screenshot of the CLUViz visualization window. Slid-
ers can be used to modify input parameters. The check box on the
bottom right allows to switch between original code and Gaalop opti-
mized code. Errors in the optimized code would immediately become
visible when switching modes.

to P . Finally, line 5 calculates the intersection circle C
modeling the horizon.

Figure 1 shows how the CLUViz visualization win-
dow looks like. The earth sphere S is drawn in dark
grey, the view point P in shown on the right-hand
side. The sphere K around P is indicated in light grey.
The intersection circle is finally indicated between both
spheres.

4 INTERMEDIATE REPRESENTA-
TION

Gaalop parses input files and transforms the input
into an intermediate representation, on which different
compilation steps operate. For the parser implementa-
tion, the ANTLR parser generator tool has been used.
Gaalop 2.0 uses two kinds of intermediate representa-
tions (IR), a control flow graph (CFG) and a data flow
graph (DFG) to represent the algorithmic structure of
the input program and related arithmetic operations
such as assignments or application of mathematic
functions, respectively. In fact, Gaalop builds a control
dataflow graph, representing arithmetic expressions in
terms of a DFG whose nodes themselves are referenced
in CFG nodes. Hence, the DFG is not a graph of its
own but rather implicitly contained in CFG nodes.
Previous versions of Gaalop used a very simple type
of control flow graph, which contained only sequential
nodes, since real control flow like branches or loops
was not supported.

4.1 Control Flow Graph
The control flow graph represents the overall structure
of the input program. It distinguishes sequential state-

ments such as assignments or procedure calls and con-
trol flow elements like if-statements or macros. As op-
posed to the data flow graph, the CFG does not repre-
sent details of arithmetic operations (e.g. additions, ge-
ometric products, etc.). Concrete types of CFG nodes
are outlined below.

Assignments represent a variable to which an arbitrary
expression is assigned. Both variable and expression
are represented by an appropriate DFG node.

Optimization markers encapsulate a variable for
which the optimized output code will be generated.

If-statements consist of a condition, a positive branch
and a negative branch. Conditions are modeled via
a DFG expression, branches as an (implicit) list
of other CFG nodes. This type of node is self-
contained, so nested statements are possible.

Loops contain the statements from the body, including
termination conditions which are usually related to
if-statements. Optionally, a number of iterations can
be given which is used to unroll the loop.

Macros are represented by a name and associated list
of statements. The name is further used to identify
usages of this macro in the input code. This can be
used to inline the use of macros in order to augment
the range of optimization by replacing the call of a
macro by its actual code.

Some CFG nodes contain references to arithmetic ex-
pressions which are related to the respective code in the
input program. These expressions are modeled by the
data flow graph.

Example

Figure 2 shows the control flow graph which corre-
sponds to the input file from Listing 1. For each as-
signment there is an according node in the CFG. The
optimization marker is represented by a dedicated node.

4.2 Data Flow Graph
The data flow graph represents the arithmetic parts of
the input code. Elements of an assignment, such as
variable and value, are modeled via DFG nodes. For
each mathematical operation supported by Gaalop there
exists a corresponding type of nodes, outlined below.
The common basis of DFG nodes is an expression type.
Concrete nodes can be placed on any location where an
expression is expected.

Unary operations model operations like negation or
dualization that take only one expression as argu-
ment.

GraVisMa 2010 Full Papers

- 3 -

Start

Assignment:
P

Assignment:
M

Assignment:
S

Assignment:
K

Assignment:
C

Output:
C

End

Figure 2: Control flow graph corresponding to the input file from
section 3. The algebra definition from the input code is handled sep-
arately. Start and end node are special marker nodes.

Binary operations model operations like addition,
subtraction or inner / outer / geometric products
which take two expressions as argument. Each
binary operation has a left and right operand.

Language elements consist of pre-defined function
calls (e.g. VecN3 to define a conformal point)
or mathematic functions like sin, cos or sqrt.
These functions take different numbers and types of
arguments, each of which is another expression.

Identifiers are the actual parameters of functions, op-
erations and relations. These can be variables, inte-
ger or float constants and basis vectors.

Other CLUCalc relevant language elements such as
null space definitions or algebra selection are not mod-
eled as dedicated DFG nodes. These are handled by
a separate type which will be referenced to as alge-
bra signature. This signature is directly referenced by
the control flow graph, since contained properties are
global to the input code and not related to single CFG
or DFG nodes.

Gaalop supports Conformal Geometric Algebra,
defined by the DefVarsN3 function in CLUScript.
This algebra has an associated signature and blade list,
which defines the elementary basis blades. Table 2
lists the 32 basis blades of the Conformal Geometric
Algebra in the canonical ordering. This table can also
be seen as a lookup table for the association between

Assignment:
S

-

M *

*

*

0.5 r

r

einf

Figure 3: Data flow graph corresponding to the assignment to vari-
able S in the input file from section 3.

multivector coefficient and the related blade, as it is
used by the code generators (Section 6).

Example

Figure 3 shows the data flow graph which corresponds
to the assignment to variable S in the input file from
Listing 1.

5 OPTIMIZATION
Gaalop 2.0 has been re-designed to have a strictly mod-
ular interface. In previous versions, different parts of
the program such as parser, optimizer and code genera-
tor have been hardwired and were neither exchangeable
or extensible. In Gaalop 2.0, these parts are modeled
as plugins which can easily be exchanged and extended
without modifying the main program. Especially the
intermediate representation has been separated to be ac-
cessible from all modules that read, modify or write this
structure.

The compilation process from input file to the opti-
mized output code consists of three major passes. Start-
ing with the input file, Gaalop parses this file to pro-
duce the intermediate representation (CFG / DFG), op-
timizes the input by symbolic manipulation and gener-
ates the output code depending on the selected target
language. These passes are explained below.

The optimizer is responsible for symbolic simpli-
fication and calculation of optimized multivector co-
efficients for expressions marked with the optimiza-
tion marker (?) in the input code. This compila-
tion pass is implemented using the OpenMaple inter-
face of the Maple Computer Algebra System (CAS)
[10] with the CLIFFORD library by Rafal Ablamow-
icz [1] for Geometric Algebra calculations. This allows

GraVisMa 2010 Full Papers

- 4 -

index blade grade
0 1 0
1 e1 1
2 e2 1
3 e3 1
4 e∞ 1
5 e0 1
6 e1 ∧ e2 2
7 e1 ∧ e3 2
8 e1 ∧ e∞ 2
9 e1 ∧ e0 2
10 e2 ∧ e3 2
11 e2 ∧ e∞ 2
12 e2 ∧ e0 2
13 e3 ∧ e∞ 2
14 e3 ∧ e0 2
15 e∞ ∧ e0 2
16 e1 ∧ e2 ∧ e3 3
17 e1 ∧ e2 ∧ e∞ 3
18 e1 ∧ e2 ∧ e0 3
19 e1 ∧ e3 ∧ e∞ 3
20 e1 ∧ e3 ∧ e0 3
21 e1 ∧ e∞ ∧ e0 3
22 e2 ∧ e3 ∧ e∞ 3
23 e2 ∧ e3 ∧ e0 3
24 e2 ∧ e∞ ∧ e0 3
25 e3 ∧ e∞ ∧ e0 3
26 e1 ∧ e2 ∧ e3 ∧ e∞ 4
27 e1 ∧ e2 ∧ e3 ∧ e0 4
28 e1 ∧ e2 ∧ e∞ ∧ e0 4
29 e1 ∧ e3 ∧ e∞ ∧ e0 4
30 e2 ∧ e3 ∧ e∞ ∧ e0 4
31 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Table 2: Blades of the 5D conformal geometric algebra and their
ordering.

to use Maple for symbolic calculations from Java di-
rectly. The Maple optimizer traverses the input control
dataflow graph as it has been set up by the parser in the
previous compilation pass (Figures 2, 3). On each opti-
mization step, parts of the control or data flow graph are
removed or replaced by expressions representing sim-
plified calculations. After the optimization pass, the
CFG and DFG contain only optimized code. Assign-
ments which have not been marked for optimization are
not contained in the graph anymore. Gaalop optimizes
the input trying to achieve two objectives:

• Symbolic simplification. Each assignment of the in-
put script is translated to Maple syntax and sent to
the Maple engine. Maple keeps track of commands
executed by the engine and symbolically simplifies
assignments where appropriate. The original assign-
ments from the input CFG are removed and replaced
in favor of new assignments, which calculate the in-
dividual multivector coefficients using scalar arith-
metic operations only.

• Preparation for parallel computing platforms. Mul-
tivector components, i.e. coefficients of a multivec-

tor’s linear combination of basis blades, can be cal-
culated in parallel. This holds potential for paral-
lel execution of instructions calculating the non-zero
coefficients. For an overview of the basis blades of
the Conformal Geometric Algebra, refer to Table 2.

To reach these goals, CFG nodes are translated to
Maple syntax and sent to the Maple engine. The con-
crete representation is a string value describing the
command to be executed by Maple. Therefore, control
flow nodes are processed in the following way.

Assignments are translated according to the syntax
rules of the CLIFFORDLIB package for Maple, e.g.
using the &c operator for the geometric product.

Optimization markers trigger the calculation of sim-
plified multivector coefficients for the selected vari-
able. Thus, a self-defined Maple procedure decom-
poses the multivector to its 2n components. For each
component, the relevant part of the linear combina-
tion of basis blades is selected. Finally, the related
coefficient is evaluated and symbolically simplified.
The resulting multivector is put into an array of mul-
tivector components which is used to return the ex-
pression into the control flow graph. Before return-
ing control to Gaalop, another procedure tries to re-
place variable references that have previously been
optimized, so results that have already been calcu-
lated can be reused in further calculations. After-
wards, Gaalop removes assignments to the old mul-
tivector and inserts new assignments for each non-
zero multivector component. Each of these assign-
ments represents the simplified expression that cal-
culates the coefficient of the respective basis blade
(Table 2).

If-statements are processed recursively by traversing
the instructions of their positive and negative
branches. In both branches, each line is optimized
automatically in order to eliminate Geometric
Algebra operations. This is necessary for the use of
backends which do not support Geometric Algebra.

Macros are inlined in a separate pass. For each macro
call, the corresponding code is copied and the call is
replaced by the actual return value.

Loops can be processed in two ways: either being un-
rolled by a fixed number of iterations or similar to
if-statements to eliminate Geometric Algebra oper-
ations. In each case, further information is required
which can be given in the input file using dedicated
#pragma comments. If the number of iterations for
the loop is known, the loop can be unrolled by copy-
ing the body n times. In the normal case where only
Geometric Algebra operations are removed, control

GraVisMa 2010 Full Papers

- 5 -

variables have to be given in order to correctly pro-
cess statements in the body. Due to the generalized
CLUCalc syntax for loops, which does not spec-
ify the concrete type of loop, Gaalop would other-
wise remove assignments to control variables like
counter variables, breaking termination conditions
in the output.

Listing 2 shows a simple example how a loop can be
defined in the input file to be unrolled in Gaalop. The
loop body is copied 10 times before the optimizer pro-
cesses assignments, making the original loop disappear
in the output. In the best case, the entire loop can be
reduced to a single statement.

p = VecN3(x,y,z);
i = 0;
//#pragma unroll 10
loop {

if (i > 9) {
break;

}
// do something

}
?p;

Listing 2: Simple code fragment showing the use of unrolling loops.

After this transformation, assignment nodes are re-
placed by the simplified expressions that have been cal-
culated by Maple and inserted into the CFG. Hence, the
CFG has been modified to contain the optimized code
instead.

Example
The modified control dataflow graph corresponding to
the example from Listing 1 is too large to be illustrated
here. Nevertheless, it is easy to imagine the general
structure of the graph after the optimization pass. Re-
member that only one variable has been marked by ? to
be printed in the optimized output (the intersection cir-
cle C). Hence, the assignments to other variables have
been removed without replacement (their contribution
to the result is implicitly contained in the value of C).
As the assignment to C has been replaced by the assign-
ments to its multivector components, there are 10 new
nodes now, representing the assignments to the bivector
parts of the multivector (indices 6-15, see Table 2). At
the end of the new graph there is an output (optimiza-
tion) node representing the overall multivector C.

6 CODE GENERATOR
After the optimization pass, the intermediate represen-
tation contains the simplified expressions calculating
the result multivectors that were marked in the input
file. The IR is now ready to be processed by code gener-
ators, also called backends of the compiler. Each back-
end is implemented as a plugin to Gaalop which can be
selected before the compilation process starts.

Code generators traverse the IR to translate the op-
timized code to the syntax rules of the target platform.
For backends that do not support parallel computing,
no modifications to the IR have to be performed. This
is the case for most backends implemented in Gaalop
2.0 such as CLUCalc, C++, DOT or LaTeX. The more
advanced Verilog backend performs additional manip-
ulations to the IR in order to prepare the output for par-
allel architectures such as an FPGA.

A common property of all backends is that no Ge-
ometric Algebra module has to be included. Since the
multivector descriptions have been optimized to expres-
sions containing only conventional scalar arithmetic op-
erators, no time-consuming operations, such as the ge-
ometric product, have to be executed. Generated output
always operates on lists or arrays of coefficients, which
are directly related to the blade indices in the canon-
ical ordering of Table 2, rather than on the geometric
entities (blades) themselves.

CLUCalc

Even if CLUCalc is the input language, it is also sen-
sible to offer it as backend, too. In this manner, the
correctness of the Gaalop compiler can be verified by
comparing the original and optimized code visually in
the CLUViz software (cf. Figure 1).

DefVarsN3();
C_opt = List(32);
C_opt(7) = -(my * px) + mx * py; // e1^e2
C_opt(8) = -(mz * px) + mx * pz; // e1^e3
C_opt(9) = (((mx * pz * mz + mx * py * my) - 0.5 *

mx^^3.0 + 0.5 * mx^^2.0 * px) - 0.5 * mx * my
^^2.0 - 0.5 * mx * mz^^2.0 + 0.5 * mx * r^^2.0)
- 0.5 * px * my^^2.0 - 0.5 * px * mz^^2.0 +
0.5 * px * r^^2.0; // e1^einf

C_opt(10) = -(1.0 * px) + mx; // e1^e0
C_opt(11) = -(mz * py) + my * pz; // e2^e3
C_opt(12) = (((my * px * mx + my * pz * mz) - 0.5 *

my^^3.0 - 0.5 * my * mx^^2.0 + 0.5 * my^^2.0 *
py) - 0.5 * my * mz^^2.0 + 0.5 * my * r^^2.0) -
0.5 * py * mz^^2.0 - 0.5 * py * mx^^2.0 + 0.5

* py * r^^2.0; // e2^einf
C_opt(13) = -(1.0 * py) + my; // e2^e0
C_opt(14) = (((mz * px * mx + mz * py * my) - 0.5 *

mz^^3.0 - 0.5 * mz * mx^^2.0 + 0.5 * mz^^2.0 *
pz) - 0.5 * mz * my^^2.0 + 0.5 * mz * r^^2.0) -
0.5 * pz * my^^2.0 - 0.5 * pz * mx^^2.0 + 0.5

* pz * r^^2.0; // e3^einf
C_opt(15) = -(1.0 * pz) + mz; // e3^e0
C_opt(16) = ((-(1.0 * px * mx) - 1.0 * py * my + my

^^2.0 + mz^^2.0) - 1.0 * r^^2.0 + mx^^2.0) -
1.0 * pz * mz; // einf^e0

?C = C_opt(7) * e1^e2 + C_opt(8) * e1^e3 + C_opt(9)

* e1^einf + C_opt(10) * e1^e0 + C_opt(11) * e2^
e3 + C_opt(12) * e2^einf + C_opt(13) * e2^e0 +
C_opt(14) * e3^einf + C_opt(15) * e3^e0 + C_opt
(16) * einf^e0;

Listing 3: Optimized CLUCalc output for the input file from Listing
1 in section 1. Multivector components and associated blades are
indexed according to Table 2 incremented by 1, since counting of list
elements in CLUCalc starts with 1.

As a concrete example, listing 3 shows the resulting
CLUCalc output code for the input file from section 1.

GraVisMa 2010 Full Papers

- 6 -

C is defined as a list of 32 entries with coefficients 7 to
16 set to the optimized expressions as calculated from
the optimizer, while other coefficients are zero. The
associated blade indices correspond directly to the ones
defined in Table 2, incremented by 1 to match the 1-
based counting of list elements in CLUCalc. In the last
line, C is reassembled using the coefficients and their
associated basis blades.

C/C++

The C/C++ backend optionally wraps the generated
code in a calculate method that takes the unknown
input variables and a reference to the output multivec-
tor as parameters. Multivectors are handled as float ar-
rays whose indices correspond to the ones from Table 2.
Code generated from this backend can be used in an ex-
isting C++ program. Passing the correct parameters to
the calculate function, the result can be calculated with-
out knowledge of GA operations.

Listing 4 shows the resulting C/C++ output code for
the input file from section 1. C is defined as an array of
float with 32 entries.

void calculate(float mx, float my, float mz, float
px, float py, float pz, float r, float C[32]) {

C[6] = mx * py - my * px; // e1^e2
C[7] = -(mz * px) + mx * pz; // e1^e3
C[8] = mx * py * my + mx * pz * mz - 0.5f * pow(

mx,3.0f) + 0.5f * mx * mx * px - 0.5f * mx *
my * my - 0.5f * mx * mz * mz + 0.5f * mx *
r * r - 0.5f * px * my * my - 0.5f * px *

mz * mz + 0.5f * px * r * r; // e1^einf
C[9] = -(1.0f * px) + mx; // e1^e0
C[10] = -(mz * py) + my * pz; // e2^e3
C[11] = my * px * mx + my * pz * mz - 0.5f * pow(

my,3.0f) + 0.5f * my * my * py - 0.5f * my *
mx * mx - 0.5f * my * mz * mz + 0.5f * my *
r * r - 0.5f * py * mz * mz - 0.5f * py *

mx * mx + 0.5f * py * r * r; // e2^einf
C[12] = -(1.0f * py) + my; // e2^e0
C[13] = mz * py * my + mz * px * mx - 0.5f * pow(

mz,3.0f) + 0.5f * mz * mz * pz - 0.5f * mz *
mx * mx - 0.5f * mz * my * my + 0.5f * mz *
r * r - 0.5f * pz * my * my - 0.5f * pz *

mx * mx + 0.5f * pz * r * r; // e3^einf
C[14] = -(1.0f * pz) + mz; // e3^e0
C[15] = -(1.0f * px * mx) - 1.0f * py * my - 1.0f

* pz * mz + mz * mz - 1.0f * r * r + mx *
mx + my * my; // einf^e0

}

Listing 4: Optimized C/C++ output for the input file from Listing
1 in section 1. Multivector components and associated blades are
numbered according to Table 2.

DOT

The DOT backend generates a .dot file for visualiza-
tion with the Graphviz Graph Visualization Software
[2]. This is helpful to inspect the intermediate represen-
tation as it has been modified by the optimizer. For ex-
ample, Figures 2 and 3 show parts of the input file’s IR
which was generated by the DOT code generator with
the Maple optimization disabled.

LaTeX

For scientific reports about algorithms optimized with
Gaalop, it has been necessary to manually transform the
output code to a human-readable text. The LaTeX back-
end automates this step by generating a description of
the output code in form of math formulae that can be
embedded in a .tex document. The equations from Fig-
ure 4 have been generated by Gaalop 2.0 according to
the example from Listing 1.

C6 = mx ∗ py −my ∗ px
C7 = −mz ∗ px+mx ∗ pz

C8 = −
1

2
mx ∗mz2 −

1

2
mx ∗my2 +

1

2
mx ∗ r2

+
1

2
mx2 ∗ px−

1

2
px ∗my2 −

1

2
px ∗mz2

+
1

2
px ∗ r2 −

1

2
mx3

+mx ∗ py ∗my +mx ∗ pz ∗mz

C9 = −1 ∗ px+mx

C10 = −mz ∗ py +my ∗ pz

C11 =
1

2
my2 ∗ py −

1

2
my ∗mz2 −

1

2
my ∗mx2

+
1

2
my ∗ r2 −

1

2
py ∗mz2 −

1

2
py ∗mx2

+
1

2
py ∗ r2 −

1

2
my3

+my ∗ pz ∗mz +my ∗ px ∗mx

C12 = −1 ∗ py +my

C13 =
1

2
mz2 ∗ pz −

1

2
mz ∗mx2 −

1

2
mz ∗my2

+
1

2
mz ∗ r2 −

1

2
pz ∗my2 −

1

2
pz ∗mx2

+
1

2
pz ∗ r2 −

1

2
mz3

+mz ∗ py ∗my +mz ∗ px ∗mx

C14 = −1 ∗ pz +mz

C15 = −1 ∗ py ∗my − 1 ∗ px ∗mx− 1 ∗ pz ∗mz

+mz2 − 1 ∗ r2 +mx2 +my2

Figure 4: LaTeX representation of the optimized output for the input
file from Listing 1 in section 1. The actual LaTeX code is wrapped
into an align environment.

Verilog

The Verilog Hardware Description Language (HDL) is
used to describe hardware circuits. The Verilog back-
end produces synthesizeable Verilog HDL code, i.e. it
can be used for the production of an application specific
circuit (ASIC) or it can be mapped on a reconfigurable
unit, like a field programmable gate array (FPGA). Sim-
ilar to the C/C++ backend an independent module is
generated, which does not rely on a specific architec-
ture or infrastructure.

GraVisMa 2010 Full Papers

- 7 -

As the generated hardware is fully spatial parallel and
pipelined, it consumes in each cycle a date and returns
a computation result. The latency of the computation
depends on the input program and the involved opera-
tions.

To generate the hardware, the backend transforms the
control flow graph into a pure data flow graph. As more
complex control flow like loops is currently not yet sup-
ported in this backend, this is always possible. The
nodes of the newly generated data flow graph consist
only of operators which can be mapped to Verilog via a
special library.

Before the final mapping to the operations is done,
some optimization is applied to reduce the required
silicon area: Constant Propagation, Constant Folding,
Common Subexpression Elimination, and in case the
user selected not to implement the computation as float-
ing point but as fixed point a Monte-Carlo-Simulation
for word length optimization.

Optimization continues while mapping hardware.
Multiplications and division by a power of two can
be replaced in hardware with a new wiring, and each
operator is instantiated with the right size to minimize
area requirements.

7 CONCLUSION & FUTURE WORK
We presented Gaalop 2.0, an advanced version of the
Gaalop compiler. Written in Java, Gaalop 2.0 can be
used on any platform where Maple is installed. We have
introduced CLUScript as the input language for algo-
rithms to be optimized with Gaalop, giving an overview
of supported language features. After introducing the
intermediate representation for the internal handling of
the input code, we focused on the optimization process,
giving details about the input parser, Maple simplifier
and different code generators. We showed how Gaalop
2.0 transforms the input code to an optimized represen-
tation that goes without explicit Geometric Algebra op-
erations. Exploiting the fact that multivector compo-
nents can be calculated simultaneously, we have imple-
mented a Verilog code generator which produces code
that compiles the input algorithm to an FPGA hardware
description.

We plan to extend the set of code generators by back-
ends for general-purpose computing platforms. Differ-
ent standards for multicore architectures like OpenMP
(Open Multi-Processing) [3] or OpenCL (Open Com-
puting Language) [9] offer the opportunity to make
use of the huge processing power of modern comput-
ers. This is where two worlds come together: High-
dimensional Geometric Algebras offering an elegant
and intuitive way of describing algorithms, requiring
considerable computing performance, and multicore ar-
chitectures taking advantage of the increasing paral-
lelism in integrated circuits as compensation of lack-
ing performance of GA algorithms. The combination

of these approaches advances to the vision of a “Geo-
metric Algebra Computer” that accelerates standard im-
plementations while keeping algorithms compact and
intuitive.

REFERENCES
[1] Rafal Ablamowicz. Clifford algebra computations with Maple.

In W. E. Baylis, editor, Clifford (Geometric) Algebras, pages
463–501. Birkhäuser, Boston, 1996.

[2] AT&T and Bell-Labs. Graphviz - Graph Visualization Soft-
ware. http://www.graphviz.org/.

[3] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using
OpenMP : portable shared memory parallel programming. The
MIT Press, 2008.

[4] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Al-
gebra for Computer Science, An Object-Oriented Approach to
Geometry. Morgan Kaufman, 2007.

[5] Daniel Fontijne. Gaigen 2: A Geometric Algebra Implementa-
tion Generator. In GPCE’06, http://staff.science.uva.nl/ fonti-
jne/gaigen2.html, 2006. ACM.

[6] Antonio Gentile, Salvatore Segreto, Filippo Sorbello, Giorgio
Vassallo, Salvatore Vitabile, and Vincenzo Vullo. CliffoSor, an
Innovative FPGA-based Architecture for Geometric Algebra. In
ERSA 2005, pages 211–217, 2005.

[7] Dietmar Hildenbrand, Daniel Fontijne, Christian Perwass, and
Leo Dorst. Tutorial geometric algebra and its application to
computer graphics. In Eurographics conference Grenoble,
2004.

[8] Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch. Geo-
metric Algebra Computing for Engineering and Computer Sci-
ence, volume 1, chapter Gaalop - High Performance Paral-
lel Computing based on Conformal Geometric Algebra, pages
350–358. Springer, 2010.

[9] Khronos-Group. The OpenCL home page. Available at
http://www.khronos.org/opencl/, 2009.

[10] Maplesoft. OpenMaple - an API into Maple.
http://www.maplesoft.com/applications/view.aspx?SID=4383.

[11] Biswajit Mishra and Peter R. Wilson. VLSI implementation of
a geometric algebra parallel processing core. Technical report,
Electronic Systems Design Group, University of Southampton,
UK, 2006.

[12] Christian Perwass. Geometric Algebra with Applications in En-
gineering. Springer, 2009.

[13] Christian Perwass. CLUCalc / CLUViz Interactive Visualiza-
tion. http://www.clucalc.info, 2010.

[14] Christian Perwass, Christian Gebken, and Gerald Sommer. Im-
plementation of a Clifford algebra co-processor design on a
field programmable gate array. In Rafal Ablamowicz, editor,
CLIFFORD ALGEBRAS: Application to Mathematics, Physics,
and Engineering, Progress in Mathematical Physics, pages
561–575. 6th Int. Conf. on Clifford Algebras and Applications,
Cookeville, TN, Birkhäuser, Boston, 2003.

[15] John A. Vince. Geometric Algebra for Computer Graphics.
Springer, 2008.

GraVisMa 2010 Full Papers

- 8 -

Efficient Multi-scale Curvature and Crease Estimation
D. Panozzo

DISI - Università di Genova
panozzo@disi.unige.it

E. Puppo
DISI - Università di Genova

puppo@disi.unige.it

L. Rocca
DISI - Università di Genova

rocca@disi.unige.it

Figure 1: Principal curvatures and creases computed at scales 2e and 10e, with e the average length of mesh edges. Color
map combines principal curvatures with a non-linear mapping designed to enhance small variations: red convex; yellow flat-
convex; green saddle; cyan flat-concave; blue concave; white flat. At the large scale, the two ridges along the nose merge into
one ridge that extends downwards to the chin; transverse creases along lips and eyelids disappear; and a new crease along the
convex ridge through cheekbones-cheeks-chin appears.

Abstract

We consider the problem of multi-scale estimation of princi-
pal curvatures and crease lines on a surface represented with
a mesh of triangles and affected by noise. We show that cur-
vature at different scales can be efficiently and accurately
estimated by modifying a fitting technique and applying it
to neighborhoods of various size, depending on scale: we
discard bending portions of surfaces during fitting, and we
apply Monte-Carlo sampling to speed up computation. Next
we propose a new technique for extracting crease lines and
we show how such lines can summarize shape features at the
various scales. This is a first step towards building a scale-
space of surface features.

Keywords: geometric mesh, curvature estimation, crease
estimation, multi-scale surface analysis

1 Introduction

Several problems in computer graphics, geometric model-
ing and engineering involve the computation of differential
properties of surfaces that are smooth in principle, while
most often they are approximated with polygonal meshes.
This subject has been treated by many authors in different
contexts during the last twenty years, and several algorithms
have been proposed for computing differential properties on
geometric meshes or clouds of points. Many real datasets,
e.g., those generated from range scanning, are affected by
noise. Processing noisy meshes to estimate the differential
properties of surfaces they represent can be a very challeng-
ing task, since the effect of noise is highly amplified by dif-
ferentiation. This fact drastically restricts the range of appli-

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

cability of most methods for differential surface analysis.

The problem of noise can be addressed in a more general
way by multi-scale analysis, which has been successfully
and extensively applied in image processing and computer
vision [Lindberg 2009; Koenderink 1994]. Scale is a param-
eter to be used while analyzing the surface, which implicitly
introduces a smoothing effect: multi-scale differential anal-
ysis of a surface is in fact analogous to differential analysis
of different versions of the surface smoothed with filters at
various scales.

In this framework, both noise and true shape features that
are too small for the purpose of a given application can be
filtered out. The finest relevant scale for a given representa-
tion cannot be finer than the scale σn of noise. Therefore,
if the surface is analyzed at a scale smaller than σn, esti-
mates shall be unreliable; if it is analyzed at a scale σ > σn,
estimates should be robust to noise, while also disregarding
surface features at scales smaller than σ.

Multi-scale surface analysis may eventually lead to the con-
struction of a scale-space of surfaces [Pauly et al. 2006].
Careful scale-space analysis may provide scale-persistent
features to be used for diverse purposes such as surface sim-
plification and remeshing, surface description and retrieval,
non-photorealistic rendering, etc.

In [Yang et al. 2006; Pottmann et al. 2007], Pottmann et al.
proposed a method for evaluating the curvature of a mesh
at different scales without prior smoothing the mesh, but
simply considering point neighborhoods of various sizes to
perform integral computations. In line with their work, we
present here a different approach to multi-scale estimation
of curvatures, and we extend it to multi-scale extraction of
creases (i.e., third order differential properties).

The contribution of our work is threefold. First, we show
how a fitting technique for curvature estimation can be made
efficient, accurate and robust to noise, and we show its appli-
cation to multi-scale surface analysis. Second, we propose a
new discrete and efficient method for estimating multi-scale
creases, which exploits the results obtained during curva-
ture estimation. Finally, we show the behavior of creases

GraVisMa 2010 Full Papers

- 9 -

extracted at the various scales, thus paving the way for the
construction of a scale-space of surface features. Extensive
experiments are presented to test our methods on real data
and to compare them with existing methods.

The rest of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we give the necessary
background. In Section 4 we describe the method for curva-
ture estimation, while in Section 5 we describe the method
for crease extraction. In Section 6 we present experimen-
tal results. Finally, in Section 7 we make some concluding
remarks.

2 Related work

The literature on computing curvatures and other differential
quantities on surfaces and meshes is huge and many differ-
ent methods have been developed in engineering, geometric
modeling and computer graphics. Some recent accounts on
the subject can be found, e.g., in [Costa Batagelo and Wu
2007; Gatzke and Grimm 2006; Grinspun et al. 2006]. In
the following we briefly discuss just issues directly related to
multi-scale estimation of differential quantities on surfaces
potentially affected by noise.

Methods for estimating surface curvature can be broadly di-
vided in two categories: fitting methods that fit analytic sur-
faces to data and derive differential properties analytically;
and discrete methods that are all based on concepts of dis-
crete differential geometry [Desbrun et al. 2005].

Discrete methods are usually fast and accurate in capturing
the local surface properties, but most of them are very sen-
sitive to noise. Moreover, most such methods are based on
very local information (e.g., from the 1-ring of each vertex)
and they can be hardly extended to a multi-scale approach.
Notable exceptions are: the Integral invariant method pro-
posed by Pottmann et al. [Pottmann et al. 2007; Yang
et al. 2006]; the Normal cycles method proposed by Cohen-
Steiner and Morvan [Cohen-Steiner and Morvan 2003]; and
the method based on adaptive curve sampling proposed by
Agam and Tang [Agam and Tang 2005]. The former method
has been designed specifically for multi-scale computation,
while the latter two can be easily extended to the purpose.

Fitting methods are overall more robust to noise and they
naturally extend to multi-scale computation by considering
larger neighborhoods for fitting. On the other hand, they
are usually slower than discrete methods, and they introduce
smoothing effects even at small scales. Moreover, they can
become very inaccurate if fitting assumptions (e.g., on the
projectability of the surface to a reference plane) are vio-
lated.

Different fitting methods are characterized by the type and
degree of functions that they fit and by the information they
use. Many methods assume that the surface normal is ei-
ther available, or reliably estimated during pre-processing,
and they fit a polynomial defined with respect to the tangent
plane at the surface in a given point. One notable exam-
ple is the method proposed by Goldfeather and Interrante
[Goldfeather and Interrante 2004], which use cubic polyno-
mials to fit both the position and the surface normal of data
from the 1-ring of each vertex. As reported in [Gatzke and
Grimm 2006], this method is very accurate if the surface
normal is computed analitically, but it is very sensitive to
error in estimating the normals. Cazals and Pouget [Cazals
and Pouget 2005a] show that in fact accuracy of the esti-
mated normal may have a high influence on the computa-

tion of higher order differential quantities. Thus, they pro-
pose the Osculating Jets method [Cazals and Pouget 2005a;
Cazals and Pouget 2008], which fits polynomials of arbi-
trary degree, defined on a reference plane that goes through
the given point, but is not necessarily tangent to the surface.
They show the convergence of the method for analytic sur-
faces. Our method for estimating the normal direction and
curvature tensor is a variation of the Osculating Jets.

Douros and Buxton [Douros and Buxton 2002] fit implicit
functions locally to data and derive differential properties
analytically from them. This approach could be extended to
a multi-scale by using neighborhoods of various size, but it
is computationally more involved - thus less efficient - than
the Osculating Jets. Ohtake et al. [Ohtake et al. 2004] fit an
implicit function to the whole dataset and derive differential
properties analytically from it. Since the implicit function is
generated from a sequence of approximations of the origi-
nal data at different scales, this method can also be extended
to a multi-scale one. On the other hand, generating the im-
plicit function is equivalent to resolving a problem of surface
reconstruction from a point cloud, which is far more compli-
cated than the problem of estimating differential quantities.

Less works have been proposed to evaluate higher order dif-
ferential quantities, such as creases. Ohtake et al. [Ohtake
et al. 2004] evaluate extremalities (i.e., curvature derivatives,
which are third order differential quantities - see Section 3)
analytically from the implicit function they fit to data, then
they extract the intersections of ridges with mesh edges by
linear interpolation. They also propose a simple technique
for filtering spurious ridges on the basis of the integral of
curvature along each ridge. We adopt their filter in our
work. Yoshizawa et al. [Yoshizawa et al. 2005] use the
cubic fit technique of [Goldfeather and Interrante 2004] to
estimate extremalities analytically, then they use variations
of the method in [Ohtake et al. 2004] to extract and filter
ridges. Hildebrandt et al. [Hildebrandt et al. 2005] use
discrete and very local methods to evaluate all differential
quantities. Once curvatures and curvature directions have
been computed, they estimate extremalities on each triangle
of the mesh by linear interpolation, and they extend such
extremalities to each vertex by averaging values obtained at
its incident triangles. Laplacian smoothing is performed on
the resulting piecewise-linear scalar field, and creases are
extracted triangle by triangle by linear interpolation.

Cazals and Pouget [Cazals and Pouget 2008] compute third
and fourth order differential quantities necessary to compute
extremalities analytically from a polynomial of order four
(at least) fitted to data via the Osculating Jets. Once such
coefficients have been computed, ridges are extracted with
an algorithm described in [Cazals and Pouget 2005b], which
also detects umbilical points and correctly manages ridges
in their vicinity.

We are not aware of any work on extracting creases and
higher order differential quantities at multiple scales.

3 Background

We summarize basic notions of differential geometry, which
can be found in detail in any textbook, e.g., [Porteous 2001].

Let S be a smooth surface and let NS : S → R3 be its
normal field (aka Gauss map), i.e., the field associating to
each point P ∈ S its surface normal NS(P). The shape

GraVisMa 2010 Full Papers

- 10 -

operator is the negative differential of the Gauss map, i.e.:

S = −dNS

that associates to each point P ∈ S a linear operator de-
scribing how the normal vector changes along any direction
on the tangent plane of S at P . The shape operator is a
tensor which can be described at each point P by a 2 × 2
matrix SP , referred to a local orthonormal frame (u,v,n)
having its origin at P and n = NS(P). Vectors u and v
are a basis of the tangent space T (P) at P . The eigenvalues
k1 and k2 and eigenvectors t1 and t2 of matrix SP (in the
local frame) define the values and directions of the principal
curvatures of S at P , respectively. The principal directions
of curvature are mutually orthogonal and lie on the tangent
plane T (P). Note that principal curvatures define line fields,
rather than vector fields, on the surfaces of S, therefore the
orientations of t1 and t2 are defined arbitrarily. Hereafter
we will assume k1 ≥ k2 and we will select an orientation
for curvature directions such that (t1, t2,n) form a right-
handed coordinate system, called the Monge frame.

Given P ∈ S, the surface in a neighborhood of P can be
expressed in parametric form as X(u, v) with (u, v) ∈ Ω ⊆
R2. In this case, the shape operator at P can be described in
terms of the first and second fundamental forms of X.

The first fundamental form is the inner product on the tan-
gent space T (P): let P = X(u, v) and let v and w be two
vectors in T (P),

I(v,w) = vT

[
E F
F G

]
w,

with E =< Xu,Xu >, F =< Xu,Xv > and G =<
Xv,Xv >, where Xu and Xv denote the first derivatives of
the parametric function X computed at (u, v) and < ·, · >
denotes the inner product in R3. The first derivatives of X
at (u, v) span the tangent space T (P), so the surface normal
at P can be defined in terms of their cross product:

n = NS(P) =
Xu(u, v)×Xv(u, v)

|Xu(u, v)×Xv(u, v)| .

The second fundamental form is a tensor defined by project-
ing the second partial derivatives of X on the normal direc-
tion n, which is represented by the matrix:

II =

[
L M
M N

]
where L =< Xuu,n >, M =< Xuv,n >, N =<
Xvv,n > and Xuu, Xuv, and Xvv denote the second par-
tial derivatives of X computed at (u, v).

The partial derivatives of n with respect to u and v are de-
fined in terms of the coefficients of the first and second fun-
damental forms by the Weingarten equations

nu =
FM −GL
EG− F 2

Xu +
FL− EM
EG− F 2

Xv

nu =
FN −GM
EG− F 2

Xu +
FM − EN
EG− F 2

Xv

from which we get the following expression of the shape
operator at P :

SP = (EG− F 2)−1

(
LG−MF ME − LF
ME − LF NE −MF

)
.

On a sufficiently small neighborhood of P , the surface can
be expressed in terms of an explicit function defined on a
frame (u,v,w) with origin at P and w axis not parallel to
the tangent plane T (P). Note that w needs not be aligned
with the surface normal n. In this case, the parametric func-
tion X has the form

X(u, v) = (u, v, f(u, v)),

where f(u, v) is a bivariate scalar function. The coeffi-
cients of the first and the second fundamental form, hence
the shape operator, are easily derived from the first and sec-
ond partial derivatives of f .

A point P is said to be regular if the two principal curva-
tures at P are different. Each principal curvature forms a
line field that is defined at all regular points and rules the
surface. The points where the two principal curvatures are
equal correspond to singularities of the curvature line fields
and they are called umbilical points. Principal directions are
undefined at umbilical points.

Consider the principal curvatures k1 and k2 as scalar fields
defined on S. Then, the gradient ∇ki of curvature ki is a
vector field on the tangent bundle of S. The extremality ei
at a regular point P is defined as the inner product between
the gradient of curvature ki and its related direction, i.e.,

ei =< ∇ki, ti >=
∂ki
∂ti

(1)

where all quantities are evaluated at P . Note that the sign of
ei is not well defined, since it depends on an arbitrary ori-
entation of ti. Creases are defined as those regular points
where extremalities vanish, with the following additional
constraints:

e1 = 0 ∧ ∂e1
∂t1

< 0 ∧ k1 > |k2| (2)

e2 = 0 ∧ ∂e2
∂t2

> 0 ∧ k2 > −|k1|. (3)

Creases defined by e1 are also called ridges, while creases
defined by e2 are also called valleys.

4 Curvature estimation

We take in input a mesh of triangles M and we evaluate the
shape operator, hence the principal curvatures and curvature
directions, at each vertex P of M by using a surface fitting
method, which is a variation of the Osculating Jets proposed
in [Cazals and Pouget 2005a; Cazals and Pouget 2008].

The original method of [Cazals and Pouget 2005a] can be
briefly summarized as follows:

1. gather the vertices of M in a neighborhood of P (usu-
ally just a few rings around P , depending on the se-
lected degree of the polynomial to be fitted);

2. set a local frame (u,v,w) - hereafter called the fitting
frame - centered at P with its w axis not parallel to
the tangent plane at P (an early implementation used a
coordinate axis, while a later implementation selects a
better fitting frame by performing principal component
analysis (PCA) of the neighborhood);

3. express gathered data in the local frame and fit a poly-
nomial f(u, v) of given degree m, by resolving a least
square problem (usually with Singular Value Decom-
position);

GraVisMa 2010 Full Papers

- 11 -

4. evaluate the shape operator, hence the principal cur-
vatures and directions, at (0, 0, f(0, 0)) in the local
frame and set those values to estimate the curvatures
at P .

In our approach, we wish to estimate the local shape at vari-
ous scales by fitting a polynomial on a more or less extended
neighborhood of P . Similarly to [Yang et al. 2006], we use
the radius r of a neighborhood as a scale parameter. A fun-
damental assumption of the Osculating Jets is that the input
surface can be expressed in explicit form in the neighbor-
hood B of a point P . If this assumption is violated, then
the method may become highly inaccurate. This hardly hap-
pens in small rings, but it is likely to occur, even with slightly
large neighborhoods, in the proximity of regions with a high
curvature. Since we wish to evaluate the curvature at quite
large scales, i.e., in the order of a few tenths of the diameter
of the bounding box of an object, we cannot be careless in
gathering data from a neighborhood. Thus, given a vertex P
and a scale parameter r, we proceed as follows:

• We perform a breadth-first traversal of the mesh, start-
ing at P , until we get vertexes that lie in the ball of
radius r centered at P , and we gather all such vertices
in a set VP ;

• Next we set the w axis of the fitting frame to be equal
to the average 1

|VP |
∑

i ni, where summation is on all
elements of VP and ni is a pseudo-normal of the sur-
face estimated at vi with a standard method (e.g., a
weighted average of surface normals of triangles in its
1-ring). Pseudo-normals are estimated once and for all
during pre-processing.

• For all i, we compute the scalar product < ni,w >
and we discard from VP each vertex vi giving a neg-
ative value (i.e., vertices corresponding to a flipping
portion of surface).

Note that pseudo-normals ni are not used to set the fitting
frame at their respective vertexes. They are just used to
either accept or discard vertexes in the neighborhood B.
Now we are left with a relatively large set of vertexes to be
plugged into a least square problem. We improve efficiency
and scalability by acting on the degree of the polynomial and
on the size of the data set.

Since we are wish to extract creases, a logical choice would
be to fit polynomials of degree at least three (for instance,
polynomials of order four are used in [Cazals and Pouget
2008]). However, polynomials of degree three [four] would
give us a least square problem with ten [fifteen] unknowns.
We can speed-up computation an order of magnitude by fit-
ting a polynomial of degree two, which is sufficient to eval-
uate second order differential quantities, while relying on
a discrete approach for extracting higher order differential
quantities. Moreover, we constrain such a polynomial to go
through point P , thus forcing the coefficient of order zero to
vanish. This reduces the unknowns to just five coefficients,
i.e.,

f(u, v) = au2 + bv2 + cuv + du+ ev. (4)

The loss of accuracy with respect to fitting a complete poly-
nomial is compensated by the fact that our polynomial goes
exactly through P , thus it is not necessary to approximate
the differential quantities at P with those computed at its
footprint on the graph of f .

Second, we perform Monte-Carlo sampling on the set of
data VP . In fact, the amount of data necessary to obtain e

Figure 2: The quadric surface approximating the
(smoothed) surface in the neighborhood of a vertex P , ob-
tained during curvature estimation. The arc length of the
curve joining P to P ′′j is used to compute an approxima-
tion of the true distance between P and Pj on the smoothed
surface.

reliable fit is not a function of the size of the neighborhood,
but rather a function of the number of unknowns, which is
fixed to five, provided that data are sampled uniformly in
the neighborhood. Therefore, we can afford sampling a rel-
atively small set of points. In Section 6, we analyze the vari-
ation in estimates of curvatures and curvature directions as a
function of the number of sampled points, and we show that
sampling about 50 vertexes gives excellent results.

With these modifications, the Osculating Jets becomes ro-
bust and fast enough to be used for multi-scale curvature
estimation even at large scales and with very noisy data, as
we show in Section 6.

5 Extraction of creases

Once principal curvatures and curvature directions have
been extracted, information we need for extracting creases
already come at the proper scale. This means that we do not
need to extend our computations to a large neighborhood.
However, we must be careful to make small use of mesh ge-
ometry, because this has not been smoothed, while it still
refers to the finest scale. Therefore, we develop a discrete
method that, at each vertex, makes use only of information
from its 1-ring, and relies on geometry of the quadric sur-
faces fit to data during curvature computation, rather than
on the original mesh.

Let ki : S → R, for i = 1, 2 be the fields of principal
curvature, estimated at all vertexes of mesh M . We first
estimate their gradients ∇ki : S → TS , where TS denotes
the tangent bundle of S.

Let P be a vertex of M and let Pj , for j = 1 . . . h, be its
neighbors. Let P ′j be the projection of Pj on the tangent
plane T (P) and let tj be the direction of P ′j − P . Note
that this is the only datum from the geometry of M that we
use in our computation. Since mesh smoothing displaces
vertexes essentially in the normal direction, this projection
is not likely to change much through the scales. We estimate
the derivative of ki along tj with a finite difference, thus
obtaining the following equation:

< ∇ki(P), tj >=
ki(Pj)− ki(P)

d(P, Pj)
, (5)

where d(P, Pj) denotes a distance between P and Pj . We
collect such equations for all j = 1 . . . h and we obtain
the components of∇ki by resolving the corresponding least
square problem with two unknowns and h equations.

Note that distance d(P, Pj) in Equation 5 should be mea-
sured on the (unknown) smoothed version of S at scale r.
The best approximations that we have of that surface in the

GraVisMa 2010 Full Papers

- 12 -

proximity of P and Pj are provided by the quadric functions
that we used at P and Pj , respectively, during curvature es-
timation, i.e.,

w =
k1
2
u2 +

k2
2
v2 (6)

where the equation is expressed in the Monge frame at ei-
ther P or Pj , respectively, and the values of k1 and k2 are
taken at the corresponding point. Given one of these two
surfaces - say the one centered at P - we measure the arc
length on this quadric surface between P and the vertical
projection of Pj on the same surface (see Figure 2). This
value is computed analytically by resolving a line integral
on the conic line obtained by sectioning the surface with the
vertical plane through direction tj . The formula can be de-
rived easily through a solver, like Maxima, and it involves
Equation 6 as well as the coordinates of P ′j . We do not re-
port it here for brevity. We repeat the same computation by
considering the surface centered at Pj and we compute the
average between the two arc lengths.

Once the gradients of the principal curvatures have been
computed at each vertex, our method proceeds similarly to
that of [Hildebrandt et al. 2005]:

1. Compute extremalities through Equation 1;

2. Extract creases triangle by triangle, by setting the ori-
entation of principal axes at the vertexes, so that cor-
responding axes form acute angles (see also [Cazals
and Pouget 2005b] about the “acute rule”) and recom-
puting the signs of extremalities accordingly. The sign
of the derivative of extremalities, which is required in
Equations 2 and 3, is computed by finite differences
along two edges of t, by applying the same method as
in Equation 5, where ki is replaced with ei. Each tri-
angle t can contain at most one crease segment, whose
endpoints are computed by linear interpolation on the
edges of t;

3. Trace creases to form polylines.

Two optional steps can be performed to improve the shape
of creases: Laplacian smoothing on the field of extremalities
can be performed before Step 2; and creases can be filtered
after Step 3, as suggested in [Ohtake et al. 2004]. Creases
are filtered by compting the line integral of curvature mag-
nitudes along each polyline, and discarding polylines with a
value below a given threshold.

6 Experimental results

We implemented our methods in C++ by using the VCG Li-
brary [VCG] for geometric data structures and the Eigen li-
brary [Eig] for numerical computations. Experiments were
run on a PC with a 2.67Ghz Core i5 processor equipped with
4Gb of memory, using a single core. We tested our algo-
rithms against other methods at the state-of-the-art on some
of the data sets available in the public domain for bench-
marks.

6.1 Curvature

We first consider smooth datasets to extract curvatures at
various scales. In each mesh, we use the average length of
edges e as a reference to set the scale r for fitting. An exam-
ple of curvature extracted at various scales from a large mesh
is reported in Figure 3. The color map combines principal
curvatures with a non-linear mapping, designed to enhance

Figure 4: Principal curvatures computed with our method
(left) and with Osculating Jets (right). Scale is 16e, which is
about twice the diameter of the fingers. The Osculating Jets
incorrectly classifies as convex (red) some cylindrical parts
(yellow).

variations also at small curvatures. Color codes are as fol-
lows: red convex; yellow flat-convex; green saddle; cyan
flat-concave; blue concave; white flat. At the finest scale the
curvature map enhances the artifacts of object reconstruction
on the blade, as well as the fine detail of the rugged bottom
part of the object. Curvature of such details, as well as small
details on the edges of the blade, and bas-relief letters on
the bottom part, progressively disappear at the larger scales,
while the curvature of larger details is correctly character-
ized throughout all scales.

We compare our method for curvature extraction with the
classical Osculating Jets and with the integral invariant
method of Pottmann et al. Curvatures are estimated at vari-
ous scales, ranging from twice to 16 times the average edge
length in the mesh. Our method is applied by performing
Monte-Carlo sampling with a threshold of 50 vertexes.

An implementation of the classical Osculating Jets with de-
gree two is derived from the implementation of our method,
the most important difference being that the whole neigh-
borhood is always used for fitting. We do not report running
times for this method, because they are quite similar to ours.

For the integral invariant method, we use the implementation
provided by the authors, which is based on efficient compu-
tation of PCA on ball neighborhoods via FFT. The method
performs a space discretization, which has high memory re-
quirements. The program is an executable for Windows that
cannot work beyond the allowed threshold of 2Gb of mem-
ory. Therefore, we could not run it on any dataset with a
discretization step smaller than 0.005 times the size of the
bounding box. This fact puts a severe lower bound on the
meaningful scales that can be used: we have run experi-
ments with this method only when the scale was not finer
than 5 times the size of the voxel, i.e., 0.025 times the size
of the bounding box.

Numerical results are reported in Table 1, while visual re-
sults for some examples are shown in Figure 4 and 5.

The standard Osculating jets behaves similarly to our algo-
rithm at small enough scales, but it produces artifacts near
small details at higher scales, where a large enough neigh-
borhood captures also portions of surface that are flipped
with respect to the fitting plane. Some such artifacts can
be seen in Figure 4, where Osculating Jets marks as convex
large cylindric parts of the mesh near the fingertips.

As shown in Figure 5, the discretization scale of the integral
invariant method is too coarse to produce meaningful results
at a fine scale 2e, while our method correctly detects the
curvature of small features (note for example the bas-relief
letters). At scale 4e discretization artifacts still appear (di-
agonal stripes on the flat part of the object). At larger scales,

GraVisMa 2010 Full Papers

- 13 -

Figure 3: Principal curvatures computed on the turbin blade dataset at scales 2e, 4e, 8e and 16e.

Dataset |M| 2e 4e 8e 16e
Gargoyle 25k 0.4 - 1.1 12.9 4.7 13.1 22.9 13.7
RockerArm 35k 0.5 - 1.8 14.0 3.8 14.1 28.1 14.6
David head 50k 0.9 - 2.6 30.7 9.7 31.7 37.6 30.5
Angel 237k 4.7 - 13.1 - 50.0 - 220.2 -
Turbin Blade 883k 12.9 - 33.7 - 128.0 22.9 809.6 23.5

Table 1: Running times (in seconds) for extracting curvatures on various datasets at different scales with our method (left
columns) and with the integral invariant method (right columns). Sizes of the datasets are given by the number of vertexes (in
thousands). Scales are expressed in terms of the average edge length e. The Angel dataset could not be loaded with the integral
invariant program.

Figure 6: Curvature extracted at scale 16e. Top: Monte-
Carlo with 50 samples (left) and 100 samples (right); bot-
tom: Monte-Carlo with 200 samples (left) and full neighbor-
hood using about 1200 data points on average (right).

both methods produce very smooth results, which are com-
parable and compatible with object features at that scale. In
terms of running times, the integral invariant method is com-
petitive on large objects at large scales, while our method is
faster at small scales and for objects of moderate size.

Next we show the effect of applying our method with
Monte-Carlo sampling against using the whole neighbor-
hood. Since we do not have any ground truth for curva-
tures on these data sets, we take the computation with the
whole neighborhood as a reference, and we report the de-
viation from those results at different rates of Monte-Carlo
sampling. Numerical results are reported in Table 2, while
visual results are shown in Figure 6. Note that the loss of
accuracy is quite small, even at large scales, by using 100
samples, while results with 200 samples are almost identical
to those obtained with the whole neighborhood, which fits
to about 1200 data points on average.

As expected, Monte-Carlo sampling drastically reduces the

time required for fitting at large scale. Unfortunately, com-
putation times are dominated from the breadth-first traver-
sal of the mesh, hence the global speed-up is just moderate.
We believe that a careful implementation of the search with
ad hoc data structures could drastically reduce computation
times, thus achieving a better scalability.

Next we test robustness by adding noise in the normal di-
rection to vertexes. Noise is generated by extracting random
values in a range [−σ, σ], where σ is defined as a fraction of
the average edge length in the mesh. We show results with
σ = 0.25e, 0.5e, 1.0e at scales 8e and 16e. Our method is
compared just to the integral invariant method in this case.
Each method takes as reference values the estimates it ob-
tains on the noiseless version of each dataset at the same
scale. Numerical results, reported in Table 3, show that the
two methods produce similar results, the integral invariant
performing slightly better for large error.

6.2 Creases

Finally, we test the performance of our method for extract-
ing creases against (our implementation of) the method pro-
posed in [Hildebrandt et al. 2005]. While the two methods
produce comparable results on clean data and at small scales,
our method performs much better than the other one when
data are noisy, or scale is large, or both. Creases extracted
with the method of [Hildebrandt et al. 2005] from noisy data
may be highly fragmented and they are generally more irreg-
ular. Moreover, they do not always merge correctly to fol-
low large scale features. A visual comparison at scale 8eis
reported in Figure 7. In the clean dataset (top row), note how
our method correctly merges the parallel ridges around the
rim of the hole, and along the left rib, while such ridges re-
main separated with the other method. Note that creases are
drawn on the original mesh, thus they necessarily follow the
jagged surface in the noisy case.

An example of the behavior of creases through different
scales is reported in Figure 8. Note how creases slide
through the surface, merge and disappear by increasing
scale. For instance: the nose ridge is marked by two creases

GraVisMa 2010 Full Papers

- 14 -

Figure 5: Curvature extracted from the rockerarm dataset at scales 2e, 4e, 8e, 16e. Top row: our method; bottom row:
integral invariant method.

Time w/o M-C Number of Monte-Carlo samples
50 100 200

Dataset |M | Fit Total x̄ σ Fit Total x̄ σ Fit Total x̄ σ Fit Total
Gargoyle 25k 3.4 23.0 0.95 0.13 0.2 20.0 0.97 0.09 0.3 20.3 0.98 0.06 0.5 20.5
RockerArm 35k 3.7 28.3 0.97 0.09 0.3 25.2 0.99 0.06 0.4 25.4 0.99 0.04 0.7 25.7
David head 50k 7.1 37.3 0.96 0.12 0.4 31.3 0.98 0.08 0.6 31.6 0.99 0.06 1.0 32.0
Angel 237k 29.5 220.0 0.98 0.08 1.9 195.3 0.99 0.06 2.9 196.7 0.99 0.04 4.9 198.9
Turbin Blade 883k 108.6 809.5 0.96 0.12 6.7 719.0 0.98 0.09 10.4 724.3 0.99 0.07 18.0 733.1

Table 2: Average deviation, variance and computational time using different numbers of Monte-Carlo samples at scale 32e.
Deviation is measured as the scalar product between the principal directions of curvature: 1.0 means perfect match. Time is in
seconds.

Figure 7: Creases computed at scale 8e with our method
(left) and with the method of [Hildebrandt et al. 2005]
(right). Clean data (top) and noisy data with σ = 1.0e
(bottom).

at fine scale, which soon merge into one crease that persists
throughout the following scales. At the highest scale, this
crease extends to mark the bilateral symmetry of the object.
Creases that outline the arms of the Moai statue are detected
at the fine scale, then they disappear. At fine scales, the body
of the statue is outlined longitudinally by several creases,
which progressively merge, ending up to the central longitu-
dinal crease. Transverse creases at the eyebrows and at the
top of the forehead first merge, then disappear when scale
gets bigger; the same happens with other transverse creases,
such as those marking the chin, the nostrils, and below the
nose.

7 Concluding remarks

We have shown that fitting methods can be accurate in cur-
vature estimation at different scales, provided that the fitting

frame is chosen carefully and portions of surface bending
away are discarded. We have also shown that Monte-Carlo
sampling can reduce the time needed for fitting, without
much loss of accuracy. However, at large scales, compu-
tation is still dominated by the time needed to extract vertex
neighborhoods. This problem can be probably resolved by
developing suitable data structures for mesh traversal. We
will address this specific problem in our future work.

We have presented a new discrete method for extracting
creases that is accurate and robust, and combines nicely
with our multi-scale curvature estimation. We have demon-
strated on some examples how creases subsume shape fea-
tures at the various scales: they may either disappear, or slide
over the surface as scale increases, and they may eventually
merge.

It would be interesting to compare our results with respect
to creases extracted from progressively smoothed versions
of the same surface, e.g., with Gaussian smoothing applied
at different scales. More generally, it is an open issue to
establish a formal mathematical relation between the radius
r of the neighborhood used to evaluate curvature and the
scale of a corresponding smoothing filter.

Our goal in the near future is to build a scale-space for sur-
face features, which can provide a flexible tool for shape
analysis and processing. In the scale space, creases are char-
acterized with both position and persistence through scales.
Since creases evolve in a quite complicated way, tracing
them through the various scales is likely to be a challeng-
ing task.

Acknowledgements

We wish to thank the authors of [Yang et al. 2006] for pro-
viding the software to compute multi-scale curvatures with

GraVisMa 2010 Full Papers

- 15 -

σ 0.25e 0.50e 1e
Scales 8e 16e 8e 16e 8e 16e

RockerArm 0.99 0.99 0.99 0.99 0.99 0.99 0.96 0.99 0.97 0.98 0.81 0.99
David head 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.99 0.93 0.97 0.94 0.98

Table 3: Average deviation of curvature directions at different scales and different noise σ. The error made by our method
(left columns), and by the integral invariant method (right columns) is measured as the scalar product between the principal
directions of curvature.

Figure 8: Crease slide through the surface, merge and disappear as the scale increases.

the integral invariant method.

References

AGAM, G., AND TANG, X. 2005. A sampling frame-
work for accurate curvature estimation in discrete sur-
faces. IEEE Transactions on Visualization and Computer
Graphics 11, 5, 573–583.

CAZALS, F., AND POUGET, M. 2005. Estimating Differ-
ential Quantities using Polynomial fitting of Osculating
Jets. Computer Aided Geometric Design 22, 121–146.

CAZALS, F., AND POUGET, M. 2005. Topology driven
algorithms for ridge exctraction on meshes. Tech. Rep.
5526, INRIA.

CAZALS, F., AND POUGET, M. 2008. Algorithm 889:
Jet fitting 3: A generic c++ package for estimating the
differential properties on sampled surfaces via polyno-
mial fitting. ACM Trans. Math. Softw. 35, 3, 1–20.

COHEN-STEINER, D., AND MORVAN, J.-M. 2003. Re-
stricted delaunay triangulations and normal cycle. In SCG
’03: Proceedings of the nineteenth annual symposium on
Computational geometry, ACM, New York, NY, USA,
312–321.

COSTA BATAGELO, H., AND WU, S.-T. 2007. Estimat-
ing curvatures and their derivatives on meshes of arbitrary
topology from sampling directions. The Visual Computer
23, 9, 803–812.

DESBRUN, M., GRINSPUN, E., AND SCHRÖDER, 2005.
Discrete differential geometry: an applied introduction.
ACM SIGGRAPH 2005 Course Notes.

DOUROS, I., AND BUXTON, B. 2002. Three-dimensional
surface curvature estimation using qudric surface patches.
In Proceedings Scanning 2002.

Eigen. http://eigen.tuxfamily.org/.

GATZKE, T. D., AND GRIMM, C. M. 2006. Estimating
curvature on triangular meshes. International Journal on
shape Modeling 12, 1–29.

GOLDFEATHER, J., AND INTERRANTE, V. 2004. A novel
cubic-order algorithm for approximating principal direc-
tion vectors. ACM Trans. Graph. 23, 1, 45–63.

GRINSPUN, E., GINGOLD, Y., REISMAN, J., AND ZORIN,
D. 2006. Computing discrete shape operators on general
meshes. Computer Graphics Forum 25, 547–556.

HILDEBRANDT, K., POLTHIER, K., AND WARDETZKY,
M. 2005. Smooth feature lines on surface meshes. In
Proc. 3rd Eurographics Symp. on Geom. Proc., 85.

KOENDERINK, J. 1994. Scale-space theory in computer
vision. Kluwer Academic.

LINDBERG, T. 2009. Scale-space. In Encyclopedia of Com-
puter Science ad Engineering, B. Wah, Ed. John Wiley
and Sons, 2495–2504.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004.
Ridge-valley lines on meshes via implicit surface fit-
ting. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
ACM, New York, NY, USA, 609–612.

PAULY, M., KOBBELT, L. P., AND GROSS, M. 2006. Point-
based multiscale surface representation. ACM Trans.
Graph. 25, 2, 177–193.

PORTEOUS, I. 2001. Geometric Differentiation (2nd edi-
tion). Cambridge University Press.

POTTMANN, H., WALLNER, J., YANG, Y.-L., LAI, Y.-K.,
AND HU, S.-M. 2007. Principal curvatures from the
integral invariant viewpoint. Comput. Aided Geom. Des.
24, 8-9, 428–442.

Vcglib. http://vcg.sourceforge.net/.

YANG, Y.-L., LAI, Y.-K., HU, S.-M., AND POTTMANN,
H. 2006. Robust principal curvatures on multiple scales.
In SGP ’06: Proceedings of the fourth Eurographics sym-
posium on Geometry processing, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 223–226.

YOSHIZAWA, S., BELYAEV, A., AND SEIDEL, H.-P. 2005.
Fast and robust detection of crest lines on meshes. In SPM
’05: Proceedings of the 2005 ACM symposium on Solid
and physical modeling, ACM, New York, NY, USA, 227–
232.

GraVisMa 2010 Full Papers

- 16 -

Advances in Metric-neutral Visualization
Charles Gunn

Institüt der Mathematik MA 3-2
Technische Universität Berlin

ABSTRACT

We describe a visualization system in which the two classical noneuclidean spaces – elliptic and hyperbolic – are integrated
as equal citizens along with euclidean space. Such software we call metric-neutral. After surveying previous work in this
direction, we review the mathematical foundations, particularly the projective models for these spaces. We give an overview
of the issues involved in converting euclidean visualization software to be metric-neutral, beginning with non-interactive issues
before turning to interaction, and finally, to immersive environments. We describe how the metric-neutral visualization system
under discussion solves these challenges, highlighting a number of innovative features, including metric-neutral tubing, metric-
neutral realtime shading, and metric-neutral tracking.

Keywords: projective geometry, noneuclidean geometry, noneuclidean tracking, curved spaces, metric-neutral software,
visualization, Cayley-Klein geometry

1 INTRODUCTION
The discovery of noneuclidean geometries in the
nineteenth century is one of the most exciting and
important chapters in modern mathematics. It has
had significant consequences in the development not
only of mathematics itself but also natural science
and philosophy. The alternative experience of space
provided by these geometries exerts a fascination
accessible to non-mathematicians. The circle-limit
prints of the M. C. Escher have helped popularize the
underlying concepts. There is a widening circle of
scientific research based on noneuclidean geometry,
ranging from cosmology ([Wee90]) to the study of
large graphs ([Mun98]) to the classification of 3D
manifolds ([Thu97]) to the perceived structure of the
human visual experience ([Hee83]).

The current work is the outgrowth of research cen-
tered on the challenge of visualizing three-dimensional
manifolds and orbifolds with geometric structures
([Gun93]). The recent solution of the Poincare Conjec-
ture and the more general Geometrization Conjecture
([Mac06]) establishes that all three-dimensional mani-
folds can be decomposed into submanifolds that have
geometric structures. Hence, software systems such as
the one described in this article can be used to visualize
all three-dimensional manifolds.

In this article we present a unified approach to vi-
sualization of these geometries alongside euclidean ge-
ometry, based on their common ancestry within projec-
tive geometry. We show how through this approach,
much of the theory and practice of euclidean visual-
ization science can be transferred with minimal effort

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

to these noneuclidean spaces. We first survey previous
work in this direction, and then give a review of the es-
sential mathematics which underlies the current work.

1.1 Comparison with previous work
The current work builds upon the theory and practice
described in [Gun92], [PG92], [Gun93] and [Wee02].
This article goes beyond existing literature by introduc-
ing the concept of metric neutrality. Our discussion of
metric neutrality provides software practitioners for the
first time a theoretical and practical framework for up-
grading a general-purpose euclidean visualization sys-
tem to handle noneuclidean geometries as equal citi-
zens.

The visualization system used to implement the
metric-neutral ideas presented in this article is jReality
([jr06], [WGH+09]), an open-source, Java-based,
general-purpose 3D scene graph package. Geomview
([MLP+]) was an earlier attempt in the direction of
metric-neutral visualization system dating from the
early 1990’s. jReality extends Geomview in a number
of ways, which are described in the course of the
article.

Earlier attempts to visualize noneuclidean spaces
in immersive environments ([GH97], [FGK+03]),
retained standard euclidean tracking. The present work
describes and implements a noneuclidean tracking
solution which significantly improves the quality of the
noneuclidean immersive experience.

This article only considers metrics of constant cur-
vature. The extension of this approach to non-constant
curvature manifold visualization ([WSE04]) is a natural
goal for further work.

2 NONEUCLIDEAN GEOMETRY
One of the standard practices of computer graphics is
the use of homogeneous coordinates to represent points

GraVisMa 2010 Full Papers

- 17 -

Figure 1: Immersive experience of elliptic space.

in euclidean space. A point P = (x,y,z)∈R3 is assigned
the homogeneous coordinates (x,y,z,1). The term ho-
mogeneous comes from the equivalence relation given
by (x,y,z,1) ∼= (λx,λy,λ z,λ) for λ ∈ R,λ 6= 0. Com-
puter graphics practicioners learn that, using homoge-
neous coordinates, every euclidean isometry can be rep-
resented as a single 4x4 matrix.

Homogeneous coordinates also play a crucial role in
the perspective transformation of computer graphics.
In the typical case, the camera position (0,0,0,1) is
mapped to the point (0,0,1,0). The latter point is not
equivalent to any point in R3! The practical result is
that the trapezoidal viewing frustum is mapped to the
familiar rectangular box form for 3D normalized de-
vice coordinates from which a rendered image can con-
veniently be calculated.

A search for the deeper significance of homogeneous
coordinates leads to an important chapter in the history
of mathematics. Homogeneous coordinates are the nat-
ural coordinates for projective geometry, a branch of
mathematics developed in response to the birth of per-
spective painting. Projective geometry includes a set
of points such as the point (0,0,1,0) mentioned above
which are not elements of R3, the so-called ideal points
or points at infinity. The inclusion of these new points
results in a geometry in which euclidean measurement
is no longer possible. Analogous to a motion of eu-
clidean space which preserves distances, a projectivity
is a transformation of projective space which maps lines
to lines and preserves geometric incidence.

At the same time as projective geometry was devel-
oped in its modern form, independent research estab-
lished the existence of other metric geometries. Eu-
clidean geometry is distinguished by one of its axioms,
the so-called Parallel Postulate. A logically equiva-
lent form states: given a point and a line in a plane,
there is exactly one line in the plane passing through
the point which is parallel to the given line.The discov-
ery of other geometries was based on the demonstration
that this postulate can be replaced by two different alter-

natives, and the resulting geometry is a consistent sys-
tem, satisfying the other axioms. The two alternatives
are first, that there are no such parallels (yielding ellip-
tic geometry) or that there are infinitely many (yielding
hyperbolic geometry). The credit for this discovery was
shared by Gauss, Bolyai, and Lobachevsky.

Projective geometry was originally developed syn-
thetically (without coordinates). It was then shown that
one could begin with homogeneous coordinates and ar-
rive at projective geometry. This geometry exists in ev-
ery dimension n > 0 and is written RPn. Closely re-
lated to RPn is PGL(n+1,R), the group of all invertible
(n + 1) by (n + 1) matrices, subject to a homogeneous
equivalence relation (hence the P in the name). The el-
ements of this matrix group act on points of RPn by
matrix multiplication.1 Every projectivity can be repre-
sented by an element of PGL(n+1,R), and vice-versa.

The final important step in the history came as Cay-
ley discovered, in his words, "Projective geometry is all
geometry." He did this – in modern terminology and re-
stricting to the case n = 3 – by introducing a quadric
surface, termed the Absolute, within RP3. He showed
different choices for the Absolute lead to models for eu-
clidean, elliptic, and hyperbolic geometry within pro-
jective geometry. The mathematical details related to
this construction have been collected in Appendix A.

2.1 Isometry groups
All projectivities which preserve the metric relation-
ships established by the Absolute, form a group called
the isometry group of the geometry. The isometry
groups of these three geometries are then subgroups of
PGL(n + 1,R). The isometry group for elliptic space
is SO(4) while that of hyperbolic space is SO(3,1) fa-
miliar as the isometry group of Minkowski space in
relativity theory.2 The euclidean group SE(3) is more
complicated than the two noneuclidean cases, since the
euclidean metric involves a degenerate quadric and re-
quires a delicate limiting process to be fully defined.

All three groups are 6-dimensional Lie groups which
contain the rotation group SO(3), fixing the point
(0,0,0,1), as a subgroup. Here’s a few facts about
non-euclidean isometries needed for later. A non-
euclidean isometry3 is characterized by two invariant
lines, the axes of the isometry, which are polar pairs
(see Appendix A) with respect to the metric quadric.
The isometry can be factored as the product of two
(commuting) rotations around these axes. This is in
general a screw motion. A rotation around a line l is

1 Since the points are homogeneous, it is immediately obvious that the
matrices which act on the points also can be multiplied by an arbitrary
non-zero factor without disturbing the equivalence relation defined on
the points.

2 Note Minkowski space does not use homogeneous coordinates hence
is a true 4-dimensional space.

3 with the exception of so-called Clifford translations in elliptic space

GraVisMa 2010 Full Papers

- 18 -

then an isometry in which l and its polar line l̂ are the
axes, such that the rotation around l̂ is the identity. A
translation carrying a point A to another point B, on the
other hand, is an isometry with the lines l :=

←→
AB and

its polar line l̂ as axes, such that the rotation around l is
the identity.

2.2 Elliptic space and spherical space
In popular accounts of noneuclidean geometry, ellip-
tic space Elln and spherical space Sn are sometimes not
clearly distinguished. Mathematically, Sn is the simply-
connected covering space of Elln, and can be decom-
posed as two copies of Elln. For n = 2, for example, the
ordinary sphere can be decomposed as two hemispheres
(each one a Ell2). Spherical space does not satisfy the
axiom (inherited from Euclid) that two lines intersect in
at most one point (the lines of spherical space are great
circles which always intersect in two antipodal points).
For this reason, the existence of the sphere did not play
a significant role in the discovery of noneuclidean ge-
ometry, even though with hindsight it can be used as
an effective example. See Section 3.3 for visualization
issues related to these two spaces.

3 NONEUCLIDEAN VISUALIZATION
Modern GPU’s were designed to provide hardware sup-
port for perspective rendering of euclidean space. The
euclidean subgroup and the perspective transformation,
together, generate the full projective group PGL(n +
1,R). Hence, GPU’s also can handle the isometries of
the projective models of the noneuclidean geometries.
What is required in order to make perspective render-
ings in these noneuclidean spaces as well? We first es-
tablish that the projective models of noneuclidean ge-
ometry have a special status in visualization science,
based on their roots in perspective painting.

3.1 The insider’s view
There are numerous models for noneuclidean geometry,
for example, conformal models ([Thu97]). All models
naturally each have their advantages and disadvantages.
But in a certain sense – to be made more specific below
– we argue that the projective one is the right one for a
wide range of visualization tasks.

Visualization theory can be understood as an attempt
to simulate images which an observer situated in the
scene would actually see, or an embedded camera might
form. We can think of such images as representing
the insider’s view of the scene – as opposed to images
which might present another way of rendering the scene
but not in a way in which such an imbedded observer
would actually see via a perspective rendering. For ex-
ample, in one dimension lower, standard images of a
sphere imbedded in three-dimensional space do not rep-
resent the insider’s view of the sphere since the camera
lies outside the sphere itself.

Due to its close connection to perspective painting,
the projective model described above is ideally suited to
generate the insider’s view. Consider first the perspec-
tive operation as a physical phenomena, for example, in
a camera, in which paths of light (geodesics) through
the center of perspective are mapped onto points of the
image plane. Next, consider the perspective operation
as it is implemented in hardware. The latter can be
characterized as an operation in which lines through the
center of perspective are transformed into points on the
image plane.

The projective model is the only model in which
these two conditions are naturally consistent. The other
models all involve curved geodesics; any realistic ren-
dering process must then first uncurve these geodesics
before the hardware perspective operation can be ap-
plied. And even if one chooses to avoid the projec-
tive model altogether and ray trace with the curved
geodesics, one arrives in the end at identical pictures
to the ones which the projective model yields, since the
insider’s view is well-defined and independent of the
model chosen to represent the geometry. Hence, the
projective model and GPU technology are related as
theory is to practice, and the resulting rendered images
represent what an insider in these metric spaces sees.
In the next section we demonstrate that this implies that
cameras are projective, not metric, objects.

3.2 Cameras are projective, not metric
Once a camera is positioned within a scene and the
scene has been shaded, the construction of a perspective
image proceeds without any metrical considerations.
True to its roots in perspective painting, the perspec-
tive transformation is a purely projective transforma-
tion, and can be applied as well in a noneuclidean space
as in a euclidean space. Even the viewport, which we
normally think of as a euclidean rectangle, is properly
seen as a projective quadrilateral without metric prop-
erties.

One might argue that how this quadrilateral is sam-
pled, is metric dependent. That is, the solid angle sub-
tended by a pixel might be different according to the
metric. But in fact this is not so. The solid angles can
be thought of as determined by tangent vectors belong-
ing to the point (0,0,0,1) (the canonical position of the
camera), and the tangent space of vectors at this point
is metrically identical in all three metrics! Hence we
don’t need to do sample any differently when rendering
in a noneuclidean scene.

A confirmation of the projective nature of the cam-
era is provided by practical experiences with clipping
planes. Normally, one considers the near and far clip-
ping planes as defined by two positive z-values 0 < zn <
z f . But to clip effectively in elliptic space one must
use affine coordinates on the z-axis, which includes the
value ∞, where the z-coordinate shifts to be large and

GraVisMa 2010 Full Papers

- 19 -

negative. Typical values for elliptic clipping planes are
then z f =−zn. The resulting viewing frustum includes
the plane w = 0, the equator of elliptic space, and con-
tinues almost to the antipodal point of the camera posi-
tion. 4 See [Wee02] for details.

3.3 Visualization issues with elliptic space
As described above, the hardware layer of today’s GPU
is designed to handle the standard homogeneous coor-
dinates needed for euclidean rendering. For this rea-
son, one has slight reason to expect then that Sn would
be faithfully implemented in hardware. However, due
to a technical detail in how clipping to normalized de-
vice coordinates is implemented, it is indeed possible
with a little extra work to represent and render Sn cor-
rectly also. To be precise, at this point in the ren-
dering pipeline, half of S3 (where w < 0) is clipped
away. By rendering the scene twice, once after trans-
forming by the negative identity matrix −1, one gets a
correct, complete rendering of S3. For more details see
[Wee02].

Being able to render spherical space is a mixed bless-
ing, since it means one also has to expend a little extra
work to render correctly in elliptic space. Elliptic points
for which w < 0 as described above, will be clipped
away. Even if your coordinates are good, if you’ve writ-
ten an elliptic fly tool with a natural parametrization of
an elliptic line using circular functions5 , then half the
time you’ll probably be flying in the w < 0 hemisphere
and won’t see anything either. To avoid these clipping
problems, one solution is to adjust the scene graph to
include two copies of the scene, one transformed by the
identity matrix 1, the other transformed by −1. This
guarantees that one complete copy of the world will be
in the w > 0 hemisphere and will be rendered. Ellipti-
cally the two copies are identical so correct images will
be rendered.

Related problems of this nature arise when drawing
line segments. One of the oddities of projective space
is that two points determine not one but two line seg-
ments along the line. Viewed with euclidean lenses, one
of these is finite and the other contains the ideal point
of the line, so its easy to tell the difference and avoid
the problem in euclidean space. The problem doesn’t
appear in hyperbolic space either, for the same reason.
But in Ell3, there are always two possible line segments
between two points. The situation is complicated by the
w-clipping issue described above. The proper solution
to this dilemma is a topic of current research.

4 OpenGL correctly implements such clipping planes but other render-
ing systems display a euclidean bias here.

5 That is, flying along the z-axis using the parametrization
(0,0,sin(t),cos(t)) for this line).

4 METRIC-NEUTRAL INFRASTRUC-
TURE

This and the following section are intended to serve as
a practical guide for progammers interested in extend-
ing conventional visualization software to be metric-
neutral. In this section we describe changes which have
to be made without taking user interaction into account.
We term this the infrastructure layer. The next sec-
tion focuses on ensuring metric-neutral user interac-
tions, including picking. We term this the interaction
layer. Finally, we devote a third section to the chal-
lenges of metric-neutral visualization in immersive en-
vironments: the immersive layer.

4.1 Infrastructure challenges
There are a number of areas where the implicit eu-
clidean bias of visualization software makes itself felt.
Typically the problems are of two sorts: either one can
directly generalize a given euclidean feature (for exam-
ple, distance between points); or one cannot (for exam-
ple, free vectors in euclidean space; or, similarity trans-
formations in euclidean space). We term the former a
metric-neutral feature, and the latter, a metric-specific
feature. There are also metric-specific features of ellip-
tic and hyperbolic space but they lie outside the scope
of this introductory treatment. For a metric-specific fea-
ture, one must then design a solution where the feature
is maintained as a special case.

Accompanying this discussion, we present a refer-
ence implementation which presents a metric-neutral
solution for each of the identified problem areas. This
software framework is jReality, an open-source, 3D
Java scene graph [WGH+09]. We restrict our discus-
sion here to the jReality features relevant to metric neu-
trality; see the jReality web-site and Wiki for further
documentation for the software, including a tutorial ex-
ample illustrating noneuclidean usage.

This discussion can not aim to be exhaustive given
the great variety of modern visualization systems. Our
aim here is to give an overview and make a convincing
case that most – if not all –euclidean infrastructure can
be extended to be metric-neutral by following a simple
set of patterns.
Geometric representation The system needs to sup-
port homogeneous coordinates for points while main-
taining backward compatibility with non-homogeneous
representations. Certain geometric entities, such as free
vectors, are euclidean metric-specific.

The core space for jReality is RP3, not R3. jReal-
ity also supports nonhomogeneous coordinates for tra-
ditional applications; users interested in noneuclidean
geometry will work with homogeneous coordinates for
points, normals, and other geometric entities. Points are
promoted to be homogeneous (by appending a 1) when
operations on mixed types are requested. A free vector

GraVisMa 2010 Full Papers

- 20 -

(x,y,z) is handled by converting it into homogeneous
coordinates as the ideal point (x,y,z,0).
Geometric operations There are a subset of operations
which are purely projective, such as the join and meet
operators. Implementations of these operations how-
ever often do not handle the case of parallel elements
in a projective way, hence often lead to incorrect results
when used with other metrics. Many other operations
based on geometric primitives depend on the ambient
metric. For example: distances between points, angles
between planes, normal vector to a plane, inner product
of two vectors, and orthogonal complement and projec-
tion.

Modeling operations based on such primitive opera-
tions must also be considered. For example, consider
a tube around a line segment. A tube is an equidistant
surface – the set of points a given distance from a line
segment. In euclidean space, such an equidistant sur-
face is a cylinder, but in the other metric spaces, tubes
take analogous but different forms6.

In jReality, purely projective operations are imple-
mented within RP3. The intersection point of three
planes, for example, is calculated correctly even if two
of the planes happen to be euclidean parallel. Subse-
quent metric operations can signal errors if these pro-
jective values are not metrically valid. Additionally, all
the metric operations mentioned above plus many oth-
ers are available in metric-neutral form. Implementa-
tion details can be found below (Section 4.2). The stan-
dard tubing option for the default jReality line shader
uses such built-in features to create (for the first time)
accurate noneuclidean tubes around polylines in noneu-
clidean space. See Figure 2.
Isometries Scene graphs are typically built up by ap-
plying a transformation at each node in the graph. Ex-
cept in the case of the camera node, where a perspec-
tive transformation is applied, these transformations are
typically either euclidean isometries or isotropic scal-
ing operations. A metric-neutral system must provide
support for generating noneuclidean isometries in place
of the euclidean ones. The user himself must be care-
ful when applying scaling transformations. In general,
scaling can only be applied in a metric-neutral way to
the leaves of the scene graph.

jReality includes support for calculating projectivi-
ties in PGL(n + 1,R) including: central projections,
harmonic homologies, affine transformations (includ-
ing scales); and metric isometries including transla-
tions, rotations, reflections and glide-reflections, and
screw motions (in all three metrics). Factorization of
isometries is also supported.

6 Note that spheres (equidistant surfaces to a point) do not provide the
same problem, since a noneuclidean sphere centered at the origin
(0,0,0,1) is also a euclidean sphere, and this sphere can be translated
to an arbitrary center using a noneuclidean isometry.

Figure 2: Hyperbolic, euclidean, and elliptic tubes
around a horizontal line segment

Figure 3: Real-time hyperbolic shading implemented
with an OpenGL Shading Language vertex shader

Shading Standard real-time shading algorithms are
local calculations based on the geometric and mate-
rial properties of the object and the position and at-
tributes of the light sources. All these properties are
well-defined in the noneuclidean setting also.

jReality includes a GPU vertex shader (written in
the OpenGL Shading Language) which extends a stan-
dard euclidean polygon shader to handle noneuclidean
metrics. It operates with homogeneous coordinates for
points and normals as provided by jReality, and calcu-
lates distances and angles using the appropriate inner
product. It also implements light attenuation and fog
in a noneuclidean fashion. This shader is similar to the
Renderman shader described in [Gun93]. The result is
the first real-time realistic rendering integrated into a
metric-neutral visualization system. See Figure 3.
3D Audio Although technically not part of visual-
ization systems, spatial audio can also be implemented
in a metric-neutral way. Euclidean biases in spatial au-
dio express themselves in amplitudes, delays, echoes,

GraVisMa 2010 Full Papers

- 21 -

and other effects involving distance and angle measure-
ment.

jReality supports noneuclidean spatial audio. All dis-
tances required for audio effects, such as the Doppler
effect, are calculated in a metric-neutral fashion.

4.2 Implementation details
jReality uses a flexible attribute inheritance mechanism
within the scene graph to define an attribute which takes
one of three values corresponding to hyperbolic, eu-
clidean, or elliptic. Any operation defined within the
scene graph is carried out using the current value of
this attribute. Through this mechanism it is possible
to mix metrics in the scene graph. For example, one
could model a mathematical museum in our ordinary
euclidean space that includes a non-euclidean exhibit
(as a subgraph). See also the discussion of 3D GUI be-
low (Section 6.6). Note that the metric is attached to the
parent scene graph component rather than to the geom-
etry node itself, which can be considered as a projective
object modified by the enclosing metric attribute.

The mathematical infrastructure in jReality is orga-
nized via a set of Java classes which offer functionality
via static methods. The principle functional classes are
Rn and Pn, corresponding to the euclidean vector space
Rn and real projective space RPn, resp. Roughly speak-
ing, Rn expects nonhomogeneous coordinates for geo-
metric entities; Pn on the other hand is based upon ho-
mogeneous coordinates. Within Pn there are two types
of methods: purely projective ones, and metric-neutral
ones, parametrized by the metric. The class P5 (rep-
resenting 5-dimensional real projective space) provides
metric-neutral methods for calculating with lines using
Plücker coordinates, see [Kle27].

4.3 Geometric algebra
We have embarked upon a project to upgrade the
metric-neutral infrastructure to be based on the 3D
homogeneous model of geometric algebra ([DFM07],
[Sel05]). This has the advantage that it handles opera-
tors and operands in a single unified form with built-in
metric neutrality. For example, if m is the element of
the geometric algebra representing a line, and X is an
element representing a point, line or plane, then the
rotation of X around the line m by angle 2α can be
written as a versor, or sandwich operator:

X → eαm X e−αm

where juxtaposition of elements represents the geomet-
ric product of the geometric algebra, which also ex-
presses the metric relations. Readers familiar with the
quaternion calculus for representing rotations around
the origin in R3 should recognize a similarity which is
more than coincidental. This approach promises to be
the right form for handling kinematics and dynamics,
too. For an account of the current state of this work see
[Gun10].

5 METRIC-NEUTRAL INTERACTION
In this section we turn our attention to how human
movements originating in a euclidean world can be used
to control interaction with a virtual noneuclidean world.
We first describe how picking is handled, before turning
to tool construction.

5.1 Metric-neutral Picking
Picking is generally understood as finding the intersec-
tions of a ray with the objects in the scene, sorted in
increasing distance from the origin of the ray. To ex-
press this operation in a metric-neutral way, one must
first replace the ray (a euclidean concept) with a projec-
tive line segment [Ps,Pe], typically the intersection of
an oriented line with the viewing frustum. Since two
points on a projective line determine two segments, one
must take care segment is intended. Furthermore, one
cannot, in general, use the euclidean distance along this
segment as the sorting key. And, since jReality allows
different metrics to coexist in the same scene graph, it’s
also not possible to replace the euclidean distance by
some other single metric distance.

Instead, jReality implements picking by calculating,
for each intersection, an affine coordinate along the pick
segment which can be used for sorting purposes. First,
it calculates (u,v) barycentric coordinates of the hit
point P with respect to the start and end points along
the segment: P = uPs + vPe. The homogeneous repre-
sentatives for Ps and Pe must be chosen so the signs of
u and v are the same for points lying on the segment.
Then it uses the ratio α = v

u as the affine coordinate; α

takes the value 0 at Ps, +∞ at Pe, and runs through all
positive values in between. Negative values correspond
to hits which lie outside the pick segment.

5.2 Mouse-based tools
Standard desktop interaction occurs via a 2D motion of
a mouse or stylus. A series of 2D points are fed as in-
put to an interactive tool which uses them to generate a
3D motion: rotation or dragging of selected parts of the
scene or flying through the scene, for example. For ex-
ample, when dragging an object, the point of the object
under the cursor when the mouse is depressed, remains
under the cursor as the cursor is moved, and remains
in the same plane parallel to the viewport plane of the
camera. Similar but less direct correspondences apply
to rotation and scaling tools.

Most, if not all, such interactive tools can be easily
converted to be metric-neutral. In the dragging example
above, the tools behaves identically except that it uses
a noneuclidean translation in place of the euclidean one
(see Section 2.1). The case of a rotation tool is even
simpler. A rotation tool acting on a given object in the
scene is typically implemented by conjugating a rota-
tion around the origin of the object coordinate system

GraVisMa 2010 Full Papers

- 22 -

Figure 4: Immersive experience of hyperbolic space in
a 3-walled CAVE.

with the world-to-object transformation. Since the ro-
tations around the origin are the same in all metrics,
such a rotation tool is almost metric-neutral to begin
with. Such noneuclidean tools were already included in
[MLP+].

6 METRIC-NEUTRAL IMMERSIVE
ENVIRONMENTS

By an immersive environment we mean an environment
featuring 3D glasses, multiple displays, and tracked
movement which produce for the user the illusion of be-
ing immersed in a virtual world. jReality provides sup-
port for such environments via its flexible backend con-
cept. Figures 1, 4 show jReality applications running in
a CAVE-like theatre. Such environments present spe-
cial challenges for metric-neutral software. We con-
sider first the challenge presented by generalizing in-
teraction based on a 2D mouse to interaction based on
a 3D wand.

6.1 Wand-based tools
Instead of using the position of a 2D cursor to determine
the picking ray into the scene, the 3D line determined
by the wand is used. But since there may be multi-
ple screens, interactive tools cannot depend on a dis-
tinguished direction to constrain motion (like the drag
tool above which moves the object parallel to the plane
of the viewport). Since this problem is orthogonal to
metric neutrality, we do not handle it further.

Metric-neutral picking, however, does present a prob-
lem in immersive environments, since the pick segment
cannot simply be chosen as the intersection of the pick
segment with the viewing frustum: in an immersive
environment there may be several such frustums, in
each of which valid pick hits can occur. (This prob-
lem doesn’t arise when picking with a ray since then the
frustum doesn’t play a role.) The correct solution is to
pick in each frustum separately and then combine the
picks together. Once these problems have been iden-

tified, metric-neutral wand-based tools can be (and in
jReality have been) reliably written and used.

6.2 Metric-neutral tracking
Perhaps the most important ingredient in virtual reality
comes from tracking the real motion of the observer.
Tracking systems typically provide a euclidean frame
(position and orientation) for each tracked object (for
example, head and hand). Each frame is equivalent to a
euclidean isometry that moves the standard frame at the
origin to the current position and orientation of the ob-
ject. The illusion of motion in a virtual euclidean world
is achieved as follows: the left (right) eye, positioned
slightly to the left (right) of the origin, is transformed
by the tracking isometry to yield its moved position P.
Then a euclidean translation Te is used to move a vir-
tual (off-axis) camera from the origin to this position
and images are rendered for each display wall, creating
the illusion of moving around in the virtual world7.

In this section we will consider the metric-neutral
tracking problem: how can the above process be
adapted so as to produce the illusion of motion in a
noneuclidean virtual world?

Previous experiments with noneuclidean virtual real-
ity ([FGK+03]) used this euclidean translation to move
around within the noneuclidean scene. This is equiv-
alent to the situation mentioned above in Section 4.2,
where a noneuclidean exhibit is viewed by an museum
visitor in euclidean space. This can be a useful mode of
investigation but it does not represent the insider’s view
discussed above.

We describe a metric-neutral tracking solution below.
The explanation consists of two parts. First we state and
solve the so-called scaling problem, and then the track-
ing problem proper. We then discuss this solution in or-
der to clarify some of the perhaps unfamiliar concepts
involved.

6.3 Unit lengths and the scaling problem
For the purposes of this discussion, we assume we
are dealing with a CAVE-like immersive environment
(hereafter referred to as the room) shaped like a cube,
with the origin of the coordinate system in the middle
of the cube.

As mentioned above, we cannot use scaling transfor-
mations in a metric-neutral scene graph. So, if the phys-
ical dimensions of the tracking system are inappropri-
ate, we can’t scale the world to correct this. For exam-
ple, a tracking system that reports lengths in inches will
be inappropriate for viewing hyperbolic space, since the
standard model of hyperbolc space will occupy a ball

7 The orientation matrix for the head does not appear in the scene graph
directly, since the images projected on the walls only depend on the
location of the eye. But it does play a role in determining the position
of the eye.

GraVisMa 2010 Full Papers

- 23 -

with radius 1 inch. We can however change these di-
mensions themselves in a metric-neutral way.

This is simple within the jReality tool system. We
insert a virtual device between the raw tracking device
(in meters or inches) and the tools themselves. This
virtual device scales the entries of the translation vector
by a fixed scale factor; the rotational part is left alone.
We can choose the scale factor to shrink or expand the
virtual room so that it occupies the desired subset of the
space in question. This flexible unit length is metric-
neutral since it avoids inserting scaling transformations
into the scene graph itself. It can be carried out in real-
time.

Any parameters in the system which depend on the
unit length must then be updated when the unit length is
changed, for example, the eye separation of the tracked
observer.

6.4 Metric-neutral tracking
With this flexible coordinate system for the immersive
environment in place, it is straightforward to adapt the
tracking process to be metric-neutral. First, we inspect
the metric attribute of the virtual camera node to deter-
mine in which metric the tracking should be done. If
it’s noneuclidean, construct the unique non-euclidean
translation Tn that moves the origin (0,0,0,1) to the
same homogeneous point P as Te does (see Section
2.1) and apply this to the virtual camera instead of Te.
All cumulative transformations in the scene graph re-
main valid noneuclidean isometries, so the images on
the walls remain valid views for a noneuclidean insider.

Suppose there is a feature of interest located at P. Tn
will bring the observer to this point, as Te does. Fur-
thermore, and in contrast to the use of Te, as one moves
nearer to or away from P, the feature will appear to
increase or decrease in size in a correct noneuclidean
way. For example, in hyperbolic space, as the observer
backs up away from the front wall, the objects seen on
the front wall will tend to reduce their apparent size ex-
ponentially quickly. Using a euclidean tracking transla-
tion misses this effect. The next section explores this in
more depth.

6.5 Discussion
Suppose we include in our scene a representation of the
room. Call this the virtual room. Assume that the illu-
sion of immersion is not complete, and that we can see
both the physical room and the virtual room as we move
around. For a euclidean observer, the virtual room will
coincide with the physical room, if the immersive en-
vironment is functioning correctly. What will a noneu-
clidean observer see?

When standing in the middle of the room, Tn = Te, so
the virtual and physical coincide. If the observer backs
up until his head is the middle of the back wall, the vi-
sual angle subtended by the front wall will depend on

Figure 5: How the front wall appears from the middle
of the back wall with a unit length of 1.73m, in the three
metrics. Red outline is the physical wall.

0.1 0.2 0.3 0.4 0.5

50

55

60

Figure 6: Graph of visual angle in degrees (vertical
axis) vs. scaling factor (horizontal). The elliptic case
is the red curve; the hyperbolic, blue.

the metric and the unit length chosen. Figure 6 shows
the dependence of this visual angle on the scaling fac-
tor. The maximum scaling factor on this graph corre-
sponds to a unit length of

√
3, the smallest unit length

such that the room contains all of hyperbolic space.
Figure 5 compares the view for this maximum value
in the three metrics.

A similar effect can be detected in the dihedral angles
of the physical walls of the room. An observer carrying
a virtual noneuclidean protractor could measure the di-
hedral angle between the walls of the room. He would
discover a deviation from the euclidean right angle. The
hyperbolic angle would be less, and the elliptic angle
greater.

The noneuclidean orientation matrix The foregoing
discussion has focused on the translational part of the
tracking information, since that is crucial in the head-
tracking strategy. What can be said about the orienta-
tion part in the noneuclidean setting? This information
is important for example in implementing wands and
other pointing devices in noneuclidean spaces.

View the orientation part of the euclidean frame as a
basis for the tangent space at the origin, and decompose
the total frame as Fe = Te◦Re where Re is the orientation
matrix and Te the euclidean translation (acting as usual
on column vectors positioned on the right of the expres-
sion). Define a noneuclidean frame Fn := Tn ◦Rn, where
Tn is as above. Note we can assume Rn = Re since this
is a rotation at the origin, where all three metrics agree.

For a tracked wand, one gets reasonable results by
using Fn to transform the scene graph node representing
the wand. However, Fn is just one of many possible
choices. One might do better by choosing the unique
noneuclidean isometry with the same axis and angle of
rotation as Fe. This will in general be different from

GraVisMa 2010 Full Papers

- 24 -

Figure 7: 2D Java GUI embedded as euclidean element
in elliptic space.

Fn. But in our experience, the difference to Fn is not
significant.

6.6 Metric-neutral immersive 3D GUI
jReality has the capability to embed stan-
dard 2D Java GUI elements (most instances of
java.awt.Component) as 3D surfaces in the 3D
scene graph. See Figure 7. This feature is designed
for immersive environments where the standard 2D
display surface is absent. The embedding is achieved
in a straightforward way by means of texture-mapping
and forwarding of input events ([WGH+09]).

We have found that these GUI elements work best
in a immersive environment when they are positioned
as if they are paintings hung on the walls of the room.
The user can then drag and resize these canvases while
keeping them on the wall.

7 FURTHER WORK
There a no shortage of directions for extending this
work. The general program is to identify metric-neutral
features and extend the euclidean functionality accord-
ingly, while respecting metric-specific features. The
extension to geometric algebra has already been men-
tioned. Kinematics, rigid body motion, and subdivision
surfaces are three further areas of current activity.

8 CONCLUSION
We have introduced and characterized a metric-neutral
visualization system as one that supports infrastructure,
interaction, and immersion for euclidean, hyperbolic
and elliptic metrics. We have described a specific im-
plementation fulfilling these requirements, and demon-
strated a number of specific innovations, including:
metric-neutral tubing, metric-neutral realtime shading,
and metric-neutral tracking. The resulting system pro-
vides researchers and educators with significant im-
provement in the quality and ease of visualization of

these fundamental mathematical spaces in a metric-
neutral context. Furthermore, programming within this
system offers an excellent opportunity for students and
researchers to deepen their appreciation of the many
interesting connections among these three fundamental
geometries.

A CAYLEY-KLEIN METRICS
The following provides the essential knowledge involv-
ing construction and calculation of the metric spaces
featured in the article. We simplify to dimension n = 3.
Points in RP3 are written with homogeneous coordi-
nates as x = (x,y,z,w).

A.1 From quadratic form to projective
metric

To obtain metric spaces inside RP3 we begin with a
symmetric quadratic form Q on R4. By standard results
of linear algebra we can assume that we have chosen
coordinates in which Q takes a diagonal form when ex-
pressed as a matrix. The quadric surface associated to Q
is then defined to be the points {x | xQε xt = 0}. Since
Q acts homogeneously on the coordinates, we can con-
sider it also defined on RP3.

We can use the same matrix Q to define an inner prod-
uct by interpreting it as a symmetric bilinear form. For
our purposes we restrict attention to a special family of
Q parametrized by a real parameter ε , and use this to
define an inner product between points as follows:
〈x0,x1〉ε := xQε xt = x0x1 + y0y1 + z0z1 + εw0w1 (1)

〈,〉1 gives the inner product for elliptic space, and 〈,〉−1
for hyperbolic. For brevity we write these two inner
products as 〈,〉+ and 〈,〉−, resp.

The inner products above are defined on the points of
space; there is an induced inner product on the planes of
space formally defined as the adjoint of the matrix Qε .
For ε ∈ {1,−1} this is identical to the original matrix
and we can use the same notation for both points and
planes in the formulae below.

The quadric for elliptic space is {x | 〈x,x〉+ = 0}.
There are no real solutions; this is called a totally imag-
inary quadric. The points x | 〈x,x〉+ > 0 constitute the
projective model of elliptic space: all of RP3. The
quadric for hyperbolic space is {x | 〈x,x〉− = 0}, the
unit sphere in euclidean space. The points x | 〈x,x〉− <
0 constitute the projective model of hyperbolic space:
the interior of the euclidean unit ball. The sphere itself
is sometimes called the sphere at infinity for hyperbolic
space. The euclidean metric is a limiting case of the
above family of metrics as ε grows larger and larger. In
the limit for limε→∞, we arrive at the euclidean metric.
Here the quadratic form for planes is diag(1,1,1,0),
that for points becomes diag(0,0,0,1).The projective
model of euclidean space consists of RP3 with the plane
w = 0 removed, the so-called plane at infinity.

GraVisMa 2010 Full Papers

- 25 -

A.2 Polarity on the metric quadric
A correlation of projective space is a projective trans-
formation that maps points to planes; and planes to
points. To the absolute quadric Qε is associated a cor-
relation Π which maps a point x to the set Π(x) :=
{y | yQε xt = 0}. When the dimension of Π(x) is 2, x is
said to be a regular point. In this case, Π(x) is called the
polar plane of x, and is sometimes written x⊥, since it
is the orthogonal subspace of x with respect to the met-
ric. The image of a regular plane under Π is called its
polar point. When the quadric is non-degenerate, all
points and planes are regular and Π is an involution. In
the euclidean case, the polar plane of every finite point
is the plane at infinity; the polar point of a finite plane is
the point at infinity in the normal direction to the plane.
Points at infinity and the plane at infinity are not regular
and have no polar partner.

The polar plane of a point is important since it can be
identified with the tangent space of the point when the
metric space is considered as a differential manifold.
Many of the peculiarities of euclidean geometry may
be elegantly explained due to the degenerate form of
the polarity operator.

A.3 Distance and Angle Formulae
In general a line will have two (possibly imaginary) in-
tersection points I1 and I2 with the absolute quadric.
The original definition of distance of two points A and
B in these noneuclidean spaces relied on logarithm of
the cross ratio of the points A,B, I1,and, I2 ([Cox65]).
By straightforward functional identities these formulae
can be brought into alternative form. The distance d
between two points x and y in the elliptic (resp. hyper-
bolic) metric is then given by:

d = cos−1(
〈x,y〉+√

(〈x,x〉+〈y,y〉+)
)

d = cosh−1(
−〈x,y〉−√

(〈x,x〉−〈y,y〉−)
)

The familiar euclidean distance between two points:

d =
√

(x0− x1)2 +(y0− y1)2 +(z0− z1)2

can be derived by carefully evaluating by parametrizing
the above formulas and evaluating the limit as as ε→∞.
See [Kle27], page 179.

In all three geometries the angle α between two ori-
ented planes u and v is given by (where 〈,〉 represents
the appropriate inner product):

α = cos−1(
〈u,v〉√

(〈u,u〉〈v,v〉)
)

Guide to literature To learn more about the math-
ematics, see [Kle27], [Cox87] and [Cox65], and
[Thu97]. For details on how to construct non-euclidean
isometries see [PG92], [Gun93], and [Wee02].

REFERENCES
[Cox65] H.M.S. Coxeter. Non-Euclidean Geometry. University

of Toronto, Toronto, 1965.

[Cox87] H.M.S. Coxeter. Projective Geometry. Springer-Verlag,
New York, 1987.

[DFM07] Leo Dorst, Daniel Fontljne, and Stephen Mann. Geo-
metric Algebra for Computer Science. Morgan Kauf-
mann, San Francisco, 2007.

[FGK+03] George Francis, Camille Goudeseune, Henry Kacz-
marski, Benjamin Schaeffer, and John M. Sullivan. Al-
ice on the eightfold way: Exploring curved spaces in an
enclosed virtual reality theater (cube). In Visualization
and Mathematics III, pages 304–316. Springer Verlag,
2003.

[GH97] Charles Gunn and Randy Hudson. Mathenautics: Us-
ing virtual reality to visit three-dimensional manifolds.
In Proceedings of 1997 Symposium on Interactive 3D
Graphics, pages 167–171, Monterey, CA, 1997. ACM.

[Gun92] Charles Gunn. Visualizing hyperbolic geometry. In
Computer Graphics and Mathematics, pages 299–313.
Eurographics, Springer Verlag, 1992.

[Gun93] Charles Gunn. Discrete groups and the visualization
of three-dimensional manifolds. In SIGGRAPH 1993
Proceedings, pages 255–262. ACM SIGGRAPH, ACM,
1993.

[Gun10] Charles Gunn. Geometric algebra and metric-
neutral visualization, kinematics, and dynamics.
In Applications of Geometric Algebra to Com-
puter Science and Engineering, Amsterdam, 2010.
To appear 2011; extended abstract available at
http://www.math.tu-berlin.de/~gunn/
Documents/Papers/ga2010-02.pdf.

[Hee83] Patrick Heelan. Space-Perception and the Philosophy of
Science. University of California Press, 1983.

[jr06] jreality, 2006. http://www.jreality.de.

[Kle27] Felix Klein. Vorlesungen ueber Nichteuklidische Ge-
ometrie. Chelsea, New York, 1927.

[Mac06] Doug MacKenzie. The poncare conjecture – solved.
Science, 314:1848–1849, 2006.

[MLP+] Tamara Munzner, Stuart Levy, Mark Phillips, Nathaniel
Thurston, and Celeste Fowler. Geomview — an inter-
active viewing program. For Linux PC’s. Available via
anonymous ftp on the Internet from geom.umn.edu.

[Mun98] Tamara Munzner. Exploring large graphs in 3d hyper-
bolic space. IEEE Computer Graphics and Applica-
tions, 18:18–23, 1998.

[PG92] Mark Phillips and Charles Gunn. Visualizing hyperbolic
space: Unusual uses of 4x4 matrices. In 1992 Sympo-
sium on Interactive 3D Graphics, pages 209–214. ACM
SIGGRAPH, ACM, 1992.

[Sel05] Jon Selig. Geometric Fundamentals of Robotics.
Springer, 2005.

[Thu97] William Thurston. The Geometry and Topology of 3-
Manifolds. Princeton University Press, 1997.

[Wee90] Jeff Weeks. The Shape of Space. Dekker, 1990.

[Wee02] Jeff Weeks. Real-time rendering in curved spaces. IEEE
Comput. Graph. Appl., 22(6):90–99, 2002.

[WGH+09] S. Weissmann, C. Gunn, T. Hoffmann, P. Brinkmann,
and U. Pinkall. jreality: a java library for real-time in-
teractive 3d graphics and audio. In Proceedings of 17th
International ACM Conference on Multimedia 2009,
pages 927–928, (Oct. 19-24, Beijing, China), 2009.

[WSE04] D. Weiskopf, T. Schafhitzel, and T. Ertl. Gpu-based
nonlinear ray tracing. Computer Graphics Forum,
23(3):625–633, 2004.

GraVisMa 2010 Full Papers

- 26 -

Fast GPU-based image warping and

inpainting for frame interpolation

 Jakub Rosner1 Hannes Fassold2
 jakub.rosner@joanneum.at hannes.fassold@joanneum.at

 Peter Schallauer2 Werner Bailer2
 peter.schallauer@joanneum.at werner.bailer@joanneum.at

1 Silesian University of Technology, PhD faculty of Data Mining, Ulica Academicka 16, 44-100 Gliwice, Poland
2 JOANNEUM RESEARCH, Institute of Information Systems, Steyrergasse 17, 8010 Graz, Austria

ABSTRACT
Frame interpolation (the insertion of artificially generated images in a film sequence) is often used in post
production to change the temporal duration of a sequence, e.g. to achieve a slow-motion effect. Most frame
interpolation algorithms first calculate the motion field between two neighboring images and scale it
appropriately. Afterwards, the images are warped (mapped) with the scaled motion field, and regions to which no
source pixel was mapped are filled up (image inpainting). In this paper, we will focus on the latter two steps, the
warping of the images and the image inpainting. We present simple and fast algorithms for image warping and
inpainting, and discuss their efficient implementation to GPUs, using the NVIDIA CUDA technology. We
compare the CPU and corresponding GPU routines and notice a speedup factor of approximately 6 - 10 for
image warping and image inpainting. Significantly higher speedups can be expected for the latest NVIDIA GPU
generation codenamed Fermi due to several architectural improvements (faster atomic operations, L1/L2 cache).
When comparing the result images of the CPU and GPU routine visually, practically no difference can be seen.

Keywords
Image warping, image inpainting, frame interpolation, GPU, CUDA, GPGPU

1. INTRODUCTION
Frame interpolation (the insertion of artificially
generated frames in a film sequence) is a commonly
used method in video and film post production. It can
be used for converting a given film sequence to a
slow-motion sequence (also known as retiming). Also
when doing film restoration, one can replace missing
frames, or frames which have been badly damaged,
by artificial frames created by frame interpolation.

 Typical frame interpolation algorithms operate in the
following way (see Figure 1): As a first step, the
pixel-wise motion (optical flow) between the two
temporally neighboring images of the interpolated

image (which is to be calculated) is estimated. A
dense motion field is retrieved, whose motion vectors
then are scaled linearly according to the desired
temporal position of the interpolated image. After
that, one neighbor image is warped with the scaled
motion field to get the interpolated image. The term
image warping means that each pixel of the source
image is mapped (translated) with its motion vector
and written into a destination image. The interpolated
image typically has holes, regions in the image to
which no source pixel was mapped to. So the last step
is to fill these regions with an image inpainting
algorithm. One can apply this procedure to both
neighbor images and gets two interpolated images,
which can be combined to one image e.g. by some
sort of blending . In this work, we will focus on the
last two steps, image warping and inpainting, and on
their efficient implementation on the GPU using the
CUDA technology. We will not describe the
calculation of the motion field, as there are efficient
GPU-based algorithms available (e.g. [Wer09]) which
we will take advantage of.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2010 Full Papers

- 27 -

Note that CUDA3 is an acronym for Compute Unified
Device Architecture and is a general-purpose GPU
programming environment introduced by NVIDIA,
allowing the programmer to utilize the massive
processing power of current generation GPUs.

In this document, we first give an introduction into
GPU programming and CUDA (see next section). In
section 3 we discuss shortly previous work on
implementing image warping and image inpainting on
the GPU. In section 4 and 5, we give an description
of the algorithms we developed in our research group
for image warping and image inpainting. After that,
in section 6 we describe how we ported our CPU
algorithms to CUDA. Finally, in section 7
experiments are done to compare the algorithms and
their respective GPU implementations in terms of
quality and speed.

2. GPU PROGRAMMING & CUDA
In the last years, GPUs have gained significant
importance in computer vision and other scientific
fields. A number of basic computer vision algorithms
has already been implemented efficiently on GPUs,
be it optical flow calculation [Wer09], feature point
tracking [Fas09] or SIFT features [Sin06]. Typically
they provide a speedup of an order of magnitude with
respect to a reference CPU implementation,
depending on the algorithm’s ability to be executed in
a massively parallel way. Most GPU implementations
use CUDA as it is currently the best supported
programming environment.

A CUDA program is typically composed of a control
routine, which calls a couple of CUDA kernels. A
kernel is similar to a function, but is executed on the
GPU in parallel by a larger number of threads
(typically thousands). Groups of 32 consecutive
threads are organized into warps. Furthermore, sets
of up to 512 threads are grouped into thread blocks,
which then form a grid.

An important property of NVIDIA GPUs is shared
memory, which is a small, but very fast cache which

3 http://www.nvidia.com/object/cuda_home_new.html

has to be managed by the user. There are also other
important memory types with different properties,
e.g. texture memory (read-only, cached), constant
memory and global memory (read-write, high
latency). Also atomic functions are very helpful when
different threads try to access the same memory
location.

For a more detailed description we refer to the
publications [Fas09] and [Ryo08] where GPU/CUDA
programming is explained more in depth and
guidelines are given for porting algorithms efficiently
to CUDA.

3. RELATED WORK
Although the literature for image inpainting
algorithms is huge (e.g. see [Ber00][Bor07][Che10]
[Cri03][Fid08]), there are not many algorithms which
have been reported to run on the GPU. This might be
because a significant amount of them have a rather
complicated workflow or an implicit serial nature
which can not be easily mapped to a GPU. In fact, to
our knowledge only for one algorithm [Har01] a
corresponding GPU implementation has been
described5. It is implemented in shading language6,
having the disadvantage that the algorithm has to be
adapted to fit to the computer-graphics oriented
render pipeline. This adaption typically leads to a
more complicated implementation and performance
degradation. Regarding image warping, a survey of
various warping methods can be found in [Wol90].

4. IMAGE WARPING

Algorithm
Image warping is a fundamental task in image
processing. Given an source image I and a dense
motion field, one wishes to generate a warped image
Iwarped where all the pixels in I have been translated by
their corresponding motion vector.

Note that, depending on the motion field, multiple
pixels of the source image may map to the same place
in the warped image. On the other hand, there may be
areas in the warped image to which no source pixel
was mapped to, leading to holes in the warped image.
Filling up those areas will be described later in this
document in section 5.

The algorithm we propose for image warping needs
an additional accumulator image and a weight image.
Both are floating point (fixed-point is also possible)
and are initially set to zero. Now for each source
pixel its destination position is calculated, using the
mapping defined by the dense motion field. As we

5 http://www.eecs.harvard.edu/~hchong/goodies/inpaint.pdf
6 http://www.opengl.org/documentation/glsl/

moriginal

I1 I2 Iint

mscaled

Figure 1: Illustration of the workflow for frame
interpolation. Iint is the interpolated image, I1 and
I2 its neighbors, moriginal the calculated motion
field between I1 and I2 and mscaled the scaled
motion field.

GraVisMa 2010 Full Papers

- 28 -

can not write directly to the destination position (it
typically has non-integer coordinates), we instead
‘write’ into the four surrounding pixels of the
destination position (one can imagine this as sort of
‘bilinear writing’). For that, we increment the four
surrounding pixels in the accumulator image and also
in the weight image. The amount of increment
depends on the distance of the destination position to
the specific pixel neighbor.

The usage of an accumulator image solves the
problem that multiple source pixels possibly map to
the same destination pixel. The resultant intensity in
the warped image will be a weighted combination of
the source pixels intensities.

Finally, the intensity values of the warped image
Iwarped is calculated by dividing the accumulator
image pixel-wise by the weight image. Areas to
which no source pixel was mapped (holes) are
identified by having a zero value in the weight image.
A hole mask is generated which is needed for the
inpainting process, which is described in the next
section. Note that the proposed image warping
algorithm is quite fast as it has has linear complexity
with respect to the number of image pixels.

5. IMAGE INPAINTING

Algorithm
The input for the image inpainting algorithm is an
intensity image I and a hole mask H which defines the
areas of then intensity image, which should be
inpainted. In the following, we give an outline of our
proposed inpainting method. It needs an additional
floating-point accumulator image A and weight image
W. Both are initially set to zero. For multi-channel
images, each channel is calculated separately.

First, the set of border pixels of all holes are
determined. Now for each border pixel, its intensity
is propagated into the hole in a fixed set of directions
(typically 16, equally distributed over the 360 degree
range). See Figure 3 for an illustration of the process.
The propagation is done in the following way: For a
specific border pixel and a specific direction, a line-
tracing using the Bresenham algorithm [Bre65] is
performed, starting at the border pixel and ending
when the line hits the opposite side of the hole. The
Bresenham algorithm is slightly modified so that
during line-tracing it updates also the approximate
distance dcurr from the current pixel to the start
border pixel. Now, for each visited pixel p during
line-tracing, its corresponding accumulator image
value A(p) and weight image value W(p) are

incremented according to b
curr

g
d

pApA
1

)()(+= and

currd
pWpW

1
)()(+= , where gb denotes the intensity

value of the start border pixel. One can see from this
that border pixels which are nearer to a given hole
pixel have a higher contribution to its intensity value,
as the increment in the accumulator image will be
higher for them.

After having done the propagation for all hole border
pixels and all directions, the intensities values for the
regions to be inpainted can be calculated simply by
dividing the accumulator image pixel-wise by the
weight image.

A problem of the proposed method is that due to
using a fixed set of directions, it can introduce star-
shaped artefacts into the inpainted regions. In order to
reduce these artefacts, we enforce an additional post-
processing step.

 Figure 2: From top to bottom: input image,
warped image, final interpolated image where
holes have been inpainted.

GraVisMa 2010 Full Papers

- 29 -

For this purpose, we first calculate a distance map for
the hole regions, which gives for each hole pixel
approximately its distance to the nearest hole border
pixel. Note that fast algorithms for calculating the
distance map are available [Bor86]. Now each hole
pixel is blurred with a distance-adaptive box kernel,
with kernel sizes ranging from 3 (for hole pixels near
the border) to 9 (inner hole pixels).

One can increase the quality of the inpainted regions
by using more directions in the propagation step. On
the other hand, also the runtime increases linearly
with the number of directions. According to
experiments, a value of 16 seems to be a good
compromise between quality and runtime.

In Figure 4 the results of proposed image inpainting
algorithm (using 16 directions) for some commonly
used test images8 can be seen. As the algorithm is
solely diffusion-based, blurring can be observed in
the inpainted regions. Note that the proposed
algorithm shares some loose similarities with
inpainting methods using radial basis functions (RBF)
[Uhl06].

6. CUDA IMPLEMENTATION
The following section describes some CUDA -
specific issues resolved while implementing the
image warping and inpainting algorithms for GPU.

The first step is to transfer the source data from CPU
memory to GPU memory, unless it already resides in
GPU memory. E.g. when the optical flow is
calculated with a GPU-based method, then the
motion field is already on the GPU and doesn’t have
to be transferred.

In order to minimize allocation and deallocations of
GPU memory, we use a context object which holds
the necessary temporary data buffers throughout the
whole sequence. The context object can be used for
both algorithms (warping and inpainting).

Image warping

8www-m3.ma.tum.de/bornemann/InpaintingCodeAndData.zip

The image warping algorithm has been implemented
in CUDA in two steps. The first one calculates the
accumulator and weight images and the second one
then calculates the warped image.

The first step of this algorithm, while being quite
straightforward to implement efficiently on the CPU,
turns out to be problematic to optimize on graphics
processor. The reason is that, multiple GPU threads
possibly try to increment the same value in the weight
or accumulator images simultanously, leading to
read-write hazards. To handle this we have to use
atomic increment operations which serialize the
workflow, but at a large cost in performance.

To reduce this penalty, each thread block (usually
16x16 threads) determines an approximate region in
the destination image where its threads will likely be
mapped to. As the runtime for executing operations
using shared memory is much lower than executing

Figure 4: Image inpainting results for the images
Eye, Girls, New Orleans and Parrot.

 Figure 3: A specific hole border pixel is propagated
into the hole in a fixed set of directions.

GraVisMa 2010 Full Papers

- 30 -

them using global memory, each thread atomically
increments the four pixels around the destination
position in global memory only if this position falls
outside the approximated region. Otherwise it
increments the appropriate values in shared memory,
and after all the threads are completed, the whole
region is copied into the destination image. Note that
the more ‘regular’ the motion field is, the the more
atomic operations in fast shared memory are done.

The final step of the warping algorithm, unlike the
first one, is pretty straightforward. It should be noted
that for performance reasons, computing the
destination value from accumulator and weight image
is performed in shared memory.

Image inpainting
As first step of the image inpainting process, we have
to determine the position of all hole border pixels.
For this, we first do a 3x3 dilation operation followed
by subtraction of the original mask. In the resultant
image only hole border pixels have non-zero value.
To get a list of their positions, we apply a compaction
operation which filters out zero-valued pixels. The
first two operations are relatively easy to implement
on a GPU and a highly efficient compaction
algorithm for GPU which was used by us can be
found in the CUDA performance primitives
(CUDPP) library9 .

As the next step, the line tracing, involves
propagation in different directions, we would
encounter cases where multiple threads try to modify
the same value at the same time, which would
demand the usage of slow atomic functions.In order
to avoid this, we split the algorithm into separate
kernels, each tracing lines in exactly one direction
from each border pixel and therefore prevent
multiple-way access hazards. Note that in the line
tracing process, each hole border pixel is assigned to
one CUDA thread.

To calculate the intensity value for each hole pixel
from the accumulator and weight image we use a
similar kernel to the one used in image warping, but
modify it slightly to compute only the hole regions.

In the last step, the distance-adaptive blurring of the
hole regions, for every hole pixel the neighbor pixels
for the maximum possible box kernel window size
(9x9) are read in, to avoid divergent threads. After
that, only the actual needed neighbor pixels
(according to the window size for the hole pixel) are
used for calculating the result value of the box filter.

9 http://www.gpgpu.org/developer/cudpp

7. EXPERIMENTS AND RESULTS
In this section we will describe the results from
comparing our CUDA implementation against a
optimized CPU implementation. The runtime
measurements were done on a 3.0 GHz Intel Xeon
Quad-Core machine, equipped with a NVIDIA
GeForce GTX 285 GPU. The tests have been
performed for two commonly used resolutions:
Standard Definition (SD) with 720x576 pixels and
High Definition 1080p (HD) with 1920x1080 pixels.
Note that all the test images are 3-channel color
images with 8 bit per channel.

Quality test
The quality results show that our CUDA
implementation of image warping provides the same
results in term of quality as the corresponding CPU
routine, yet there are some minor differences in the
image inpainting. Those differences however are
visually indistinguishable and occur only for a small
fraction of pixels (on average 8 pixels for SD and 50
pixels for HD have a difference which is higher than
a few gray values).

Runtime test
For doing the runtime comparison, we simulate the
frame interpolation scenario. For that, we calculate
the motion field between neighboring frames of a
short video sequence (10 frames) with the method
described in [Wer09] and then do the image warping
and inpainting.

In the warped image, on average 1.4 % of the pixels
are to be inpainted. For the image inpainting, 16
directions are used. The allocation and deallocation
of the context object altogether takes approximately
0.3 milliseconds for SD and 0.6 milliseconds for HD.
These times and the time needed for transferring the
input image to GPU memory are not included in the
given runtime of the GPU implementations. Note that
in our application, the input images are already on the
GPU as the first step (the calculation of the motion
field) was also done on the GPU.

The average speedup (see Figure 5 and Figure 6)
which is achieved by the GPU implementations of the
algorithms is up to an order of magnitude, clearly
demonstrating how advantageous the usage of GPUs
can be for sufficiently parallizable algorithms. All
runtime numbers are given in milliseconds.

GraVisMa 2010 Full Papers

- 31 -

Figure 5: Runtime of the image warping.

Figure 6: Runtime of the image inpainting.

Note that the speedup for image warping is larger for
smaller formats, which is counter-intuitive as usually
algorithms running on the GPU are more effective for
larger sets of data. The reason is that for smaller
images the part of image covered by the thread
block’s shared memory window is relatively larger.

8. CONCLUSION
Simple and fast algorithms for image warping and
image inpainting for usage in frame interpolation
have been presented, and their efficient
implementation to the GPU was described.
Experiments were done which show an significant
speedup factor of 6 – 10 for the GPU
implementations of image warping and inpainting. It
is expected that in the future this factor keeps the
same or even increases as currently GPU generation
cycles are shorter than CPU generation cycles.

9. ACKNOWLEDGMENTS
This work has been funded partially under the 7th
Framework program of the European Union within
the project “PrestoPRIME” (FP7-ICT-231161).

Furthermore, the work of Jakub Rosner was partially
supported by the European Social Fund.

10. REFERENCES
[Ber00] M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester,

Image inpainting, International Conference on
Computer Graphics and Interactive Techniques, 2000

[Bre65] J. E. Bresenham, Algorithm for computer control
of a digital plotter, IBM Systems Journal 4, 1965

[Bor86] G. Borgefors, Distance transformations in digital
images, Computer Vision, Graphics, and Image
Processing, Volume 34, 1986

[Bor07] F. Bornemann, T. März, Fast image inpainting
based on coherence transport, Journal of Mathematical
Imaging and Vision, Volume 28, 2007

[Che10] X. Chen, F. Xu, Automatic image inpainting by
heuristic texture and structure completion, 16th
International Multimedia Modeling Conference, 2010

[Cri03] A. Criminisi, P. Perez, K. Toyama, Region filling
and object removal by exemplar-based inpainting,
IEEE Transactions on Image Processing, Volume 28,
No. 9, 2004

[Fas09] H. Fassold, J. Rosner, P. Schallauer, W. Bailer,
Realtime KLT Feature Point Tracking for High
Definition Video, GravisMa workshop, Plzen, 2009

[Fid08] I. Fidaner, A survey on variational image
inpainting, texture synthesis and image completion,
Bogazici University, 2008

[Har01] P. Harrison, A non-hierarchical procedure for re-
synthesis of complex textures, Proceedings of WSCG,
Plzen, 2001

[Ryo08] S. Ryoo, Optimization principles and application
performance evaluation of a multithreaded GPU using
CUDA, 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, 2008

[Sin06] S. Sinha, J. Frahm, M. Pollefeys, Y. Genc, GPU-
Based Video Feature Tracking and Matching, EDGE
workshop, 2006

[Uhl06] K. Uhlir, V. Skala, Radial basis function use for
the restoration of damaged images, Computational
Imaging and Vision, Volume 32, 2006

[Wer09] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D.
Cremers, H. Bischof, Anisotropic Huber-L1 Optical
Flow, Proceedings of the British Machine Vision
Conference, London, UK, 2009

[Wol90] G. Wolberg, Digital Image Warping, IEEE
Computer Society Press, 1990

GraVisMa 2010 Full Papers

- 32 -

DirectX 11 Reyes Rendering

Lihan Bin
University of Florida

lbin@cise.ufl.edu

Vineet Goel
AMD/ATI,

Vineet.Goel@amd.com

Jorg Peters
University of Florida
jorg@cise.ufl.edu

ABSTRACT

We map reyes-rendering to the GPU by leveraging new features of modern GPUs exposed by the Microsoft DirectX11 API. That
is, we show how to accelerate reyes-quality rendering for realistic real-time graphics. In detail, we discuss the implementation
of the split-and-dice phase via the Geometry Shader, including bounds on displacement mapping; micropolygon rendering
without standard rasterization; and the incorporation of motion blur and camera defocus as one pass rather than a multi-pass.
Our implementation achieves interactive rendering rates on the Radeon 5000 series.

Keywords: reyes, motion blur, camera defocus, DirectX11, real-time , rasterization, displacement

1 INTRODUCTION

The reyes (render everything you ever saw) architecture
was designed by Pixar [CCC87] in 1987 to provide
photo-realistic rendering of complex animated scenes.
Pixar‘s PhotoRealistic RenderMan is an Academy
Award-winning offline renderer that implements reyes
and is widely used in the film industry. A main feature
of the reyes architecture is its adaptive tessellation and
micropolygon rendering of higher-order (not linear)
surfaces such as Bézier patches, NURBS patches and
Catmull-Clark subdivision surfaces. (A micropolygon
is a polygon that is expected to project to no more than
1 pixel.)

The contribution of our paper is to judiciously choose
features of the Microsoft DirectX11 API to achieve
real-time performance. We make heavy, non-standard
use of the Geometry Shader and of the tessellation en-
gine, instancing and multiple-render-targets to mini-
mize the number of GPU passes. In particular,
• the Geometry Shader streams out alternatively to a
split- or a dice-queue so that all data remains on the
GPU,
• we replace triangle rasterization by point rendering,
• we accommodate displacement mapping, and
• we combine blur and de-focus in a single pass fol-
lowed by a rendering pass to obtain real-time perfor-
mance. Fig. 1 gives a high-level view of the framework;
Fig. 4 provides a more detailed view.
Overview. After a brief discussion of prior related
work, Section 2 reviews the reyes architecture stages
and known efficient algorithmic options. Section

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

WSCG 2010 conference proceedings, ISBN 80-903100-7-9
WSCG’2010, September 7-10 – September 7-10, 2010
Brno, Czech Republic.
Copyright UNION Agency – Science Press

Figure 1: The three types of passes in our frame-
work:the split stage (consisting of N adaptive refine-
ment passes), one pre-rendering pass and one final com-
position pass.

3 shows how our implementation takes specific
advantage of the Direct X11 pipeline to obtain real-
time performance. Section 4 analyzes the effect
of implementation-specific choices and discusses
alternatives. We conclude with Section 5 discussing
limitations of the present implementation and pointing
out how current hardware evolution will impact our
framework.

1.1 Related Prior Work
The paper assumes basic familiarity with the shader
stages of a modern GPU pipeline. In particular, we
focus on the MS Direct X11 standard. In Real-time
reyes-style adaptive surface subdivision, Patney and
Owens [PO08] port the split-and-dice stage (see Sec-
tion 2) on the GPU using CUDA. Micropolygons are
rendered via OpenGL so that the approach is too slow
for real-time rendering. RenderAnts by Kun Zhou et al.
[ZHR+09] is an implementation of the complete reyes-
pipeline based on a special, newly created, hence non-
standard GPGPU programming language, called BSGP.
The main contribution of the RenderAnts approach is a
software layer which attempts to load-balance within
various stages. Our approach uses the hardware to bal-
ance the load within different shader stages, avoiding
the software overhead. Several recent publications time
of this submission) underscore the importance of defo-
cus and motion blur in real-time (non-reyes) settings:
Micropolygon Ray Tracing with Defocus and Motion

GraVisMa 2010 Full Papers

- 33 -

Skala
Poznámka
Accepted nastavil Skala

Skala
Obdélník

Blur [HQL+10] proposes a fast ray traveral data struc-
ture for micropolygons, Real-Time Lens Blur Effects
and Focus Control [LES10] simlutates precise lense ef-
fects via (non-micropolygon) ray tracing, accelerated
by depth-peeling and [HCOB10] focuses on Using blur
to affect perceived distance and size. Our approach to
motion blur and defocus is not based on ray tracing
and different from all three. Data-Parallel Rasteriza-
tion of Micropolygons [FLB+09] proposes an efficient
micropolygon rasterization (on the CPU). We adapt this
algorithm to the GPU setting and add camera defocus
and motion blur as well as displacement mapping in the
same pass. We also leverage the simple split-and-dice
strategy, DiagSplit of Fisher et al. [FFB+09] to reduce
the number of micropolygons generated from a dice-
able patch. However, we base our estimate on a proper
bounding box rather than just the corner coefficients.

2 THE REYES ARCHITECTURE
STAGES AND KNOWN GPU IMPLE-
MENTATION STRATEGIES.

The reyes architecture stages defined by Cook,
Carpenter and Catmull [CCC87] are as follows.

Input: high-order patches
Splitting: Adaptive recursive patch split until

the screen space projection is
sufficiently small.

Dicing: Uniform split into micropolygons.
Shading: Shaders (Displacement Shader,

Surface Shader and Lighting Shader)
are applied to each vertex.

Sampling: Multiple samples are generated at
different time and different lens
positions (using stochastic sampling).

Composition: Samples/Fragments on the same screen
location are depth-sorted and blended.

Below we discuss known good reyes-implementation
strategies that influenced our implementation; and we
discuss the basics of motion blur and camera defocus.

2.1 Splitting
Splitting of the higher-order patch means adaptive
subdivision of its domain to partition it into pieces. The
goal is to obtain sub-patches that yield micropolygons
(that map to one pixel) when uniformly tessellated
(diced). The standard split algorithm computes a screen
bound of an input patch. If this bound is less than
the pixel threshold, the patch is sent to the dice stage
where it is tessellated uniformly; otherwise it is split
into sub-patches until the condition is satisfied. The
algorithm works well when the patch control points are
equally spaced. But when the control points are highly
non-uniform, then uniform tessellation over-tessellates
in some regions or under-tesselates in others.

DiagSplit [FFB+09] is a heuristic for avoiding over-
tessellation (and taking care of T-joints, where one sub-

Figure 2: Three DiagSplit scenarios: simple but effec-
tive.

patch is split but not its neighbor). The idea is to give
shorter edges lower tessellation factors and thereby ad-
just the domain tessellation to the size of the projected
image (screen variation). For, if the edge has non-
uniform screen variation, uniform domain tessellation
in the dicing stage cannot guarantee the micropolygon
property: we may get some larger polygons and some
extremely small polygons.

In [FFB+09] good correspondence is called uniform
and poor correspondence non-uniform. To check uni-
formity of domain tessellation with the range tessel-
lation, i.e., uniformity of screen variation under uni-
form domain tessellation, we step in equal interval
through the domain and sample n + 1 points pi for
each edge. Let P be the projection to screen space,
`i := ‖Ppi−1−Ppi)‖ and m := maxi `i. If

σ := |mn−∑`i| ≤ 1 (1)

then `i ∼ m for all i, i.e. that the range is uniformly
partitioned and we have good correspondence. If we
then set the edge tessellation factor τ to τ := mn+ 1,
i.e. partition the domain edge into mn segments, then
one domain segment should correspond to one pixel in
the range.

Given the edge tessellation factors τ0 and τ2 of two
opposing edges of a quad, we split the patch according
to one of three choices (see Fig. 2).
— If both σ0 > 1 and σ2 > 1, we split at the mid-points.
— If σk > 1 for only one k ∈ {0,2} then

— if τk is even, split at the mid-point.
— if τk is odd, split at dτk/2e.
Watertightness is maintained when shared edges have

the same edge tessellation factor.

2.2 Motion blur and Camera defocus
Motion blur is an important tool to convey a sense of
speed. Long exposure of a moving object creates a

GraVisMa 2010 Full Papers

- 34 -

Figure 3: Defocus: simulating defocus by camera shift
of less than ∆c and projection shift of less than ∆x so
that δ < 1.

continuous and blurred image on optical film. To ap-
proximate the effect of the Model matrix changing from
M0 to M1, one averages the images obtained from ren-
dering with nmb intermediate matrices (1− i

nmb+1)M0+
i

nmb+1 M1, i = 1, . . . ,nmb.
Camera defocus is used to guide viewer attention: as

light travels through a lens, only the objects that are
within a certain range appear sharp. In order for the
light to converge to a single point, its source needs to
be in an in-focus plane, a certain distance away from
the lens. Anything not in or near the plane is mapped
to a circle of confusion (CoC) that increases with the
distance from the in-focus plane (and the size of the
lens). When the CoC is smaller than the film resolution,
we call the range in focus and get a sharp image. (In
standard rendering, the lens is a ‘pinhole’, i.e. the lens
has zero size yielding always sharpness.)

We can simulate camera defocus, analogous to mo-
tion blur, by rendering the scene multiple times. To
obtain an un-blurred image within d of the focal point
while blurring the remaining scene, we shift the view-
ing frustum by maximally ∆x within a plane (cf. Fig.
3) and adjust the viewing direction towards the focus so
that the image of the focal object project to the same 2D
screen location. (If the camera shift ∆x were too large,
only the focal point would be sharp.) That is (c.f. Fig.
3), for a given distance dnear to the near clipping plane,
focal-region-width d and distance to the in-focus plane
f , we need to determine upper bounds ∆x and ∆c by set-
ting δ ∈ {(±1,±1)}, i.e. the allowable perturbations of
at most one pixel, We obtain ∆x and ∆c by solving two
linear equations

∆x

f −dnear
=

∆c

f
,

∆x−δ

f −dnear−d
=

∆c

f −d

arising from similar triangles,

3 OUR REYES IMPLEMENTATION.
One update of the image in our implementation uses
N + 2 passes as outlined in Fig. 1 and in more detail
in Fig. 4: There are N passes for adaptive refinement
(splitting), one heavy pre-rendering pass that combines
dicing, shading (computation of normals) and sampling
(displacement, motion blur and defocus), and a fi-
nal pass for composition. The implementation uses
three buffers: PatchBuffer[0], PatchBuffer[1] and dice-
ablePatchBuffer.

3.1 Implementing the reyes-Splitting
Stage

In pass 1, in the Geometry Shader, we take Patch-
Buffer[read] where read = 0 as input and test if a patch
is diceable or not. If it is diceable, we stream out to the
diceablePatchBuffer, otherwise we stream out to Patch-
Buffer[write] where write = 1. In the next passes, up to
some pass N when the size of PatchBuffer[write] is 0,
we satisfy the reyes requirement by repeatedly switch-
ing the read and the write PatchBuffer and subdivid-
ing the patches. Once the PatchBuffer[write] ends up
empty, we switch to the pre-rendering pass.

In more detail, in the split passes, we test each edge
of the patch in screen space for uniformity according
to (1). Our algorithm takes displacement mapping into
account when computing the edge tessellation factor
τ . (Displacement mapping moves vertices and thereby
changes the size of tessellated polygon violating the
micropolygon property. The effect, pixel dropout, is
shown in Fig. 9, top.) To maintain the micropolygon
property, we perform one additional test on each edge:
we find the difference between the maximum displace-
ment and minimum displacement, or edge-width, on the
edge, as explained in the next paragraph. If the differ-
ence is large, we subdivide the edge.

Let the edge-width of displacement map be the max-
imal surface perturbation along a domain edge due to
the displacement map. To avoid searching through the
displacement map to determine the edge-width, i.e. to
avoid a repeated for-loop, we convert the displacement
map to a mip-map structure on the GPU. This approach
follows the spirit of the CPU algorithm [MM02], in
building a mipmap-like structure, but, instead of aver-
aging 2× 2 pixels, we compute the max displacement
and the min displacement values of the 2× 2 pixels.
This allows us to read off the edge-width for any sub-
divided patch by looking up the max and min entries at
the level of the displacement mip-map corresponding to
log(edge-length).

The approach works well, except that it becomes in-
efficient if the patch has a markedly high-frequency dis-
placement map. Then the upper bound on the edge tes-
sellation factor is high and easily results in overestima-
tion and hence poor performance. We address this by

GraVisMa 2010 Full Papers

- 35 -

Figure 4: Implementation overview: N initial splitting passes, followed by a heavy pre-rendering pass and a final
pass compositing render targets. The pre-rendering pass dices into micropolygons (MP∗) using the tessellation
engine (Section 3.2); the pass also applies instancing and multiple-render-target in the Geometry Shader to enable
defocus and motion blur (Section 3.4); and it computes the micropolygon normal and displacement (with the
distortion by the displacement already accounted for into the split stage – see Section 3.1). Abbreviations: IA =
Input Assembly, VS = Vertex Shader, HS = Hull Shader, TE = Tessellation Engine, DS = Domain Shader, GS =
Geometry Shader, RS = Rasterizer, PS = Pixel Shader, VB= Vertex Buffer, MP=Micropolygon.

clamping to a maximal entry and having the Geometry
Shader output sufficiently many points to represent the
such unusually big distortion triangles (see Algorithm
1). The result is displayed in Fig. 9, bottom.

3.2 Implementing the reyes-Dice Stage
We apply the DirectX 11 tessellation engine using the
edge tessellation factors τ computed in the Splitting
stage. The input to this stage is the diceablePatchBuffer,
the output are micro-polygons. Note that this stage, as
well as the Shading and the Sampling stages of reyes-
rendering are folded into one pre-rendering pass.

3.3 Replacing the GPU-Rasterization
Stage

With the output of the DirectX 11 Domain Shader stage
in the form of micro-triangles of size at most 1 pixel
(see Fig. 5), we rasterize in the Geometry Shader. Cur-
rent hardware rasterization is designed to rasterize large
triangles. In particular, it can test a 4x4 ‘stamp’ of sam-
ples against each polygon to increase throughput and
parallelism. However, for each micropolygon this ap-
proach streams out at most one pixel wasting all 4× 4
parallelism. Therefore we generate pixel-sized output

in the Geometry Shader and send the resulting point
(not triangle) per micropolygon through the hardware
rasterizer (which cannot be skipped in current hard-
ware). While the one-primitive-per-clock-cycle rule
of the hardware means that the micro-triangle and the
point would in principle result in equal speed, using one
point increases throughput in the setup, since we send
one vertex (point) instead of the three triangle vertices
(see Fig. 6).

To determine a correct point sample, we compute the
micropolygon’s bounding box and then the potentially
covered pixels with findOverlappedPixelGrid. As ex-
plained in Algorithm 1, we then generate a point from
any sample that has a successful point-in-triangle test.
If all samples fail the point-in-triangle test, there is no
need to draw a point since neighboring triangles will
provide points for the corresponding pixels. This is akin
to Interleaved Sampling [KH01]. We note that with-
out displacement, the projection of any micropolygon
is smaller than 1 pixel and then at most four pixels are
covered, as illustrated in Fig. 5; but with our correc-
tion for high-frequency displacement, more pixels can
be generated.

GraVisMa 2010 Full Papers

- 36 -

Figure 5: Pixel-footprint of a micropolygon returned by
findOverlappedPixelGrid applied to its bounding box.
The pointInTriangle test will output s4.

input : float4[3] pos4D; – triangle vertices
Uses: pointInTriangle(q,T,u,v) – true if q is in the
triangle T; returns corresponding u,v
output: Point p

pos2D[0..2] = ProjectToScreen(pos4D[0..2]);
BoundingBox bbox =
computeBoundingBox(pos2D);
PixelGrid = findOverlappedPixelGrid(bbox);
for q ∈ PixelGrid do

if pointInTriangle(q,pos2D,u,v) then
p← pos4D,u,v;
sendToRasterizer(p);

end
end

Algorithm 1: Compute correct point sample as al-
ternative to rasterization

3.4 Implementing the reyes-Sampling
Stage

The sample stage typically requires one pass per sample
for a total of n passes. We leverage the Multiple Render
Target call to generate n samples in one pass so that our
sampling and composition requires only two passes: a
pre-rendering pass and a final composition pass. We
use the DirectX 11 OutputMerge stage for the z-test and
for alpha-blending. (As usual, for transparency, patches
need to be kept ordered in the split stage.)

For camera defocus, we shift the camera by at most
∆c and the near-clip-plane by at most ∆x, projecting
with step size ∆c/ncd , respectively ∆x/ncd around the
initial position. (This yields (2ncd + 1)(2ncd + 1) pro-
jections). Here ncd is a user-specified number with
larger ncd providing better results at higher cost. To
combine an nmb-transformation motion blur with a ncd-
sampling camera defocus, we, off-hand, have to render
a frame nmbncd times as shown in Algorithm 2.

However, instancing and the DX11 multiple-render-
target call allow us to send objects with different matri-
ces to different render targets. We leverage this to ap-
proximate motion blur and defocus in one pass in place

for i = 0 to nmb do
for j = 0 to ncd do

Model View Projection Matrix = Model[i]
* View[j] * Projection[j]

end
end

Algorithm 2: Standard algorithm of complexity
nmbncd . Our implementation approximates it by a
single pass using multiple-render-targets.

of nmbncd passes (see Fig. 8). This is followed by a fi-
nal composition pass that blends the entries to generate
the image. To meet current limitations of the number
of render targets, we set ncd = 1 generating 8 differ-
ent Model matrices (leaving out the unperturbed pro-
jection) by calling 8 instances of the Geometry Shader
and having the ith instance render to the ith render tar-
get. The composition pass then combines these targets.

Although, for interactive motion blur, we may as-
sume small changes in the Model matrix, there may
be triangles whose projection is stretched to violate the
micropolygon certification. Just as with extreme dis-
placement (Section 3.1, last paragraph) we then have
the Geometry Shader output multiple pointis.

3.5 Shadows
To obtain interactive shadows (see e.g. Fig. 8), we in-
terleave passes computing a shadow map by reyes ren-
dering from the light position. Here we do not need the
all reyes stages but only split, dice and sample; there is
no need to shade and composite. By varying the size
of the micropolygons, the artist can adjust the shadow
quality.

4 ANALYSIS OF THE IMPLEMENTA-
TION

Due to hardware limitations, the choice of the edge tes-
sellation factor τ in Equation (1) (which that determines
the number of segments on each edge in the tessellation
engine) cannot be arbitrarily large. In fact, in our im-
plementation, we set a diceable threshold τ̄ as an upper
bound on τ since we can improve throughput by setting
it lower than the current hardware tessellation bound
of 64. Table 1 shows how the number of sub-patches
varies with τ̄ while the number of evaluation points re-
mains within the same order of magnitude due to adap-
tive tessellation in the splitting stage. The threshold in-
fluences the best load balancing strategy since a lower
τ̄ results in a larger number of small patches with low
tessellation factor. We tested five different τ̄ values:
8,12,16,20 and 24 (higher values were not competitive).
Our implementation achieves the best performance for
τ̄ = 24.

GraVisMa 2010 Full Papers

- 37 -

τ̄ tessellation number of
vertices patches

8 3446260 37134
12 2932396 15251
16 2763775 9378
20 2602425 6151
24 2528523 3835

Table 1: Influence of the diceable threshold τ̄ on the
number of patches.

Figure 6: Point-based vs Micropolygon render-
ing. Performance for a diceable threshold τ̄ ∈
{8,12,16,20,24} (y-axis:fps, x-axis: τ̄).

As a canonical test scene, we chose the scene in Fig.
9, i.e. a teapot with displacement map and a resolution
of 1280× 1024 pixels. Fig. 6 shows that rendering a
point is consistently superior to rendering the microp-
olygon via the rasterizer. Adding motion blur and de-
focus as another Geometry Shader operation in the pre-
rendering pass affects the performance sub-linearly in
the number of projections: projecting 8 times only re-
duces the frames per second to one fourth rather than
one eighth. We conclude that the pre-rendering pass is
not compute-bound. That is, rendering could be faster
were it not for the limitation of current GPU hardware
to process one primitive per clock cycle: if more than
one point could be processed per cycle downstream
from the Geometry Shader, the throughput would in-
crease correspondingly. (The simple solution of ren-
dering a polygon the size of several micropolygons
would not match the stringent requirements of reyes-
rendering.) The main bottleneck, however, is the split-
ting stage rather than the heavy pre-rendering pass. Fig.
7 shows the extra cost of multiple passes for splitting by
juxtaposing the (correct) split+dice performance with a
dice-only performance that generates roughly the same
number of polgons (but may result in incorrect pixel-
dropout).

5 DISCUSSION AND FUTURE WORK
Since the pre-rendering pass is not compute-bound, we
can accommodate more complex surface and lighting
shaders. However, we did not invest into our own
complex shaders, since we anticipate that Renderman
shaders will in the future be compiled directly on the

Figure 7: The extra cost of multiple passes for splitting
is the difference between correct split+dice and incor-
rect dice-only (y-axis:fps, x-axis: τ̄).

Geometry Shader obsoleting any custom-made reyes
shaders.

The proposed framework can accommodate (and is
being tested for) order-independent transparency but at
the cost of slower performance and additional buffer
space, depending on the depth of transparency sorting.

In summary, the contribution of the paper is an ef-
ficient use of the DX11 pipeline: split-and-dice via
the Geometry Shader, micropolygon rendering without
standard rasterization and motion blur and camera de-
focus as one pass rather than a multi-pass via MRT.

ACKNOWLEDGMENTS
Work supported in part by NSF Grant CCF-0728797
and by ATI/AMD.

REFERENCES
[CCC87] Robert L. Cook, Loren Carpenter, and Ed-

win Catmull. The Reyes image rendering
architecture. In Maureen C. Stone, editor,
Computer Graphics (SIGGRAPH ’87 Pro-
ceedings), pages 95–102, July 1987.

[FFB+09] Matthew Fisher, Kayvon Fatahalian,
Solomon Boulos, Kurt Akeley, William R.
Mark, and Pat Hanrahan. DiagSplit:
parallel, crack-free, adaptive tessellation
for micropolygon rendering. ACM Trans-
actions on Graphics, 28(5):1–8, December
2009.

[FLB+09] Kayvon Fatahalian, Edward Luong,
Solomon Boulos, Kurt Akeley, William R.
Mark, and Pat Hanrahan. Data-parallel
rasterization of micropolygons with de-
focus and motion blur. In HPG ’09:
Proceedings of the Conference on High
Performance Graphics 2009, pages 59–68,
New York, NY, USA, 2009. ACM.

[HCOB10] Robin Held, Emily Cooper, James
O’Brien, and Martin Banks. Using blur to
affect perceived distance and size. In ACM
Trans. Graphics, 2010.

GraVisMa 2010 Full Papers

- 38 -

Figure 8: (left) Blurring with nmb = 8 and (right) defocus with ncd = 1. See also the accompanying video.

Figure 9: Displacement mapping. (top) Pixel dropout due to incorrect treatment with [MM02]. (bottom) The
problem is fixed by applying the strategy of Section 3.1.

GraVisMa 2010 Full Papers

- 39 -

[HQL+10] Qiming Hou, Hao Qin, Wenyao Li, Bain-
ing Guo, and Kun Zhou. Micropolygon ray
tracing with defocus and motion blur. In
ACM Trans. Graphics, 29(3), 2010 (Proc.
ACM SIGGRAPH 2010), 2010.

[KH01] Alexander Keller and Wolfgang Heidrich.
Interleaved sampling. In Steven J. Gortler
and Karol Myszkowski, editors, Render-
ing Techniques, pages 269–276. Springer,
2001.

[LES10] Sungkil Lee, Elmar Eisemann, and Hans-
Peter Seidel. Real-time lens blur effects
and focus control. In ACM Trans. Graph-
ics, 29(3), 2010 (Proc. ACM SIGGRAPH
2010), 2010.

[MM02] Kevin Moule and Michael D. McCool. Ef-
ficient bounded adaptive tessellation of dis-
placement maps. In Proc. Graphics Inter-
face, pages 171–180, May 2002.

[PO08] Anjul Patney and John D. Owens. Real-
time reyes-style adaptive surface subdivi-
sion. ACM Trans. Graph, 27(5):143, 2008.

[ZHR+09] Kun Zhou, Qiming Hou, Zhong Ren, Min-
min Gong, Xin Sun, and Baining Guo.
Renderants: interactive reyes rendering on
GPUs. ACM Trans. Graph, 28(5), 2009.

GraVisMa 2010 Full Papers

- 40 -

Angles between subspaces

Eckhard Hitzer, Department of Applied Physics, University of Fukui, 910-8507 Japan

August 2, 2010

Abstract

We first review the definition of the angle between subspaces and how it is computed using matrix algebra.
Then we introduce the Grassmann and Clifford algebra description of subspaces. The geometric product of
two subspaces yields the full relative angular information in an explicit manner. We explain and interpret the
result of the geometric product of subspaces gaining thus full access to the relative orientation information.

Keywords: Clifford geometric algebra, subspaces, relative angle, principal angles, principal vectors.
AMS Subj. Class.: 15A66.

1 Introduction

I first came across Clifford’s geometric algebra in the
early 90ies in papers on gauge field theory of gravity
by J.S.R. Chisholm, struck by the seamlessly com-
pact, elegant, and geometrically well interpretable
expressions for elementary particle fields subject to
Einstein’s gravity. Later I became familiar with D.
Hestenes’ excellent modern formulation of geometric
algebra, which explicitly shows how the geometric
product of two vectors encodes their complete rela-
tive orientation in the scalar inner product part (co-
sine) and in the bivector outer product part (sine).

Geometric algebra can be viewed as an algebra of
a vector space and all its subspaces, represented by
socalled blades. I therefore often wondered if the
geometric product of subspace blades also encodes
their complete relative orientation, and how this is
done? What is the form of the result, how can it
be interpreted and put to further use? I learned
more about this problem, when I worked on the
conformal representation of points, point pairs,

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or
a fee.

lines, planes, circles ans spheres of three dimen-
sional Euclidean geometry [7] and was able to find
one general formula fully expressing the relative
orientation of any two of these objects. Yet L.
Dorst (Amsterdam) later asked me if this formula
could be generalized to any dimension, because
by his experience formulas that work dimension
independent are right. I had no immediate answer,
it seemed to complicated to me, having to deal with
too many possible cases.

But when I prepared for December 2009 a presen-
tation on neural computation and Clifford algebra, I
came across a 1983 paper by Per Ake Wedin on an-
gles between subspaces of finite dimensional inner
product spaces [2], which taught me the classical
approach. In addition it had a very interesting note
on solving the problem, essentially using Grassmann
algebra with an additional canonically defined inner
product. After that the various bits and pieces came
together and began to show the whole picture, the
picture which I want to explain in this contribution.

2 The angle between two lines

To begin with let us look (see Fig. 1) at two lines
A,B in a vector space Rn, which are spanned by two
(unit) vectors a , b ∈ Rn,a · a = b · b = 1:

A = span{a}, B = span{b}. (1)

GraVisMa 2010 Full Papers

- 41 -

Example: 2 Linesp

b

b
A,B

a
• Two lines given by two unit vectors g y

– Line A: spanned by vector a
– Line B: spanned by vector bLine B: spanned by vector b

• Angle 0 ≤ A,B≤ between lines A,B
 bcos A,B = a·b

Figure 1: Angle θA,B between two lines A, B,
spanned by unit vectors a , b, respectively.Angles between Subspaces A,Bg p

B
b3b2

brb1
B32

1 2 
r

A
a1

a a3

ar
2 3

iiA a2
a3 iri1

i2
i3

A = span(a1,a2,a3,…,ar), B=span(b1,b2, b3, …, br)

2

A span(a1,a2,a3,…,ar), span(b1,b2, b3, …, br)
cos A,B = cos 1 cos 2 cos 3 … cos r

Figure 2: Angular relationship of two subspaces A,
B, spanned by two sets of vectors {a1, . . . ,ar}, and
{b1, . . . , br}, respectively.

The angle 0 ≤ θA,B ≤ π/2 between lines A and B is
simply given by

cos θA,B = a · b. (2)

3 Angles between two sub-
spaces (described by princi-
pal vectors)

Next let us examine the case of two r-dimensional
(r ≤ n) subspaces A,B of an n-dimensional Eu-
clidean vector space Rn. The situation is depicted
in Fig. 2. Each subspace A, B is spanned by a set
of r linearly independent vectors

A = span{a1, . . . ,ar} ⊂ Rn,

B = span{b1, . . . , br} ⊂ Rn. (3)

Using Fig. 2 we introduce the following notation
for principal vectors. The angular relationship be-

tween the subspaces A, B is characterized by a set
of r principal angles θk, 1 ≤ k ≤ r, as indicated in
Fig. 2. A principal angle is the angle between two
principal vectors ak ∈ A and bk ∈ B. The spanning
sets of vectors {a1, . . . ,ar}, and {b1, . . . , br} can
be chosen such that pairs of vectors ak, bk either

• agree ak = bk, θk = 0,

• or enclose a finite angle 0 < θk ≤ π/2.

In addition the pairs of vectors {ak, bk}, 1 ≤ k ≤ r
span mutually orthogonal lines (for θk = 0) and
(principal) planes ik (for 0 < θk ≤ π/2). These mu-
tually orthogonal planes ik are indicated in Fig. 2.
Therefore if ak ∦ bk and a l ∦ b l for 1 ≤ k 6= l ≤ r,
then plane ik is orthogonal to plane il. The cosines
of the socalled principal angles θk may therefore
be cos θk = 1 (for ak = bk), or cos θk = 0 (for
ak ⊥ bk), or any value 0 < cos θk < 1. The total
angle between the two subspaces A, B is defined as
the product

cos θA,B = cos θ1 cos θ2 . . . cos θr. (4)

In this definition cos θA,B will automatically be zero
if any pair of principal vectors {ak, bk}, 1 ≤ k ≤ r is
perpendicular. Then the two subspaces are said to
be perpendicular A ⊥ B, a familiar notion from three
dimensions, where two perpendicular planes A, B
share a common line spanned by a1 = b1, and have
two mutually orthogonal principal vectors a2 ⊥ b2,
which are both in turn orthogonal to the common
line vector a1. It is further possible to choose the
indexes of the vector pairs {ak, bk}, 1 ≤ k ≤ r such
that the principle angles θk appear ordered by mag-
nitude

θ1 ≥ θ2 ≥ . . . ≥ θr. (5)

4 Matrix algebra computation
of angle between subspaces

The conventional method of computing the angle
θA,B between two r-dimensional subspaces A,B ⊂
Rn spanned by two sets of vectors {a ′1,a ′2, . . .a ′r}
and {b ′1, b

′
2, . . . b

′
r} is to first arrange these vectors

as column vectors into two n× r matrices

MA = [a ′1, . . . ,a
′
r], MB = [b ′1, . . . , b

′
r]. (6)

Then standard matrix algebra methods of QR de-
composition and singular value decomposition are
applied to obtain

GraVisMa 2010 Full Papers

- 42 -

• r pairs of singular unit vectors ak, bk and

• r singular values σk = cos θk = ak · bk.

This approach is very computation intensive.

5 Even more subtle ways

Per Ake Wedin in his 1983 contribution [2] to a
conference on Matrix Pencils entitled On Angles
between Subspaces of a Finite Dimensional Inner
Product Space first carefully treats the above men-
tioned matrix algebra approach to computing the
angle θA,B in great detail and clarity. Towards the
end of his paper he dedicates less than one page to
mentioning an alternative method starting out with
the words: But there are even more subtle ways to
define angle functions.

There he essentially reviews how r-dimensional
subspaces A,B ⊂ Rn can be represented by r-vectors
(blades) in Grassmann algebra A,B ∈ Λ(Rn):

A = {x ∈ Rn|x ∧A = 0},
B = {x ∈ Rn|x ∧B = 0}. (7)

The angle θA,B between the two subspaces A,B ∈ Rn

can then be computed in a single step

cos θA,B =
A · B̃
|A||B|

= cos θ1 cos θ2 . . . cos θr, (8)

where the inner product is canonically defined on
the Grassmann algebra Λ(Rn) corresponding to the
geometry of Rn. The tilde operation is the reverse
operation representing a dimension dependent sign
change B̃ = (−1)

r(r−1)
2 B, and |A| represents the

norm of blade A, i.e. |A|2 = A · Ã, and similarly
|B|2 = B · B̃. Wedin refers to earlier works of L.
Andersson [1] in 1980, and a 1963 paper of Q.K. Lu
[5].

Yet equipping a Grassmann algebra Λ(Rn) with a
canonical inner product comes close to introducing
Clifford’s geometric algebra Cln = Cl(Rn). And
there is another good reason to do that, as e.g. H.
Li explains in his excellent 2008 textbook Invariant
Algebras and Geometric Reasoning [4]: ... to allow
sums of angles to be advanced invariants, the inner-
product Grassmann algebra must be extended to the
Clifford algebra ... This is why I have decided to
immediately begin in the next section with Clifford’s
geometric algebra instead of first reviewing inner-
product Grassmann algebra.

Vectors and Bivectors b aVectors and Bivectors


b a

oriented
unit area

1+a2 e2, b = b1e1+b2e2
(a b  a b) e e = |a||b| sin e e


ba

(a1b2  a2b1) e1e2 = |a||b| sin e1e2
 b∧a …oriented area spanned by a,b
0 || b b  R0 ⇔ a || b ⇔ b =  a , ∊R
th direction a : {x ∊Rn | x∧a = 0}
rs can be freely reshaped

a∧b = a∧(b + a) aa∧b a∧(b + a)
a product of orthogonal vectors
∧b b’  b’ (b’ 0)

a
b’a∧b = ab’ , a  b’ (a · b’ = 0)

a
Figure 3: Bivectors a ∧ b as oriented area elements
can be reshaped (e.g. by b → b + µa , µ ∈ R) with-
out changing their value (area and orientation). The
bottom figure shows orthogonal reshaping into the
form of an oriented rectangle.

6 Clifford (geometric) algebra

Clifford (geometric) algebra is based on the geomet-
ric product of vectors a , b ∈ Rp,q, p+ q = n

ab = a · b + a ∧ b, (9)

and the associative algebra Clp,q thus generated
with R and Rp,q as subspaces of Clp,q. a · b is
the symmetric inner product of vectors and a ∧ b
is Grassmann’s outer product of vectors represent-
ing the oriented parallelogram area spanned by a , b,
compare Fig. 3.

As an example we take the Clifford geometric al-
gebra Cl3 = Cl3,0 of three-dimensional (3D) Eu-
clidean space R3 = R3,0. R3 has an orthonormal
basis {e1, e2, e3}. Cl3 then has an eight-dimensional
basis of

{1, e1, e2, e3︸ ︷︷ ︸
vectors

, e2e3, e3e1, e1e2︸ ︷︷ ︸
area bivectors

, i = e1e2e3︸ ︷︷ ︸
volume trivector

}. (10)

Here i denotes the unit trivector, i.e. the oriented
volume of a unit cube, with i2 = −1. The even
grade subalgebra Cl+3 is isomorphic to Hamilton’s
quaternions H. Therefore elements of Cl+3 are also
called rotors (rotation operators), rotating vectors
and multivectors of Cl3.

GraVisMa 2010 Full Papers

- 43 -

In general Clp,q, p+q = n is composed of so-called
r-vector subspaces spanned by the induced bases

{ek1ek2 . . . ekr
| 1 ≤ k1 < k2 < . . . < kr ≤ n},

(11)
each with dimension

(
r
n

)
. The total dimension of

the Clp,q therefore becomes
∑n

r=0

(
r
n

)
= 2n.

General elements called multivectors M ∈
Clp,q, p + q = n, have k-vector parts (0 ≤ k ≤ n):
scalar part Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vec-
tor part 〈M〉1 ∈ Rp,q, bi-vector part 〈M〉2, . . . , and
pseudoscalar part 〈M〉n ∈

∧n Rp,q

M =
2n∑

A=1

MAeA = 〈M〉+〈M〉1+〈M〉2+. . .+〈M〉n .

(12)
The reverse of M ∈ Clp,q defined as

M̃ =
n∑

k=0

(−1)
k(k−1)

2 〈M〉k, (13)

often replaces complex conjugation and quaternion
conjugation. Taking the reverse is equivalent to re-
versing the order of products ob basis vectors in the
basis blades of (11). For example the reverse of the
bivector e1e2 is

ẽ1e2 = e2e1 = −e1e2, (14)

because only the antisymmetric outer product part
e2e1 = e2 ∧ e1 = −e1 ∧ e2 is relevant.

The scalar product of two multivectors M, Ñ ∈
Clp,q is defined as

M ∗ Ñ = 〈MÑ〉 = 〈MÑ〉0. (15)

For M, Ñ ∈ Cln = Cln,0 we get M ∗ Ñ =∑
AMANA. The modulus |M | of a multivector M ∈

Cln is defined as

|M |2 = M ∗ M̃ =
∑
A

M2
A. (16)

6.1 Subspaces described in geometric
algebra

In Cln symmetric inner product part of two vectors
a = a1e1+a2e2, b = b1e1+b2e2 yields the expected
result

a · b = a1b1 + a2b2 = |a ||b| cos θa ,b . (17)

Whereas the antisymmetric outer product part gives
the bivector, which represents the oriented area of
the parallelogram spanned by a and b

a ∧ b = (a1b2 − a2b1)e1e2 = |a ||b| sin θa ,be1e2.
(18)

The parallelogram has the (signed) scalar area
|a ||b| sin θa ,b and its orientation in the space Rn

is given by the oriented unit area bivector e1e2.
Two non-zero vectors a and b are parallel, if and

only if a ∧ b = 0, i.e. if and only if sin θa ,b = 0

a ∧ b = 0⇔ a ‖ b ⇔ b = αa , α ∈ R. (19)

We can therefore use the outer product to represent
a line A = span{a} with direction vector a ∈ Rn as

A = {x ∈ Rn | x ∧ a = 0}. (20)

Moreover, bivectors can be freely reshaped (see Fig.
3), e.g.

a ∧ b = a ∧ (b + µa), µ ∈ R, (21)

because due to the antisymmetry a∧a = 0. This re-
shaping allows to (orthogonally) reshape a bivector
to rectangular shape

a ∧ b = ab ′,a ⊥ b(i.e. a · b ′ = 0) (22)

as indicated in Fig. 3. The shape may even chosen
as square or circular, depending on the application
in mind.

The total antisymmetry of the trivector x ∧a ∧b
means that

x ∧ a ∧ b = 0⇔ x = αa + βb, α, β ∈ R. (23)

Therefore a plane B is given by a simple bivector
(also called 2-blade) B = a ∧ b as

B = {x ∈ Rn | x ∧B = 0}. (24)

A three-dimensional volume subspace C is simi-
larly given by a 3-blade C = a ∧ b ∧ c as

C = {x ∈ Rn | x ∧ C = 0}. (25)

Finally a blade Dr = b1 ∧ b2 ∧ . . . ∧ br, b l ∈
Rn, 1 ≤ l ≤ r ≤ n describes an r-dimensional vector
subspace

D = {x ∈ Rp,q|x ∧D = 0}. (26)

Its dual blade
D∗ = Di−1

n (27)

GraVisMa 2010 Full Papers

- 44 -

describes the complimentary (n − r)-dimensional
vector subspace D⊥. The magnitude of the blade
Dr ∈ Cln is nothing but the volume of the r-
dimensional parallelepiped spanned by the vectors
{b1, b2, . . . , br}.

Just as we were able to orthogonally reshaped a
bivector to rectangular or square shape we can re-
shape every r-blade Ar to a geometric product of
mutually orthogonal vectors

Ar = a ′1 ∧ a ′2 ∧ . . .a ′r = a1a2 . . .ar, (28)

with pairwise orthogonal and anticommuting vec-
tors a1 ⊥ a2 ⊥ . . . ⊥ ar. The reverse Ãr of
the geometric product of orthogonal vectors Ar =
a1a2 . . .ar is therefore clearly

(a1a2 . . .ar)∼ = ar . . .a2a1 = (−1)
r(r−1)

2 a1a2 . . .ar,
(29)

by simply counting the number r(r−1)
2 of permuta-

tions necessary.
Paying attention to the dimensions we find that

the outer product of an r-blade B with a vector a
increases the dimension (grade) by +1

a ∧B = 〈aB〉r+1. (30)

Opposite to that, the inner product (or left contrac-
tion) with a vector lowers the dimension (grade) by
−1

a ·B = 〈aB〉r−1. (31)

The geometric product of two r-blades A,B contains
therefore at most the following grades

AB = 〈AB〉0+〈AB〉2+. . .+〈AB〉2min(r,[n/2]), (32)

where the limit [n/2] (entire part of n/2) is due to
the dimension limit of Rn.

The inner product of vectors is properly general-
ized in geometric algebra by introducing the (left)
contraction of the r-blade A = Ar onto the s-blade
B = Bs as

ArcBs = 〈AB〉s−r. (33)

For blades of equal grade (r = s) we thus get the
symmetric scalar

ArcBr = 〈AB〉0 = 〈BA〉0 = A ∗B. (34)

Finally the product of a blade with its own re-
verse is necessarily scalar. Introducing orthogonal
reshaping this scalar is seen to be

ArÃr = a1 . . .arar . . .a1 = a2
1 . . .a

2
r = |Ar|2,

(35)

therefore
|Ar| = |a1| . . . |ar|. (36)

Every r-blade Ar can therefore be written as a
product of the scalar magnitude |Ar| times the ge-
ometric product of exactly r mutually orthogonal
unit vectors {â1, . . . , âr}

Ar = |Ar|â1â2 . . . âr. (37)

Please note well, that this rewriting of an r-blade
in geometric algebra does not influence the overall
result on the left side, the r-blade Ar is before and
after the rewriting the very same element of the geo-
metric algebra Cln. But for the geometric interpre-
tation of the geometric product AB of two r-blades
A,B ∈ Cln the orthogonal reshaping is indeed a key
step.

After a short discussion of reflections and rota-
tions implemented in geometric algebra, we return
to the geometric product of two r-blades A,B ∈ Cln
and present our key insight.

6.2 Reflections and rotations

A simple application of the geometric product is
shown in Fig. 4 (left) to the reflection of a point
vector x at a plane with normal vector a , which
means to reverse the component of x parallel to a
(perpendicular to the plane)

x −→ x ′ = −a−1xa ,a−1 =
a

a2
. (38)

Two reflections lead to a rotation by twice the angle
between the reflection planes as shown in Fig. 4
(right)

x −→ x ′′ = a−1b−1xab = (ab)xab = R−1xR,
(39)

with rotation operator (rotor) R = ab ∝ cos θa ,b +
ia ,b sin θa ,b , where the unit bivector ia ,b represents
the plane of rotation.

7 Geometric information in
the geometric product of two
subspace r-blades

From the foregoing discussion of the representation
of r-dimensional subspaces A,B ⊂ Rn by the blades
A = a ′1 ∧ . . .a ′r and B = b ′1 ∧ . . . b

′
r, from the free-

dom of orthogonally reshaping these blades and fac-
toring out the blade magnitudes |A| and |B|, and

GraVisMa 2010 Full Papers

- 45 -

−x|| x||
x⊥

a

x' x
x'

a
b

x'' x

α/2

α

Figure 4: Reflection at a plane with normal a (left)
and rotation as double reflection at planes normal
to a , b (right).

from the classical results of matrix algebra, we now
know that we can rewrite the geometric product AB
in mutually orthogonal products of pairs of principal
vectors ak, bk, 1 ≤ k ≤ r

AB̃ = a1a2 . . .arbr . . . b2b1 = a1b1a2b2 . . .arbr.
(40)

The geometric product

arbr = |ar||br|(cos θar,br
+ iar,br

sin θar,br
)

= |ar||br|(cr + irsr), (41)

with cr = cos θar,br
and sr = sin θar,br

in the
above expression for AB̃ is composed of a scalar
and a bivector part. The latter is proportional to
the unit bivector ir representing a (principal) plane
orthogonal to all other principal vectors. ir there-
fore commutes with all other principal vectors, and
hence the whole product arbr (a rotor) commutes
with all other principal vectors. A completely analo-
gous consideration applies to all products of pairs of
principal vectors, which proofs the second equality
in (40).

We thus find that we can always rewrite the prod-
uct AB̃ as a product of rotors

AB̃

= |A||B|(c1 + i1s1)(c2 + i2s2) . . . (cr + irsr)
= |A||B|(c1c2 . . . cr+

+ s1c2 . . . cri1 + c1s2 . . . cri2 + . . .+ c1c2 . . . srir+
...
+ s1s2 . . . sri1i2 . . . ir) (42)

We realize how the scalar part 〈AB̃〉0 =
|A||B|c1c2 . . . cr, the bivector part 〈AB̃〉2 =

|A||B|(s1c2 . . . cri1+c1s2 . . . cri2+. . .+c1c2 . . . srir),
etc., up to the 2r-vector (or 2[n/2]-vector) part
〈AB̃〉2r = |A||B|s1s2 . . . sri1i2 . . . ir of the geometric
product AB̃ arise and what information they carry.

Obviously the scalar part yields the cosine of the
angle between the subspaces represented by the two
r-vectors A,B ∈ Cln

cos θAB =
〈AB̃〉0
|A||B|

=
A ∗ B̃
|A||B|

, (43)

which exactly corresponds to P.A. Wedin’s formula
from inner-product Grassmann algebra.

The bivector part consists of a sum of (principal)
plane bivectors, which can in general be uniquely
decomposed into its constituent sum of 2-blades by
the method of Riesz, described also in [6], chapter
3-4, equation (4.11a) and following.

The magnitude of the 2r-vector part allows to
compute the product of all sines of principal angles

s1s2 . . . sr = ±|〈AB̃〉2r|
|A||B|

. (44)

Let us finally refine our considerations to two gen-
eral r-dimensional subspaces A,B, which we take to
partly intersect and to be partly perpendicular. We
mean by that, that the dimension of the intersect-
ing subspace be s ≤ r (s is therefore the number
of principal angles equal zero), and the number of
principle angles with value π/2 be t ≤ r − s. For
simplicity we work with normed blades (i.e. after
dividing with |A||B|. The geometric product of the
the r-blades A,B ∈ Cln then takes the form

AB̃

= (cs+1cs+2 . . . cr−t+
+ ss+1cs+2 . . . cr−tis+1 + cs+1ss+2 . . . cr−tis+2+
. . .+ cs+1cs+2 . . . sr−tir−t+
...
+ ss+1ss+2 . . . sr−tis+1is+2 . . . ir−t)ir−t+1 . . . ir.

(45)

We thus see, that apart from the integer dimensions
s for parallelity (identical to the dimension of the
meet of blade A with blade B) and t for perpendic-
ularity, the lowest non-zero grade of dimension 2t
gives the relevant angular measure

cos θAB = cos θs+1 cos θs+2 . . . cos θr−t. (46)

GraVisMa 2010 Full Papers

- 46 -

While the maximum grade part gives again the
product of the corresponding sinuses

sin θs+1 sin θs+2 . . . sin θr−t. (47)

Dividing the product AB̃ by its lowest grade part
cs+1cs+2 . . . cr−tir−t+1 . . . ir gives a multivector with
maximum grade 2(r − t − s), scalar part one, and
bivector part

ts+1is+1 + ts+2is+2 + . . .+ tr−tir−t, (48)

where tk = tan θk. Splitting this bivector into its
constituent bivector parts further yields the (prin-
cipal) plane bivectors and the tangens values of the
principle angles θk, s < k ≤ r − t. This is the only
somewhat time intensive step.

8 Conclusion

Let us conclude by discussing possible future appli-
cations of these results. The complete relative orien-
tation information in AB̃ should be ideal for a sub-
space structure self organizing map (SOM) type of
neural network. Not only data points, but the topol-
ogy of whole data subspace structures can then be
faithfully mapped to lower dimensions. Our discus-
sion gives meaningful results for partly intersecting
and partly perpendicular subspaces. Apart from ex-
tracting the bivector components, all computations
are done by multiplication. Projects like fast Clif-
ford algebra hardware developed at the TU Darm-
stadt (D. Hildenbrand et al) should be of interest
for applying the results of the paper to high dimen-
sional data sets. An extension to offset subspaces
(of projective geometry) and r-spheres (of confor-
mal geometric algebra) may be possible.

Acknowledgments

Soli deo gloria. I do thank my dear family, H. Ishi,
D. Hildenbrand and V. Skala.

References

[1] L. Andersson, The concepts of angle between
subspaces ... unpublished notes, Umea (1980).

[2] P. A. Wedin, On angles between subspaces of a
finite-dimensional inner product space, in Ma-
trix Pencils, Bo Kagstram and Axel Ruhe, eds.,
Springer-Verlag, Berlin, 1983, pp. 263–285.

[3] L. Dorst et al, Geometric Algebra for Comp.
Sc., Morgan Kaufmann, 2007.

[4] H. Li, Invariant Algebras and Geometric Rea-
soning, World Scientific, Singapore, 2008.

[5] Q.K. Lu, The elliptic geometry of extended
spaces, Acta Math. Sinica, 13 (1963), pp. 49–
62; translated as Chinese Math. 4 (1963), pp.
54–69.

[6] D. Hestenes, G. Sobczyk, Clifford Algebra to
Geometric Calculus, Kluwer, 1984.

[7] E. Hitzer, K. Tachibana, S. Buchholz, I. Yu
Carrier method for the general evaluation and
control of pose, molecular conformation, track-
ing, and the like Advances in Applied Clifford
Algebras, Vol. 19(2), pp. 339-364 (2009).

GraVisMa 2010 Full Papers

- 47 -

GraVisMa 2010 Full Papers

- 48 -

Gaalop Compiler Driver

Patrick Charrier
TU Darmstadt, Germany
patrick.charrier@stud.tu-

darmstadt.de

Dietmar Hildenbrand
TU Darmstadt, Germany

dhilden@gris.informatik.tu-
darmstadt.de

ABSTRACT

The focus of the this work is on the better integration of algorithms expressed in Conformal Geometric Algebra (CGA) in
modern high level computer languages, namely C++ and NVIDIA’s Compute Unified Device Architecture (CUDA). A high
runtime performance in terms of CGA is achieved using symbolic optimizing through the invocation of Gaalop.

Keywords. Conformal Geometric Algebra, Compiler Driver, Runtime Performance

1 INTRODUCTION
During the last decade Conformal Geometric Algebra
(CGA) has become increasingly popular in expressing
solutions to geometry related problems in scientific ap-
plications of robotics, dynamics, rendering and com-
puter vision. Video game developers are becoming
aware of CGA, in search for simpler and faster ways
to describe their lighting [2] and physics algorithms.
The majority of developers makes use of C-related pro-
gramming languages like C++ or CUDA [14], which
are performant and abstract enough for most needs.

From a programmer’s perspective, the integration of
CGA directly into C++ and CUDA yields a high level
of intuitiveness. Coupled with a highly efficient gen-
erative software tool like Gaalop [9] in the background,
an integration could set new standards to CGA-powered
software development. The integration itself including
other comforts, and to make CGA-usage available to a
broad audience, is the purpose of this work.

1.1 Conformal Geometric Algebra
Conformal Geometric Algebra (CGA) is a new way of
expressing most geometry focused mathematical prob-
lems. It deals naturally with intersections and trans-
formations of planes, lines, spheres, circles, points and
point pairs, but is also good at representing mechanics
and dynamics. In Linear Algebra one would have to dif-
ferentiate a plane-sphere intersection into three distinct
cases, namely circle intersection, point intersection and
no intersection. In Conformal Geometric Algebra the
intersection itself is formulated as one operation on the
plane (P) and the sphere (S) respectively.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

R = S∧P

The three different cases of Linear Algebra are im-
plicitly contained in the one result (R) of Conformal
Geometric Algebra, being more compact and better
readable. Similar observations can be made in other
applications of geometry related mathematics. Applied
to computer programs, CGA therefore has a high po-
tential for improving code readability and to shorten
production cycles. It has also been proven, that if im-
plemented right, Geometric Algebra has at least similar
performance, but sometimes even better performance,
than conventional approaches [8].

An element of Conformal Geometric Algebra is re-
ferred to as multivector. A multivector consists of a
linear combination of so called blades. Blades define
the basis of CGA and are combinations of the vectors
e1,e2,e3,e0 and e∞. All possible blades are listed in
table 1. Keep this in mind for section 2.2.

index blade grade

1 1 0

2 e1 1
3 e2 1
4 e3 1
5 e∞ 1
6 e0 1

7 e1 ∧ e2 2
8 e1 ∧ e3 2
9 e1 ∧ e∞ 2
10 e1 ∧ e0 2
11 e2 ∧ e3 2
12 e2 ∧ e∞ 2
13 e2 ∧ e0 2
14 e3 ∧ e∞ 2
15 e3 ∧ e0 2
16 e∞ ∧ e0 2

index blade grade

17 e1 ∧ e2 ∧ e3 3
18 e1 ∧ e2 ∧ e∞ 3
19 e1 ∧ e2 ∧ e0 3
20 e1 ∧ e3 ∧ e∞ 3
21 e1 ∧ e3 ∧ e0 3
22 e1 ∧ e∞ ∧ e0 3
23 e2 ∧ e3 ∧ e∞ 3
24 e2 ∧ e3 ∧ e0 3
25 e2 ∧ e∞ ∧ e0 3
26 e3 ∧ e∞ ∧ e0 3

27 e1 ∧ e2 ∧ e3 ∧ e∞ 4
28 e1 ∧ e2 ∧ e3 ∧ e0 4
29 e1 ∧ e2 ∧ e∞ ∧ e0 4
30 e1 ∧ e3 ∧ e∞ ∧ e0 4
31 e2 ∧ e3 ∧ e∞ ∧ e0 4

32 e1 ∧ e2 ∧ e3 ∧ e∞ ∧ e0 5

Table 1: The 32 blades of 5D Conformal Geometric
Algebra, that compose a multivector.

1.2 High Level Programming Languages
Modern very high level software development tools,
like Java [15], define a very abstract language, on which
programmers and scientists can work in a natural way
and with results of moderate performance. Machine
level languages on the other hand, like Assembler, tend
to produce very fast results, but with less intuition,

GraVisMa 2010 Full Papers

- 49 -

which often leads to longer and more costly develop-
ment cycles.

In order to shorten development time and to pro-
duce fast code at the same time, the solution lies some-
where in between. Object oriented programming lan-
guages like C++, C#, Objective Pascal and Smalltalk
provide a good level of abstraction, but also excellent
performance. They seem to be a good choice for most
modern scientific and business projects and are there-
fore the most common languages, leaded by C and
C++. Recently NVIDIA’s Compute Unified Architec-
ture (CUDA) programming language enabled users to
utilize the very high computing power of modern graph-
ics chips. CUDA device code is a subset of the common
C language with some extensions added to it.

We strongly believe, that the applications of Confor-
mal Geometric Algebra are most likely to be found in
high performance applications, such as games, indus-
trial or scientific software. Since, as described above,
C-like languages are leading the field of high perfor-
mance computing, possible integration of CGA code
into C/C++/CUDA has the most advantage.

2 RELATED WORK
Combining both the aspects of Conformal Geometric
Algebra and Modern Programming Languages (namely
C++ and CUDA), promises to have a high potential for
scientific work. Unfortunately CGA has such a high
level of abstraction, that it does not naturally fit into
C++ and CUDA programs. In order to solve this prob-
lem and to make CGA run fast, recent approaches try to
wrap CGA into templated multivector classes (Gaalet
[18]) or make use of a domain specific language (DSL)
as input language for a code generator (Gaigen2 [5],
GMac [4] and Gaalop [9]). All software tools are very
well suited in their domain and produce good results. In
the following, we will present the CLUScript language,
Gaalop and the Compiler Driver concept.

2.1 CLUScript
Conformal Geometric Algebra can not be expressed in
terms of regular mathematical syntax. CGA-specific
operators like the outer product ∧, inner product . and
geometric product ∗ require special treatment in regular
programming languages or the definition a completely
new domain specific language (DSL).

The DSL that powers this work is CLUScript. The es-
pecially designed integrated development environments
for CLUScript are called CLUCalc (old) and CLUViz
(new). In words of the author Dr. Christian Perwass
[17, 16].

CLUCalc/CLUViz is a freely (for non-
commercial use) available software tool for
3D visualizations and scientific calculations

that was conceived and written by Dr. Chris-
tian Perwass. CLUCalc interprets a script
language called CLUScript, which has been
designed to make mathematical calculations and
visualizations very intuitive.

Indeed, CLUScript is a very intuitive language and
we have found CLUCalc to be an advanced tool for
developing and testing Geometric Algebra algorithms.
It is easy to use, installs and runs smoothly on Mi-
crosoft Windows platforms. Unfortunately, the support
for Linux or Macintosh platforms is very limited, but it
may run with some effort.

2.2 Gaalop
The Geometric Algebra Algorithms Optimizer
(Gaalop) [9] was developed by TU Darmstadt (Ger-
many) and is a powerful tool for optimizing algorithms,
expressed in Conformal Geometric Algebra. It gen-
erates non CGA-specific code from code defined in
a CGA-specific language and symbolically optimizes
the algorithm on-the-fly, invoking a Computer Algebra
System (CAS). In this context, CGA can be seen as
a higher level mathematical language that is being
transformed into simple arithmetic mathematical
language by Gaalop. Philosophically spoken, Gaalop
could be defined as a math compiler.

CLUScript as an input language and C/C++ as out-
put language has proven to be an extremely powerful
combination. It is also possible to generate Field Pro-
grammable Array (FPGA), LaTex and CLUScript rep-
resentations. For evaluation purposes it is often helpful
to choose CLUScript output, then replace the original
CLUScript code with the optimized code and test the
result for the same functionality as the original code.
Generated Gaalop C/C++ code has to be pasted into the
final code and requires additional handwork.

2.3 Compiler Drivers and CUDA
The Compiler Driver concept is a very simple, but pow-
erful approach to extend the features of a program-
ming language. It has recently been used by NVIDIA’s
CUDA [14]. We will use CUDA as an example to
explain the usage of compiler drivers. A traditional
C++ program is separated into several source files. The
source files will then be converted to an intermediate
form by the C++ compiler. This intermediate form is
called an object file. All the object files are then linked
together by the linker, resulting in the final executable
file. For instance, see the following example in figure
1.

The language syntax of CUDA is fully compatible
with C++. One may compile any C++ code with
NVIDIA’s NVCC compiler without any modifications
to the original code. The produced machine code,
however, will still run on the host.

GraVisMa 2010 Full Papers

- 50 -

Figure 1: C++ compilation process.

In order to make use of the graphics chip’s high
number of streaming processors, we will have to
include CUDA-specific language extensions like the
__global__ or __device__ keywords and kernel call
statements, which are not part of the original C++
language. The compiled object file will seamlessly link
with the code compiled with the regular C++ compiler.
To make this clear, see the simplified diagram in figure
2. The solver.cu source file is CUDA code, all other
files are C++ code.

Figure 2: Simplified CUDA compilation process.

Notice how the CUDA compiler seamlessly inte-
grates with the C++ compiler. With the __global__ and
__device__ and other keywords NVIDIA has extended
the C++ language syntax. But instead of creating their
own C++ compiler from scratch, they came up with
the approach of reusing the existing C++ compiler and
linker. This is called the Compiler Driver concept.

From the NVIDIA CUDA Programming Guide 3.0
[3].

Source files compiled with nvcc can include a
mix of host code (i.e. code that executes on
the host) and device code (i.e. code that exe-
cutes on the device). nvcc’s basic workflow con-
sists in separating device code from host code
and compiling the device code into an assembly
form (PTX code) and/or binary form (cubin ob-
ject). The generated host code is output either as
C code that is left to be compiled using another
tool or as object code directly by letting nvcc in-
voke the host compiler during the last compila-
tion stage.

This way CUDA makes full usage of the existing
C++ compiler and linker features, extends them, but

separates both compilers at the same time. This enables
lower complexity and better maintenance of NVCC.
The full diagram can be seen in figure 3.

Figure 3: Full CUDA compilation process.

3 GAALOP COMPILER DRIVER
We have presented Conformal Geometric Algebra,
CLUScript, Gaalop and C++. All these aspects are
somehow related to each other, but simply not linked
yet. This is where the Compiler Driver concept comes
in and elegantly connects all parts. The diagram in
figure 4 shows, how this will be achieved in particular.

Figure 4: GCD C++ compilation process.

We now use the file extension .gcp for CLUScript-
extended C++ source files. The particular steps, that
occur when compiling .gcp-files, are the following.

1. The user issues the build command. This can happen
in an integrated development environment (IDE) us-
ing custom build rules, as well as using GNU make
[6] or other build automation tools.

2. The build tool passes .gcp-files to Gaalop Compiler
driver (GCD) over the command line.

3. GCD extracts the CLUScript parts of the .gcp-file
and writes them into separate files.

4. GCD invokes Gaalop over its new command line
interface, passing the extracted code files, one at a
time.

GraVisMa 2010 Full Papers

- 51 -

5. Gaalop symbolically simplifies the extracted code
files.

6. GCD merges the returned code into with the original
code, exactly where the pragmas are.

7. GCD invokes the regular C++ compiler passing the
merged C++ file.

8. Finally, the C++ compiler produces an object file,
which seamlessly integrates into the linking process.

3.1 Gaalop Compiler Driver for CUDA
Note that the concept is not restricted to C++. It can
be applied to CUDA or other programming languages
in the same manner. The resulting diagram in figure 5
for CUDA is slightly more complex, as GCD passes its
data to NVCC, which itself is a compiler driver.

Figure 5: GCD CUDA compilation process.

We choose the file extension .gcu for CLUScript-
extended CUDA programs. The compilation process
steps remain the same as with C++ GCD, with the ex-
ception of passing the generated file to NVCC instead
of the C++ compiler in steps 7 and 8.

4 A GUIDE TO GAALOP GCD
The following section shows, how to make use of GCD
in real world-applications. It is intended as a quick
start-guide, described by three example code snippets.

4.1 The Test Case
The code in the following listings was extracted from
a Molecular Dynamics Simulation currently under de-
velopment by us and the High Performance Comput-
ing Center Stuttgart (HLRS) and is partially optimized
with Gaalop and GCD. A molecular dynamics simula-
tion models the point-pair interactions of a system of
molecules, each one consisting of several atoms, and

numerically solves Newton’s and Euler’s equations of
motion for each molecule.

The aim of the project is a runtime comparison be-
tween a conventional solver and several implementa-
tions of a new formalism based on Hestenes’ work on
screw mechanics described in CGA [7], including a
compact formulation of combined translational and ro-
tational dynamics within a velocity verlet algorithm.
Details of the Molecular Dynamics formalism used as a
test case in the present work is intended to be part of a
future publication. The CGA solvers were implemented
with Gaalet, Gaalop and GCD running on the CPU,
as well as Gaalop and GCD running on CUDA.The
listings show code extracted from both the CPU and
CUDA versions of the Gaalop and GCD solvers.

4.2 Code examples for C++
The whole simulation was firstly implemented in CLU-
Calc using the CLUScript language and later ported
to C++ using Gaalop. Listing 1 shows the initializa-
tion of a particular molecule, taken from the origi-
nal CLUScript. Location and orientation are defined
through the molecule’s versor D_result (refer to [7]).
Linear and angular velocity are defined through the
molecule’s velocity screw V_result. The consecutive
simulation steps start with the values computed in this
initialization code.
/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ (l p x∗e1 + l p y∗e2 + l p z∗e3) ^ e i n f ;
? D _ r e s u l t = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
? V _ r e s u l t = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

Listing 1: Original CLUScript input for Gaalop.

Note that D_result and V_result are already declared
for export in Gaalop indicated by the question marks.
The resulting Gaalop output code is then directly pasted
into the target C++ file, as can be seen in listing 2.
/ / map m o l e c u l e da ta t o gaa lop da ta
c o n s t f l o a t l p x = m o l e c u l e . l p o s [0] ;
c o n s t f l o a t l p y = m o l e c u l e . l p o s [1] ;
c o n s t f l o a t l p z = m o l e c u l e . l p o s [2] ;
c o n s t f l o a t arw = m o l e c u l e . a r o t [0] ;
c o n s t f l o a t a r x = −m o l e c u l e . a r o t [1] ;
c o n s t f l o a t a r y = −m o l e c u l e . a r o t [2] ;
c o n s t f l o a t a r z = −m o l e c u l e . a r o t [3] ;
c o n s t f l o a t l v x = m o l e c u l e . l v e l [0] ;
c o n s t f l o a t l v y = m o l e c u l e . l v e l [1] ;
c o n s t f l o a t l v z = m o l e c u l e . l v e l [2] ;
c o n s t f l o a t avx = m o l e c u l e . a v e l [0] ;
c o n s t f l o a t avy = m o l e c u l e . a v e l [1] ;
c o n s t f l o a t avz = m o l e c u l e . a v e l [2] ;

/ / gaa lop g e n e r a t e d code
f l o a t D _ r e s u l t _ o p t [3 2] = { 0 . 0 f } ;
D _ r e s u l t _ o p t [1] = arw ;
D _ r e s u l t _ o p t [7] = a r z ;
D _ r e s u l t _ o p t [8]=− a r y ;
D _ r e s u l t _ o p t [9] = 0 . 5∗ l p y∗arz −0.5∗ l p x∗arw−0.5∗ l p z∗ a r y ;
D _ r e s u l t _ o p t [1 1] = a r x ;
D _ r e s u l t _ o p t [1 2] = 0 . 5∗ l p z∗arx −0.5∗ l p y∗arw−0.5∗ l p x∗ a r z ;
D _ r e s u l t _ o p t [14]=−0.5∗ l p z∗arw +0.5∗ l p x∗ary −0.5∗ l p y∗ a r x ;
D _ r e s u l t _ o p t [27]=−0.5∗ l p y∗ary −0.5∗ l p z∗arz −0.5∗ l p x∗ a r x ;

GraVisMa 2010 Full Papers

- 52 -

/ / gaa lop g e n e r a t e d code
f l o a t V _ r e s u l t _ o p t [3 2] = { 0 . 0 f } ;
V _ r e s u l t _ o p t [7]=− avz ;
V _ r e s u l t _ o p t [8] = avy ;
V _ r e s u l t _ o p t [9]=− l v x ;
V _ r e s u l t _ o p t [11]=− avx ;
V _ r e s u l t _ o p t [12]=− l v y ;
V _ r e s u l t _ o p t [14]=− l v z ;

/ / map gaa lop da ta t o m o l e c u l e da ta
GaalopMapVersor (D, D _ r e s u l t _ o p t) ;
GaalopMapVeloc i tyScrew (V, V _ r e s u l t _ o p t) ;

Listing 2: Merged Gaalop and C++ code.

Notice that the result code not only contains the gen-
erated Gaalop code, but also several variable and array
assignments. Those assignments are data mappings be-
tween the original molecule data structure and the gen-
erated Gaalop code. They are quite common for most
Gaalop-powered applications.

The function GaalopMapVersor assigns the elements
1,7,8,9,11,12,14,27 of array D_result_opt to the ele-
ments 0,1,2,3,4,5,6,7 of array D, that was previously
declared with size 8. The function GaalopMapVeloc-
ityScrew assigns the elements 7,8,9,11,12,14 of array
V_result_opt to the elements 0,1,2,3,4,5 of array V, that
was previously declared with size 6. The code in be-
tween the two mapping blocks is the actual Gaalop out-
put code.

One may modify the array indices and variable names
by hand to improve speed and to avoid data mappings.
For reasons of transparency this is usually not a good
choice, meaning that if we might discover a bug or
we would like to include a new feature in one of our
CLUScript files, we again have to modify the gener-
ated code by hand. As there might be a large number
of Gaalop-generated code snippets in a GGA-powered
C++ program, this process will increase the probability
of bugs and development time. Using data-mappings
enables us to re-paste modified code at any time.

Also notice that even without the data mappings, the
generated code is hardly interpretable by human means.
Keeping this in mind, review the following code.

/ / map m o l e c u l e da ta t o gaa lop da ta
. . .

#pragma gcd b e g i n
/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ (l p x∗e1 + l p y∗e2 + l p z∗e3) ^ e i n f ;
? D _ r e s u l t = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
? V _ r e s u l t = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

#pragma gcd end

/ / map gaa lop da ta t o m o l e c u l e da ta
GaalopMapVersor (D, D _ r e s u l t) ;
GaalopMapVeloc i tyScrew (V, V _ r e s u l t) ;

Listing 3: Gaalop Compiler Driver for C++ input code.

Note: The preceding variable mappings were re-
moved in order to keep the size of this document small.

Please consider them to be in place when evaluating the
code.

The CLUScript code is now directly embedded in the
C++ code in between the gcd pragmas, instead of the
pasted Gaalop code. As result, this reduces the source
code size and makes it much better readable.

Since the code now contains CLUScript statements,
which are apparently not part of the C++ standard, we
will not be able to compile it with a regular C++ com-
piler. To be specific, the C++ standard is being extended
using the Compiler Driver concept, as stated in section
3.

4.3 Code example for CUDA

The example above was chosen, because it includes a
lot of CGA-statements and is easy to understand. It is
also possible to include this code into a CUDA-Kernel,
but not meaningful here. The code shown is only called
once for each molecule before the simulation, and never
called again. Wisely chosen CUDA-Kernels are called
one or many times per frame, as the one in listing 4.
Again, it is taken from the original simulation, with
some parts removed.

_ _ d e v i c e _ _ void addMoleculeForceAndTorque (
f l o a t ∗ mol_lmom ,
f l o a t ∗ mol_amom ,
c o n s t f l o a t ∗ v e r s o r 1 ,
c o n s t f l o a t 3& l o c a l P o s ,
c o n s t f l o a t 3& g l o b a l F o r c e ,
. . .)

{
/ / map m o l e c u l e da ta t o gaa lop da ta
c o n s t f l o a t Di = v e r s o r 1 [0] ;
c o n s t f l o a t D12 = v e r s o r 1 [1] ;
c o n s t f l o a t D13 = v e r s o r 1 [2] ;
c o n s t f l o a t D1x = v e r s o r 1 [3] ;
c o n s t f l o a t D23 = v e r s o r 1 [4] ;
c o n s t f l o a t D2x = v e r s o r 1 [5] ;
c o n s t f l o a t D3x = v e r s o r 1 [6] ;
c o n s t f l o a t D123x = v e r s o r 1 [7] ;

c o n s t f l o a t px = l o c a l P o s . x ;
c o n s t f l o a t py = l o c a l P o s . y ;
c o n s t f l o a t pz = l o c a l P o s . z ;

c o n s t f l o a t fgx = g l o b a l F o r c e . x ;
c o n s t f l o a t fgy = g l o b a l F o r c e . y ;
c o n s t f l o a t f g z = g l o b a l F o r c e . z ;

#pragma gcd b e g i n
/ / i n p u t v a l u e s
m o l e c u l e V e r s o r = Di + D23∗e2 ^ e3 + D13∗e1 ^ e3

+ D12∗e1 ^ e2 + D1x∗e1 ^ e i n f
+ D2x∗e2 ^ e i n f + D3x∗e3 ^ e i n f
+ D123x∗e1 ^ e2 ^ e3 ^ e i n f ;

p o s L o c a l = px∗e1 + py∗e2 + pz∗e3 ;
f o r c e G l o b a l = fgx∗e1 + fgy∗e2 + f g z∗e3 ;

/ / f i n a l v a l u e s
? r e s u l t _ f o r c e = ~ m o l e c u l e V e r s o r

∗ f o r c e G l o b a l
∗ m o l e c u l e V e r s o r ;

? r e s u l t _ t o r q u e = p o s L o c a l ^ r e s u l t _ f o r c e ;
#pragma gcd end

/ / add r e s u l t i n g f o r c e and t o r q u e t o m o l e c u l e ’ s da ta
. . .
}

Listing 4: Gaalop Compiler Driver for CUDA input code.

GraVisMa 2010 Full Papers

- 53 -

5 RESULTS

5.1 Performance and Compile Time
Figure 6 shows the performance of the GCD solver ver-
sus the Conventional solver for the Test Case in sec-
tion 4.1 on a quadcore machine. The GCD solver is
slightly faster or equally fast compared to the Conven-
tional solver, which is not self-evident for CGA-based
implementations of such complexity. Additionally, the
GCD solver has a more compact code, as described
in section 4.1. Notice, that section 6 shows ways to
achieve more than two times faster results, by remov-
ing unused memory and caching artifacts (figure 7).

Figure 6: Performance Results - GCD solver is slightly
faster or equally fast compared to Conventional solver.
Much higher Performance is achieved in figure 7, Fu-
ture Work section 6.

Compilation time is 1.920s for the Conventional ver-
sus 10.426s for the GCD solver. The prolonged com-
pile time is due to the Gaalop-performed symbolic op-
timizations in the background.

5.2 CMake Support
Development with most programming languages, es-
pecially C++, is highly dependent on specifying build
logic. Build logic explicitly defines which source files
need to be compiled with which tool, and how the re-
sulting intermediate files get linked together into the fi-
nal executable or library file. Integrated development
environments (IDE) like Microsoft Visual Studio [13]
or Code::Blocks [1] automatically manage the default
parts of the build logic.

However, with a rising number of operating systems,
compilers and build tools, it has become very difficult
to maintain the build logic for every possible combi-
nation of operating system and compiler. CMake [12]
elegantly solves this problem by acting as a build logic
generator. More detailed, CMake defines a script lan-
guage, that is independent of the build platform. This
script language, is then transformed into the target plat-

form definition, e.g. *.sln project files for Visual Studio
or Makefiles for GNU make [6].

CMake is rapidly becoming the de facto standard
for cross platform build tools. It also supports auto-
matic unit testing (CTest), install and deploy mecha-
nisms (CPack), and web-based error reporting (CDash).

CMake support for GCD is provided by a CMake-
script named FindGCD.cmake. If the script is installed
in CMake’s Modules subdirectory, it can be invoked
by CMake’s FIND_PACKAGE(GCD) command.
Libraries and executables containing GCD code
may be built using GCD_CPP_ADD_LIBRARY and
GCD_CPP_ADD_EXECUTABLE commands. GCD
for CUDA builds use GCD_CUDA_ADD_LIBRARY
and GCD_CUDA_ADD_EXECUTABLE.

An example CMakeLists.txt build script is shown in
listing 5.
CMAKE_MINIMUM_REQUIRED(VERSION 2 . 8)
FIND_PACKAGE(GCD)
GCD_CPP_ADD_EXECUTABLE(t e s t 1 " T e s t 1 _ P o i n t T r i a n g l e . gcp ")
ADD_TEST(NAME " T e s t 1 _ P o i n t T r i a n g l e " COMMAND t e s t 1)

Listing 5: Example CMake build script using GCD.

Given this definition, CMake compiles and links the
GCD source file "Test1_PointTriangle.gcp" into an ap-
plication test1, and specifies it as a runtime test. CTest
runs the executable and reports it as PASSED, if its re-
turn value is zero, or FAILED, if it is non-zero. Tests
like this one are an important part of software quality
assurance.

5.3 GCD helper library
The goal behind GCD helper library is to assist users
of GCD by providing essential functions, that simplify
development of CGA-powered applications. It is in-
tended as a multi-purpose library, adaptable to a broad
range of applications working with Conformal Geomet-
ric Algebra. Reoccurring tasks, like the mapping of ver-
sors (GaalopMapVersor from section 4.2), are imple-
mented within the library. It also provides C++-macros,
that state the position of a particular multivector entry,
e.g. e1∧ e2 is listed as "#define E12 6". For example,
D[E12] returns the blade e1∧e2 of a multivector D (see
table 1 for a refresh of the 32 blades of CGA).

The GCD helper library is automatically linked when
using CMake, as described in section 5.2. However, the
library’s header files have to be included with "#include
<gcd.h>" in *.gcp (GCD for C++) or *.gcu (GCD for
CUDA) source files.

6 FUTURE WORK
The presented approach still has a lot of potential to im-
prove on. Further work has to be put into simplifying
data mappings and advancing memory usage. Gaalop
automatically allocates arrays of 32 floating point num-
bers to make space for all possible multivector entries,
which results in a memory usage of 128 bytes per mul-
tivector (see subsection 1.1). Most multivectors usually

GraVisMa 2010 Full Papers

- 54 -

contain about up to 8 entries, which results in about 24
unused multivector entries and 96 bytes of unneeded
memory. It is not trivial to reduce the required space,
because we must deal with the theoretical assumption,
that all multivector entries could be assigned.

Using data mappings, the effect can be hidden, and
no useless data will be saved and read from RAM, but
it still occupies register space and cache, which has an
effect on performance. This turned out to to be a major
bottleneck in our Molecular Dynamics simulation.

Listing 6 shows an outlook of how future GCD code
may look like.

/ / map m o l e c u l e da ta t o gaa lop da ta
. . .

#pragma gcd b e g i n
/ / c r e a t e v e r s o r from i n p u t v a l u e s
r o t o r = arw + a r x∗e2 ^ e3 + a r y ∗ e3 ^ e1 + a r z ∗ e1 ^ e2 ;
t r a n s l a t o r = 1 − 0 . 5∗ (l p x∗e1 + l p y∗e2 + l p z∗e3) ^ e i n f ;
?D = t r a n s l a t o r ∗ r o t o r ;

/ / c r e a t e v e l o c i t y screw from i n p u t v a l u e s
l v = l v x∗e1+ l v y∗e2+ l v z∗e3 ;
av = avx∗e1+avy∗e2+avz∗e3 ;
?V = e i n f ∗ l v − e1 ^ e2 ^ e3∗av ;

#pragma gcd end

Listing 6: Future GCD code without subsequent data mappings.

Notice that D and V do not need to be saved into tem-
porary arrays D_result and V_result anymore. They are
directly stored into the final arrays, saving additional
copy time, register and cache usage. Preliminary tests
on this subject reduced the runtime of our test case
down to 36 percent of its original value and are very
promising (figure 7).

Figure 7: Future Performance Results

Ongoing work is being put into symbolically op-
timizing larger parts of the CLUScript-syntax with
Gaalop. For example, while-loops can be unrolled and
symbolically treated in the same way as other code.

Apart from C++ and CUDA, other languages like
OpenCL [11], Microsoft DirectCompute and shading
languages (CG, HLSL) are interesting target languages
for GCD and promising topics for further research.

The GCD helper library will be expanded in future
work to support direct rendering of multivectors similar

to CLUCalc (see figure 8 for example). That is, given
a particular multivector m, the helper library will firstly
determine its representation in three-dimensional space
(e.g. sphere, plane, circle, line, point-pair or point).
Given the representation and its parameters, the library
will render the appropriate object with OpenGL [10] or
other rendering APIs.

Figure 8: An example of CLUCalc generated graphics

7 CONCLUSION
Code simplicity, elegance and intuitiveness are the ma-
jor goals of this work. Recalling the code examples
shows that these goals were reached. As GCD directly
profits from any improvements within Gaalop through
its invocation, a high runtime performance is achieved
on-the-fly.

Gaalop GCD symbolically optimizes the embedded
CLUScript code in order to improve runtime. A longer
compile time is a natural consequence of the concept.
However, we do not recommend putting much research
into this aspect, as the build process can already be
parallelized in many build automation tools like GNU
make [6]. We found, that in reality, using parallelized
builds, longer compile time is not a problem.

We would like to conclude, that Gaalop Compiler
Driver has the potential to change the way program-
mers work with Conformal Geometric Algebra inclu-
sions in their code. Instead of separating code genera-
tion and code compilation into two distinct processes, it
is now a single simplified process. Especially the com-
bination of CGA and CUDA enables new methods for
research. As it is now easier to develop with, we hope
that more scientists, game and software programmers
will find their way into the applications of Conformal
Geometric Algebra.

REFERENCES
[1] Code::blocks. http://www.codeblocks.org.

[2] The homepage of geomerics ltd. Available at http://www.
geomerics.com.

[3] NVIDIA Corporation. NVIDIA CUDA Programming Guide 3.0,
2010. Available at www.nvidia.com.

[4] Ahmad Hosney Awad Eid. Optimized Automatic Code Genera-
tion for Geometric Algebra Based Algorithms with Ray Tracing
Application. PhD thesis, Port-Said, 2010.

GraVisMa 2010 Full Papers

- 55 -

[5] Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen 2:
A geometric algebra implementation generator. Available
at http://staff.science.uva.nl/~fontijne/
gaigen2.html, 2007.

[6] Free Software Foundation. Gnu make.
http://www.gnu.org/software/make.

[7] David Hestenes. Old wine in new bottles : A new algebraic
framework for computational geometry. In Eduardo Bayro-
Corrochano and Garret Sobczyk, editors, Geometric Alge-
bra with Applications in Science and Engineering. Birkhäuser,
2001.

[8] Dietmar Hildenbrand, Daniel Fontijne, Yusheng Wang, Marc
Alexa, and Leo Dorst. Competitive runtime performance for
inverse kinematics algorithms using conformal geometric alge-
bra. In Eurographics conference Vienna, 2006.

[9] Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch. Gaalop
- High Performance Parallel Computing based on Conformal
Geometric Algebra, volume 1, pages 350–358. Springer, May
2010.

[10] Khronos. OpenGL Specifications, 2010.
http://www.opengl.org/documentation/specs/.

[11] Khronos-Group. The OpenCL home page. Available at http:
//www.khronos.org/opencl/, 2009.

[12] Inc. Kitware. Cmake cross platform make.
http://www.cmake.org.

[13] Microsoft. Microsoft visual studio.
http://www.microsoft.com/visualstudio.

[14] NVIDIA. The CUDA home page. Available at http://www.
nvidia.com/object/cuda_home.html, 2010.

[15] Oracle. Java. http://java.com/en/.

[16] Christian Perwass. Geometric Algebra with Applications in En-
gineering. Springer, 2009.

[17] Christian Perwass. The CLU home page. Available at
http://www.clucalc.info, 2010.

[18] Florian Seybold. Geometric algebra algorithm expression tem-
plates. http://sourceforge.net/projects/gaalet/develop, 2010.

GraVisMa 2010 Full Papers

- 56 -

Registration of Multichannel Images using Geometric Algebra

Andreas Görlitz
Darmstadt University of Technology
Department of Computer Science

Hochschulstr. 10
64289 Darmstadt, Germany

A.Goerlitz@stud.tu-darmstadt.de

Helmut Seibert
Fraunhofer Institute for

Computer Graphics Research
Fraunhoferstr. 5

64283 Darmstadt, Germany

helmut.seibert@igd.fraunhofer.de

Dietmar Hildenbrand
Darmstadt University of Technology
Department of Computer Science

Hochschulstr. 10
64289 Darmstadt, Germany

dhilden@gris.informatik.tu-darmstadt.de

ABSTRACT
Geometric Algebra (GA) is a mathematical framework that allows a compact and geometrically intuitive descrip-
tion of geometric relationships and algorithms. In this paper a translation, rotation and scale invariant algorithm
for registration of color images and other multichannel data is introduced. The use of Geometric Algebra allows to
generalize the well known Fourier Transform which is widely used for the registration of scalar fields. In contrast
to the original algorithm our algorithm allows to handle vector valued data in an appropriate way. As a proof of
concept the registration results for artificial, as well as for real world data, are discussed.

Keywords
Registration, Multichannel Images, Color Images, Clifford Fourier Transform, Geometric Algebra (GA)

1 INTRODUCTION
Registration of images is a crucial step in many im-
age processing applications where the final informa-
tion is obtained by combining multiple input im-
ages. Widely used applications such as image stitch-
ing [16], medical imaging [3] and video tracking [15],
heavily rely on the accuracy of image registration. A
broad variety of approaches for various image regis-
tration problems has been developed and presented in
the literature, a survey which classifies the different
approaches is given in [19].

In many applications multi-channel images are
available, which require adequate processing of vec-
tor data. Fundamental image processing steps such
as convolution and correlation are not well suited
to work with vector data, as the multiplication of
vectors has a different meaning as the multiplication
of scalar values. In practice there are two common
ways to work around this limitation. One is to reduce
the dimensionality, e.g. to convert color images to
a monochrome representation. The other way is to
handle the vector components respective channels
independently and to combine the results afterwards,
e.g. perform a filter operation on the red, green, and
blue channel of a RGB image separately.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

Obviously both approaches cause inaccuracies by
introducing information loss or misinterpretations
and may lead to inappropriate results.

The key innovation of our work presented here is
a way to perform a registration of multichannel im-
ages based on the Fourier Transform using Geomet-
ric Algebra as an adequate mathematic foundation to
handle vector data in a well defined and appropriate
way.

In Section 3 a brief introduction of some Geometric
Algebra basics is given and the registration of images
using the Fourier Transform is discussed. As main
contribution of this paper the generalization of this
registration approach for multichannel images, such
as color images, introduced in Section 4. The eval-
uation and the results are discussed in Section 5 and
6 respectively, and afterwards a conclusion is given
in Section 7. Finally an outlook to the future work is
given in Section 8.

2 RELATED WORK
Applications that rely on registration of images are
a.o.: image stitching [16], medical imaging [3] and
video tracking [15]. Especially in medical imaging
the registration of multichannel images plays an im-
portant role [12], [14]. To be able to process these
multichannel images in the phase domain, a general-
ization of the classical Fourier-Transform is needed.
Many different approaches have been invented to gen-
eralize the classical Fourier Transform in the recent
years [2], [7] and [8]. The basis of this paper is the
so called Clifford-Fourier-Transform that was derived
and successfully used in [5] and [6].

GraVisMa 2010 Full Papers

- 57 -

3 PREREQUISITES
3.1 Geometric Algebra
Below we only describe the parts of the Geometric
Algebra on Rn, G(Rn) or in abbreviate form Gn, that
will be used in this paper. For a more detailed in-
troduction to Geometric Algebra we reference to [1],
[4], [11], [18].

Inner Product: let a,b,c∈ Gn be Geometric Algebra
vectors and k ∈ R, then the inner product a ·b, that is
also known as the scalar product from vector calcu-
lus, has the following properties:

a ·b = b ·a
(k a) ·b = k(a ·b)

a · (b+ c) = a ·b+a · c .

Further we also know from vector calculus that
a ·b = |a | |b |cos(α), where α is the angle between a
and b, i.e. a ·b = 0 a,b 6= 0⇔ a and b are orthogonal.

Outer Product: let a,b,c∈Gn be Geometric Algebra
vectors and k ∈ R, then the outer product a∧b has the
following properties:

a∧b =−b∧a
(a∧b)∧ c = a∧ (b∧ c)
a∧ (b+ c) = a∧b+a∧ c

(ka)∧b = k(a∧b) .

It can be shown that the outer product a∧b spans a
plane, i.e. a∧b = 0⇔ a and b are parallel.

A term like
∧k

i=1 bi = b1∧b2∧·· ·∧bk is being called
a k-blade. A unit n-blade is often referred to as a
pseudoscalar e1∧ e2∧·· ·∧ en = in, where ei are unit
vectors, i.e. ei · e j = δi j .

Geometric Product: let a,b,c ∈ Gn be Geomet-
ric Algebra vectors, then the geometric product ab
is simply the sum of the inner and outer product
ab = a ·b+a∧b with the properties:

(ab)c = a(bc)
a(b+ c) = ab+ac
(b+ c)a = ba+ ca .

The sum of scalars, vectors and blades is denoted
as multivector, especially every single scalar, vector
and blade is a multivector too, i.e. the result of any
afore mentioned product is a multivector in general.

Rotations in Gn: let e1,e2, . . . ,en be unit vectors in
Gn, then with i 6= j

(ei∧ e j)(ei∧ e j) =−1 , (1)

a proof is given in Appendix A.1.
So, similar to Euler’s Formula, by substituting

e1∧ e2 = i, where i is the imaginary unit, and comput-
ing Taylor series expansion of exp(φ(e1∧ e2)), or in
shorthand notation eφ(e1∧e2), we get

eφ(e1∧e2) = cos(φ)+(e1∧ e2)sin(φ) , (2)

which is the well known rotation operator (rotor) for
complex numbers.

Unlike the case of complex numbers, for a
general rotation in Gn of an arbitrary plane
L = ∑

n
i=1 ∑

n
j=i+1 ki jei∧ e j with 0≤ ki j ≤ 1 and

∑i, j ki j = 1 a two-sided rotor is needed

arotated = e
−φ

2 L a e
φ

2 L . (3)

This is given by the fact that a two-sided rotor has no
effect on vectors perpendicular to the rotation plane,
e.g.

e
−φ

2 e1∧e2 e3 e
φ

2 e1∧e2 = e3 . (4)

a proof is given in Appendix A.2. A one-sided rotor
does not have this property.

3.2 Fourier-Mellin Transform
In this Section we briefly introduce the application
of the Fourier-Mellin Transform for registration of
grayscaled images. All theorems and proofs accord-
ing to the Fourier-Transform can be found in [10].

As in [10], we use the following definition of the
Fourier-Transform of a function f : R2→ C2

F(χ,ξ) =
∫ +∞

−∞

∫ +∞

−∞

f (x,y)e−2πi(χx+ξ y)dxdy ,

and the Inverse Fourier-Transform as

f̂ (x,y) =
∫ +∞

−∞

∫ +∞

−∞

F(χ,ξ)e−2πi(χx+ξ y)dχdξ .

Translation Invariance: let f1 and f2 be two images
with the following relation:

f1(x,y) = f2(x− tx,y− ty) , (5)

i.e. moving f2 by tx (right) and ty (down) will result
in f1. Further let F1 and F2 be the Fourier-Transforms
of f1 respective f2, then by the shift-theorem both are
related to each other by:

F1(χ,γ) = F2(χ,γ)e−2iπ(χ tx+γ ty) , (6)

where i is the imaginary unit.
The latter equation can be rearranged to:

F∗2 (χ,γ)F1(χ,γ)

|F2(χ,γ)|2
= e−2iπ(χ tx+γ ty) , (7)

where F∗2 (χ,γ) denotes the conjugate complex Value
of F2(χ,γ).

The right-hand side of (7) is a Fourier-Transform of
the Dirac-Delta function1, i.e.:

e−2πi(χ tx+γ ty) =
∫∫
R2

δ (x− tx,y− ty)e−2πi(χ x+γ y) dxdy .

Since the inverse Fourier-Transform gives us the
Dirac Delta function δ (x− tx,y− ty), the position of
the Dirac impulse gives us the values for tx and ty, as
can be seen in Figure 1.

1 or to be more precise Dirac Delta distribution

GraVisMa 2010 Full Papers

- 58 -

(a) (b) (c)

Figure 1: According to Paragraph Translation Invariance in Section 3.2, (a) is f1 and (b) is f2 with the relation
f1(x,y) = f2(x−50,y−10), which means that shifting (b) 50 pixels right and 10 pixels down will result in (a)
(the orign is the upper left corner and the image sizes are 128×128). The Inverse Fourier Transform of the left-hand
side of equation (7) results in (c). The Dirac Impulse p, i.e. the white point, has got the coordinates p = (50,10)T .

Rotation and Scale Invariance: let f1 and f2 be two
images with the following relation:

f1(x,y) = f2(x cos(α)+ y sin(α),y cos(α)− x sin(α)) , (8)

i.e. rotating f2 by the angle α will result in f1. Trans-
forming from Cartesian (x,y) to polar coordinates, the
latter equation can be written as:

f1 = f2(r,φ −α) ,

and is syntactically similar to equation (5) now. So
the value for α can be computed in the same way as
explained previously.

Having not only a difference in rotation but also in
homogeneous scaling, the relation is then:

f1(x,y) = f2(
x
s

cos(α)+
y
s

sin(α),
y
s

cos(α)− x
s

sin(α)) ,

where s is the so called scaling factor.
Transforming both sides of the above equation to

polar coordinates results in

f1(r,φ) = f2(
r
s
,φ −α) .

Computing the logarithm of r
s gives the so called log-

polar coordinates which leads to

f1(log(r),φ) = f2(log(r)− log(s),φ −α) , (9)

the same structure as in (5), so that α and log(s), re-
spective the scaling factor s, can be computed as de-
scribed above.

The Fourier-Transform F l of f (x,y) in log-polar co-
ordinates can be rearranged as follows:

F l(u1,u2) =
∫ 2π

0

∫ +∞

0
f (log(r),φ)e−2πi(u1 log(r)+u2φ)dlog(r)dφ

=
∫ 2π

0

∫ +∞

0
f (log(r),φ)r−2πiu1 e−2πu2φ dlog(r)dφ

=
∫ 2π

0

∫ +∞

0
f (log(r),φ)r−2πiu1−1dre−2πu2φ dφ .

Since the inner integral is a Mellin-Transform
while the outer integral is a Fourier-Transform, the
whole formula is often referred to as the Fourier
Mellin Transform.

Translation, Rotation and Scale Invariance: let f1
and f2 be two images, with the relation

f1(x,y)= f2(sx cos(α)+sy sin(α)−tx,sy cos(α)−sx sin(α)−ty) ,

i.e. rotating f2 by the angle α, scaling by s > 0 and
finally shifting it by tx and ty will result in f1 .

The Fourier-Transforms of both sides are related to
each other by

F1(χ,γ)= F2(
χ cos(α)+ γ sin(α)

a
,

γ cos(α)−χ sin(α)
a

)
e−2πi(χ tx+γ ty)

a2 .

The factor e−2πi(χ tx+γ ty) is a rotor, i.e. it changes only
the orientation but not the magnitudes of F2. So com-
puting the magnitude spectra M1,M2 of F1 and F2 leads
to

M1(χ,γ) = M2(
χ cos(α)+ γ sin(α)

s
,

γ cos(α)−χ sin(α)
s

)
1
s2 .

Fourier-Mellin Transforming both sides in log-polar
coordinates, results in

FM1(ξ ,ψ) = FM2(ξ ,ψ)
e−2πi(ξ s+ψα)

s2 .

Since the divisor s2 does not affect the position of the
peak, it can be simply ignored, which leads finally to

FM1(ξ ,ψ)≈ FM2(ξ ,ψ)e−2πi(ξ s+ψα) .

The latter equation is syntactically equal to eq. (6),
i.e. the computation of s and α can be done as de-
scribeb in the respective paragraph above.

After rotating and scaling the image with the com-
puted values, the given images will differ in shift only,
such that the computation of this value can be done as
described previously.

GraVisMa 2010 Full Papers

- 59 -

4 GENERALIZED REGISTRATION
In this Section we generalize the method of regis-
tering grayscaled images as mentioned above, to a
method that allows a registration of multichannel im-
ages as well. Therefore we make use of the Geomet-
ric Algebra and the Clifford Fourier Transform (CFT)
introduced in [6] that is defined as

F{f}(χ) =
∫
Rn

f(x)e−2π in(x·χ)dnx , (10)

and its inverse

F−1{f}(x) =
∫
Rn

f(χ)e−2π in(x·χ)dn
χ , (11)

where x,ξ ∈ Rn are two n dimensional vectors, in is a
pseudoscalar, i.e. inin =−1 (the proof is analogous to
the one given in Appendix A.1), and f, f̄ : Rn→ Gm are
multivector valued signals.

The main advantage of this Fourier Transform is
that it is a sum of classical Fourier Transforms,

F{f}(χ) =
∫
Rn

f(x)e−2π in(x·χ)dnx

=
∫
Rn

(f1(x)e1 + f2(x)e2 + · · ·+ fn(x)en) e−2π in(x·χ)dnx

=
∫
Rn

(−1)n−1 f1(x)e−2π in(x·χ)e1

+(−1)n−1 f2(x)e−2π in(x·χ)e2

+ · · ·+(−1)n−1 fn(x)e−2π in(x·χ)en dnx

= (−1)n−1F1(x)e1 + · · ·+(−1)n−1Fn(x)en ,
(12)

i.e. high-performance implementations can be real-
ized by using Fast Fourier Transforms.

4.1 Translation Invariance
Let f1, f2 : Rn → Rm be two vector valued signals and
let x, t ∈ Rn with the following relation:

f1(x) = f2(x− t) .

The Fourier Transforms F1,F2 of f1 and f2 respec-
tively are related by

F1(χ) = F2(χ)e−2π in(t·χ) , (13)

a proof is given in Appendix A.3.
Analogously to the afore mentioned case for

grayscaled images, multiplying the inverse of F2
from the left and computing the inverse Clifford
Fourier Transform (11) will result in the Dirac
Delta function δ (x− t), i.e. the impulse is located at
position t ∈ Rn. A proof is given in A.4.

4.2 Rotation and Scale Invariance
As described in paragraph Rotations in Gn in
Section 3.1, rotations are defined in unit planes
L = ∑

n
i=1 ∑

n
j=i+1 ki jei∧ e j with 0≤ ki j ≤ 1 and

∑i, j ki j = 1. Obviously there are
(n

2

)
such planes

that can be extracted as

eφL = eφ1e1∧e2 eφ2e1∧e3 . . . e
φ(n

2)en−1∧en
,

where φ = φ1
k11

+ φ2
k12

+ · · ·+
φ(n

2)
kn−1 n

This means that in n dimensions two functions
f1, f2 : Rn→ Rm that differ in rotation, can finally dif-
fer in at most

(n
2

)
angles. Taking this in mind one

can see, that for computing all angles, the functions
f1, f2 must have the form f(r,φ1,φ2, . . . ,φ(n

2)
), i.e. two

equal functions that differ in rotation and scale (that
is equal in all dimensions), f1(x) = f2(e−

α

2 L x e
α

2 L) can
be written as

f1(log(r),φ) = f2(log(r)− log(s),φ −α) , (14)

where φ = (φ1,φ2, . . . ,φ(n
2)

)T , α = (α1,α2, . . . ,α(n
2)

)T

and r > 0,s > 0. These coordinates are related to the
Cartesian coordinates by

r
φ1
φ2
...

φ(n
2)

=̂ e−
φ1
2 e1∧e2 . . .e−

φ(n
2)
2 en−1∧en(re1)e

φ1
2 e1∧e2 . . .e

φ(n
2)
2 en−1∧en︸ ︷︷ ︸

Cartesian

(15)

Given equation (14), s > 0 and α ∈ R(n
2) can be com-

puted in the same way as for shifted vector valued
signals.

4.3 Translation, Rotation and Scale In-
variance

Although so far the generalization was easily done by
exchanging the classical Fourier-Transform by the so
called Clifford-Fourier-Transform, the generalization
of the registration of a rotated, scaled and shifted im-
age is a challenging task.

Let f1, f2 : Rn → Rm be two multichannel images
with the relation

f1(x) = f2(e−
1
2 φL x

s
e

1
2 φL− t) ,

with t ∈ Rn,φ ∈ R(n
2) and s > 0. The Fourier-

Transforms of f1 and f2 have the relation

F1(χ) = F2(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn .

Getting rid of the factor e−2πinχ·t by computing the
magnitudes, would allow to compute the scale and
the angles and afterwards the shift. Unfortunately this
step would result in a so called scalar field, which can
be imagined as a grayscaled image, i.e. from here

GraVisMa 2010 Full Papers

- 60 -

(a) (b) (c)

(d) (e) (f)

Figure 2: Images (a) and (b) are the two related color images that served as inputs for the presented multichannel registration
algorithm. The result is shown in (c), a peak on the upper right. Transforming (a) and (b) into gray values (d)
respective (e), the result (f) is no more a single peak, i.e. the rotation angle can not be computed anymore.

on the algorithm would operate on grayscaled and no
more on multichannel images.

From equation (12) and the latter relation directly
follows:

(−1)n−1F11(χ)e1 +(−1)n−1F12(χ)e2 · · ·+(−1)n−1F1n(χ)en

= F21(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn e1

+F22(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn e2

+ · · ·+F2n(e
1
2 φL sχ e−

1
2 φL)

e−2πinχ·t

sn en ,

where Fi j is the classical Fourier Transform of image
i and channel j. Computing the magnitudes compo-
nent wise results in

M11(χ)e1 +M12(χ)e2 + · · ·+M1n(χ)en

= M21(e
1
2 φL sχ e−

1
2 φL)

e1

sn +M22(e
1
2 φL sχ e−

1
2 φL)

e2

sn

+ · · ·+M2n(e
1
2 φL sχ e−

1
2 φL)

en

sn ,

or in shorthand notation

MF1(χ) = MF2(e
1
2 φL χ

s
e−

1
2 φL)

1
sn ,

which can be rewritten in transformed coordinates as

MF1(log(r),φ) = MF2(log(r)− log(s),φ −α)
1
sn .

Clifford Fourier Transforming both sides leads to

FMF1(ρ,ξ) = FMF1(ρ,ξ)
e
−2πin

(ρ

ξ

)
·
(

log(s)
α

)
sn .

From here on, the computation of s, α and finally t can
be done analogously to the case of grayscaled images,
that was described previously.

5 EVALUATION
The evaluation of our approach was made with two
different kinds of data: artificial and real world data.

An artificial color image has been created such that
the different colors within the image correspond to
the same gray value after conversion to grayscale (cf.
Figure 2). As real world data the 30th slice of a mon-
key head Positron Emission Tomography (PET) scan
(cf. Figure 3), available from [13], has been chosen.

The registration of the artificial data was done by
first rotating this image by a certain degree and then
registering it as described in Rotation and Scale In-
variance of Section 4. This step shows the potential
and advantages of this multichannel registration and
will be discussed in the next Section.

The evaluation of the monkey head PET was sim-
ilar to the afore mentioned case of the artificial data.
In contrast with the artificial data, the registration was
executed on each single channel (red, green and blue),
on the average signal of the three channels and on the

GraVisMa 2010 Full Papers

- 61 -

(a) (b) (c) (d) (e)

Figure 3: This images are taken from the 30th slice of a PET scan of a monkey head available from [13]. The images are
respectively, the original PET image (a) itself, then the red (b), green (c) and blue (d) channels of the original image,
and the average (e) of the three channels.

multichannel data itself. These steps were performed
ten times to obtain many different results. Afterwards
the min., max. and avg. errors were computed. As
error measure we use the difference of the computed
angle and the ground truth.

Since the registration on each single channel
respectively on the average signal are state of the
art approaches, this evaluation procedure compares
them with the presented multichannel registration
algorithm.

6 RESULTS
The basic outcome of this work is a novel approach
for the registration of multichannel images, achieved
by the generalization of the Fourier(-Mellin) Trans-
form using Geometric Algebra multivectors as basis
elements.

The main advantage of this algorithm is that it di-
rectly operates on the multichannel signal, instead of
e.g. scaling the signal down to one dimension (e.g. by
averaging) and thereby loosing a lot of information.
This information loss in some cases will negatively
affect on the accuracy of the registration results, as
can be seen in Figure 2. Given the multichannel in-
formation, this artificially generated image is rotation
invariant, i.e. the rotation relation of two different
images (Figures 2(a) and (b)) is unique and can be
computed with our algorithm. Computing the gray
image would map all given colors, in this case, to the
same gray values (Figures 2(d) and (e)), such that the
computation of the angle is impossible from here on.
Figures 2(c) and (f) depict the mentioned behavior of
both processes, i.e. the former image shows a clearly
visible peak on the upper right (the unique solution),
while the latter image has got many different local
maxima.

The PET images that were used for the evaluation
are shown in Figure 3. Adding certain Gaussian noise
(µ = 0 and σ2 ∈ {0,0.1,0.2,0.3,0.4,0.5}) to the ro-
tated image and subsequent performing the steps as
described in the previous Section, results in the com-
puted min., max. and avg. errors that are shown in
Tables 1,2 and 3 respectively.

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 0.044 0.272 0.044 0.272 0.044
0.1 0.005 0.064 0.064 0.005 0.005
0.2 0.061 0.061 0.101 0.061 0.061
0.3 0.111 0.111 0.297 0.219 0.100
0.4 0.074 0.074 0.074 0.060 0.060
0.5 0.266 0.132 0.285 0.150 0.112

Table 1: min. errors

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 2.189 2.030 3.436 2.189 1.062
0.1 1.624 1.447 2.994 1.955 1.248
0.2 99.738 2.128 4.405 4.118 1.612
0.3 88.483 4.405 4.108 161.608 1.806
0.4 48.528 3.430 31.653 155.403 1.762
0.5 79.519 55.548 118.452 134.363 1.891

Table 2: max. errors

σ2 ch. 1 ch. 2 ch. 3 avg.ch. multich.
0 0.675 1.021 1.309 0.986 0.516
0.1 0.618 0.919 1.411 0.801 0.665
0.2 19.418 1.041 1.480 1.043 0.688
0.3 9.600 2.170 1.392 29.621 0.891
0.4 7.943 1.127 4.230 45.112 0.791
0.5 16.028 8.471 36.845 23.743 0.900

Table 3: avg. errors

These results show, that the registration performed
on multichannel data (cf. column multich.) is more
accurate and more stable to noise than the registra-
tion on each channel separately (cf. columns ch. i) or
on the average of all channels (cf. column avg.ch.).
At the same time one can see that the registration on
channel 2 (blue) was far more accurate than the regis-
tration on the other single channels in the most cases,
i.e. combining the results of the different channels,
to compute the rotation angle, is a hard and still un-
solved task. Having the multichannel registration as
presented here, the solution of the mentioned task be-
comes no longer necessary since the registration is
performed on all channels simultaneously.

GraVisMa 2010 Full Papers

- 62 -

7 CONCLUSION
The proposed registration algorithm is an extension of
the well-known and widely used Fourier Transform
which operates on scalar data (e.g. gray images). As
many image sources provide multi-channel informa-
tion, there is a need to process this data in an adequate
way which prevents loss of information and keeps the
original dimensionality of the information.

Geometric Algebra has been chosen as a mathemat-
ical framework which allows a.o. an extension of the
Fourier Transform, called the Clifford Fourier Trans-
form [6], to be able to operate on multichannel signals
directly, i.e. it allows a frequency analysis on vector
valued signals and an implementation of vector val-
ued filters.

It has been shown in [6], that the Clifford Fourier
Transform is a sum of many classical Fourier Trans-
forms. As nowadays signal-processing hardware or
recent graphics hardware provides interfaces to per-
form the Fast Fourier Transform (FFT) hardware-
accelerated, it is suitable to design more complex al-
gorithms on base of the FFT and remain in suitable
computing times.

First investigation of the results shows that our reg-
istration on multichannel signals is very robust to
noise, and that this approach provides potential for
many applications on vector valued data.

8 FUTURE WORK
Our next steps will be a qualitative comparison with
conventional approaches as well as an evaluation on
volumetric image data.

Since a very high accuracy is needed, especially in
the context of medical imaging, our algorithm will be
extended with a spectrum based subpixel registration
approach like [17], to achieve even more accurate re-
sults.

Having this, other approaches, such as the improve-
ment of the resolution by registration [9], will be eas-
ily applicable with our multichannel registration al-
gorithm as well.

Further, to improve performance, our future work
will also include an implementation in CUDA respec-
tive OpenCL.

REFERENCES
[1] Eduardo Bayro-Corrochano and Garret Sobczyk, edi-

tors. Geometric Algebra with Applications in Science
and Engineering. Birkhäuser, 2001.

[2] Thomas Bülow and Gerald Sommer. Hypercomplex
signals-a novel extension of the analytic signal to the
multidimensional case. IEEE trans. on Signal Pro-
cessing, pages 2844–2852, 2001.

[3] Qin-Sheng Chen. Image Registration and its Applica-
tions in Medical Imaging. PhD thesis, Free University
Brussels (VUB), 1993.

[4] Chris Doran and Anthony Lasenby. Geometric Alge-
bra for Physicists. Cambridge University Press, 2003.

[5] J. Ebling and G. Scheuermann. Clifford Convolution
And Pattern Matching On Vector Fields. In Proc-
ceedings of IEEE Visualization(VIS), pages 193–200,
2003.

[6] Julia Ebling. Clifford fourier transform on vector
fields. IEEE Transactions on Visualization and Com-
puter Graphics, 11(4):469–479, 2005.

[7] Todd A. Ell and Stephen J. Sangwine. Hypercomplex
fourier transforms of color images. In in Proc. ICIP,
pages 137–140, 2001.

[8] Michael Felsberg. Low-Level Image Processing with
the Structure Multivector. PhD thesis, Inst. f. In-
formatik u. Prakt. Math. der Christian-Albrechts-
Universität zu Kiel, 2002.

[9] Michal Irani and Shmuel Peleg. Improving resolution
by image registration. CVGIP: Graph. Models Image
Process., 53(3):231–239, 1991.

[10] Robert J. Marks II. Handbook of Fourier analysis and
its applications. Oxford: Oxford University Press.,
2009.

[11] Christian Perwass. Geometric Algebra with Applica-
tions in Engineering. Springer, 2009.

[12] D. L. Pham, C. Xu, and J. L. Prince. A survey of
current methods in medical image segmentation. In
Annual Review of Biomedical Engineering, volume 2,
pages 315–338. 2000.

[13] Stefan Roettger. The erlangen volume library.
http://www9.informatik.uni-erlangen.
de/External/vollib/.

[14] Gustavo K. Rohde, Sinisa Pajevic, Carlo Pierpaoli,
and Peter J. Basser. A comprehensive approach for
multi-channel image registration. In WBIR’03, pages
214–223, 2003.

[15] Didier Stricker. Tracking with reference images: a
real-time and markerless tracking solution for out-
door augmented reality applications. In VAST ’01:
Proceedings of the 2001 conference on Virtual reality,
archeology, and cultural heritage, pages 77–82, New
York, NY, USA, 2001. ACM.

[16] Richard Szeliski. Image alignment and stitching: a
tutorial. Found. Trends. Comput. Graph. Vis., 2(1):1–
104, 2006.

[17] K. Takita, T. Aoki, Y. Sasaki, T. Higuchi, and
K. Kobayashi. High-accuracy subpixel image reg-
istration based on phase-only correlation. In IEICE
Trans. Fund., volume E86-A, no. 8, pages 1925–1934,
2003.

[18] John A. Vince. Geometric Algebra for Computer
Graphics. Springer, 1 edition, 4 2008.

[19] B. Zitova. Image registration methods: a survey. Im-
age and Vision Computing, 21(11):977–1000, Octo-
ber 2003.

GraVisMa 2010 Full Papers

- 63 -

A MATHEMATICAL PROOFS

A.1 Proof of (1)

(ei∧ e j)(ei∧ e j) = (−e j ∧ ei)(ei∧ e j)

= (−e jei)(eie j)

=−e j ei ei︸︷︷︸
1

e j

=− e je j︸︷︷︸
1

=−1

q.e.d.

A.2 Proof of (4)

e
−φ

2 e1∧e2 e3 e
φ

2 e1∧e2

= (cos(
φ

2
)− (e1∧ e2)sin(

φ

2
))e3 (cos(

φ

2
)+(e1∧ e2)sin(

φ

2
))

= (cos(
φ

2
)− (e1∧ e2)sin(

φ

2
))(cos(

φ

2
)+(e1∧ e2)sin(

φ

2
))e3

= (cos(
φ

2
)2 + sin(

φ

2
)2)e3

= e3

q.e.d.

A.3 Proof of (13)

Let f : Rn → Gn be a (multi-)vector valued function,
then the Clifford-Fourier-Transform of f(x− t) equals

Ft(u) =
∫
Rn

f(x− t)e−2πiu·xdnx

=
∫
Rn

f(x̂)e−2πinu·(x̂+t)dnx̂

=
∫
Rn

f(x̂)e−2πinu·x̂dnx̂ e−2πinu·t

= F(u) e−2πinu·t

where F is the Fourier Transform of f (providing that
the Fourier-Transform exists).

Now let f1, f2 : Rn → Gn be two (multi-)vector val-
ued functions, such that f1(x) = f2(x− t). Let F1,F2,Ft
be the Fourier-Transforms of f1(x), f2(x) and f2(x− t),
respectively, then

F1(u) = Ft(u)

= F2(u) e−2πinu·t

q.e.d.

A.4 Proof of Dirac Delta CFT
Let δ : Rn → {0,+∞} be a Dirac Delta function, de-
fined as

δ (x) =

+∞ ,x =
(0...

0

)
0 ,else

s.t. the constraint ∫
Rn

δ (x) dnx = 1 (16)

The Clifford Fourier Transform of δ (x− t) is then

F(u) =
∫
Rn

δ (x− t)e−2πinx·udnx

=
∫
Rn

δ (x̂)e−2πin(x̂+t)·udnx̂

=
∫
Rn

δ (x̂)e−2πinx̂·udnx̂ e−2πint·u

= e−2πint·u

q.e.d.

GraVisMa 2010 Full Papers

- 64 -

Fast Approximation of the Shape Diameter Function

Maurizio Kovacic
Dept. Mathematics &

Computer Science
University of Cagliari

Via Ospedale, 72
09124, Cagliari (Italy)

mau.kovacic@gmail.com

Fabio Guggeri
Dept. Mathematics &

Computer Science
University of Cagliari

Via Ospedale, 72
09124, Cagliari (Italy)
guggeri@unica.it

Stefano Marras
Dept. Mathematics &

Computer Science
University of Cagliari

Via Ospedale, 72
09124, Cagliari (Italy)

stefano.marras@unica.it

Riccardo Scateni
Dept. Mathematics &

Computer Science
University of Cagliari

Via Ospedale, 72
09124, Cagliari (Italy)
riccardo@unica.it

ABSTRACT

In this paper we propose an optimization of the Shape Diameter Function (SDF) that we call Accelerated SDF
(ASDF). We discuss in detail the advantages and disadvantages of the original SDF de�nition, proposing theo-
retical and practical approaches for speedup and approximation. Using Poisson-based interpolation we compute
the SDF value for a small subset of randomly distributed faces and propagate the values over the mesh. We show
the results obtained with ASDF versus SDF in terms of timings and error.

Keywords: Segmentation, Poisson equation.

1 INTRODUCTION

The Shape Diameter Function (SDF) [18] has
proven very useful for mesh skeletonization and
segmentation. Closely related to the Medial Axis
Transform (MAT) [5], it de�nes a scalar function
over the points of a mesh representing the diameter
of the shape's volume at each point while being
computationally lightweight as compared to the
MAT. The main contribution of the SDF is its
taking into account the interior of the mesh and its
volumetric information as opposed to the majority
of segmentation algorithms that rely on local
surface features as curvature; for each primitive it
computes the diameter of the object along its inte-
rior, the result is a pose invariant function of the
local volume that yields a good mesh partitioning.
Moreover, it de�nes a set of internal points for each
primitive, halfway through its interior, that can
be used for skeleton extraction. In this paper we
focus on optimization for segmentation purposes:
a study of the behavior of the SDF function over
the mesh suggests that, as main variations occur
only in a small subset of the faces, it is possible to
lower the number of computations with little to no
e�ect on the �nal result by means of a constrained
Poisson interpolation over the mesh (see �gure 1
for an example). We will present a summary of the
published works related to our problem in Section
2; Section 3 will contain a detailed description of
the original SDF algorithm, while details on the

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
pro�t or commercial advantage and that copies bear this
notice and the full citation on the �rst page. To copy oth-
erwise, or republish, to post on servers or to redistribute to
lists, requires prior speci�c permission and/or a fee.

Figure 1: The SDF function is computed
only on the selected faces (red in the top im-
age). The constrained interpolation results
in a smooth and accurate descriptor (bottom

image).

Poisson Equation used to e�ciently interpolate the
values can be found in Section 4, with results and
comparison between the optimized version and the
original implementation in Section 5. Section 6
contains our conclusions and suggestions for future
works.

1

GraVisMa 2010 Full Papers

- 65 -

2 RELATED WORK

2.1 Mesh Segmentation

There is a large amount of research works that
study segmentation with many di�erent strategies
aiming to extract a semantically consistent parti-
tioning. Most of the approaches rely on local sur-
face properties for segmentation, as geodesic dis-
tance, angular distance or normal direction. In
[12] the mesh is partitioned using the minima rule,
that states that human perception divides shapes
along the concave discontinuities; a snake contour
is relaxated along the surface until convergence us-
ing geometric features as curvature and centricity.
Minima rule is used also in [16] where the authors
de�ne an algorithm called Fast Marching Water-
sheds that identi�es the regions bounded by con-
tours of negative curvature; a similar technique can
be found in [14] where an extension of the 2D mor-
phological watershed segmentation over the mesh
is used to partition the shape according to curva-
ture. Katz and Tal, in [10], adopt the strategy to
decompose the mesh in a hierarchical manner us-
ing fuzzy clustering according to a combination of
surface metrics and using minimum graph cuts to
extract the patch boundaries. Cohen-Steiner and
colleagues in [8] propose a framework for shape ap-
proximation based on shape partitioning, obtain-
ing a face clustering that minimizes an error met-
ric based on normal deviation. These surface fea-
tures may provide good results, however their sen-
sitiveness on local surface variations makes them
unsuitable for a pose invariant segmentation. The
main advantage of the SDF algorithm is that it
takes advantage of the connection between surface
and volume of the object; such kind of approach
can be found in [15], where the mesh is intersected
with a sphere over each vertex and the behavior of
the intersections is used for partitioning, or in [3]
where geometric primitives are iteratively �tted to
the mesh.

2.2 Applications of the Poisson
Equation in Computer Graphics

The Poisson equation (PE) has been used in a large
number of application areas. In computer graph-
ics and related �elds, one of the main applications
of Poisson equation is the image processing. Perez
and colleagues in [17] used Poisson equation in or-
der to modify the content of an image; particularly,
the gradient of the original image is computed, then
modi�ed according to desired result, and �nally
Poisson equation is solved to obtain a new image.
Perez uses this approach in order to enhance the
original image, by correcting local illumination or
changing local color by de�ning appropriate con-

straint �elds; the solution of the PE will be the
image that best �t these constraint �elds. In im-
age processing, the Poisson equation has been used
also for seamless image mosaic (as presented in [13],
[20] and [19]), since the Poisson-based interpola-
tion guarantees a smooth transition between two
images (a property that makes Poisson equation
also suitable for photomontage, in [1]). Poisson
equation has been used also in geometry process-
ing and mesh editing system. For example, in [22],
gradient �elds are used in order to model coordi-
nate functions, and mesh editing is performed by
locally adapting the gradients and solving the Pois-
son equation for the new coordinate functions. In
this way, it is possible to perform operations such
as deformation, merging, smoothing and denoising.
Alexa [2] uses discrete Laplace and Poisson models
to perform mesh editing and detail transfer from
one mesh to another, while Xu et al. [21], in order
to realize shape interpolation, use PE to �nd an
intermediate shape that allows a smooth transition
between the source shape and the target shape. PE
has been also used in order to reconstruct the sur-
face of a mesh starting from a point cloud as shown
in [11] by Kazhdan et al.
Also, there is a number of de�nition and formula-
tion of the Laplace-Beltrami operator, such as in
[4], [6] or [7]; in this work, we propose an imple-
mentation of the Laplace-Beltrami operator which
is slightly di�erent from the previous ones but that
showed to perform well and to be easy to imple-
ment.

3 THE SHAPE DIAMETER
FUNCTION

The main idea behind the Shape Diameter Func-
tion is to take into account the volumetric informa-
tion of the shape by de�ning a scalar function on
the mesh representing the diameter of the interior
of the object, similarly to the MAT where the scalar
�eld represents the distance between each point to
the nearest boundary point. However, while the
MAT is computationally expensive and requires a
discretization of the space, the SDF results in a
faster and more robust descriptor.
Given a mesh M the SDF is a scalar function on

the surface (fp : M � R) de�ned as the neighbor-
hood diameter of the object at each surface point
p ∈ M . Such diameter is extracted by casting a
cone of rays from the point p to the interior of the
mesh according to the inverse normal at p and com-
puting the distance between p and each intersection
between the rays and the mesh. In order to improve
the robustness of this approach, false intersections
are removed from the computation: those intersec-
tion points whose normal is in the same direction as

GraVisMa 2010 Full Papers

- 66 -

the point p, that is when the angle between the nor-
mals is less than 90◦ are not considered in the �nal
computation. The de�nition is extremely simple
and intuitive, however it is highly sensitive to noise
and local variations; further improvement is ob-
tained by considering just those rays whose length
fall within a standard deviation from the median
of all lengths in order to remove spurious intersec-
tions. The �nal value of the SDF is a weighted
average of the remaining lengths: the weights are
the inverse of the angle between the ray to the cen-
ter of the cone, due to the fact that rays with larger
angles are much more frequent and therefore must
have smaller importance in the �nal averaging.

The authors show that the best results are ob-
tained by casting 30 rays into a cone of 120◦ per
point; smaller angles don't discriminate between
the object parts and are extremely sensitive to lo-
cal features, whilst larger angles cause some rays
to intersect unrelated parts of the mesh and add
errors to the computation. In our paper we stick
to this parameters to produce comparable results
with the ones provided in the original algorithm.

The algorithm as de�ned doesn't guarantee pose
invariance. The authors propose a small number
of bilateral �ltering steps in order to reduce the
variation of the SDF value after a pose change; one
may refer to the original paper for the formulation
of the �ltering as it is unnecessarily verbose for our
purposes. As for the intersection search, an Octree
is used to spatially index the elements of the mesh
for a reduced number of ray-triangle intersection
tests.

4 ACCELERATED SDF
(ASDF) VIA POISSON
INTERPOLATION

The main contribution of our optimization method
is based on an observation of the behavior of
the SDF function for regular meshes. On simple
meshes the di�erence between the SDF value of a
primitive (face or vertex) and the SDF value of its
neighborhood is approximately zero for primitives
in the same part of the object and it increases
smoothly on the boundaries of the parts. This
means that little to none additional information is
obtained by the SDF computation for a vertex or
face whose neighbors have already been evaluated.
Furthermore, the bi-lateral �ltering step proposed
in the original paper lowers the importance of a
single computation in the �nal output. Figure 2
shows the normalized, absolute value Laplacian of
the SDF computed for each face according to the
formula:

Figure 2: The absolute di�erences in SDF
value between each face and its neighbor-
hood, coded from blue where close to zero
to red where maximum, shows that the func-
tion has very small variations on most of the

surface

F (p) = |
∑

v∈N(p)

wvSDF (p)−
∑

v∈N(p)

wvSDF (v)|

where N(p) is the neighborhood of p and wv is
the weight of face v de�ned as 1 over the distance
between the barycenter of v and the barycenter of
p. In the image, the color red means zero or close
to zero while blue is the maximum di�erence. It is
worth to notice that the di�erence in SDF is higher
where the shape changes sharply: thus, for segmen-
tation purposes, it is possible to approximate the
SDF on the whole mesh by propagating the func-
tion value computed on a small subset of faces. The
mean of propagation we choose is solving a Pois-
son equation with Dirichlet boundary conditions,
a technique that obtained good results in mesh
editing [22] and image processing [17] under sim-
ilar circumstances. This technique allows to easily
compute a constrained interpolation over the mesh
guaranteeing computational e�ciency and robust-
ness of the results.

4.1 Poisson Equation

The formulation of the Poisson equation that we
use is de�ned as follows:

∆f = ∇v with f |∂Ω = f∗|∂Ω

where f is an unknown scalar function, v a guid-
ance vector �eld, ∇v is the divergence of v, ∆ is

GraVisMa 2010 Full Papers

- 67 -

the Laplace operator and f∗ de�nes the values of
a known scalar function at the boundary ∂Ω of a
selected region Ω. Solving this equation allows to
reconstruct the unknown function by interpolating
the boundary values so that the gradient of f is
as close as possible to the vector �eld v, resulting
in a smooth and seamless propagation that satis-
�es some user prescribed conditions; the unknown
values in the user-selected region Ω are set to the
known function f∗ in the border of Ω so that no
seam is visible between the known and unknown
regions, and the values change smoothly according
to v.
In our framework, the SDF is both the known

and unknown scalar function and Ω is de�ned as
the set of faces whose SDF hasn't been computed
yet. f consists of the known, exactly computed
values of SDF where f∗ is the interpolated value of
the SDF function where no actual ray casting will
be performed. The choice of the guidance vector
�eld for the interpolation is nontrivial: we want the
Laplacian of the propagated SDF to be the same
as the divergence of v, thus we need to understand
the behavior of the SDF function according to its
neighborhood.
A good approximation of the divergence can then

be obtained by the opposite of the curvature on
each face curv(p) (computed as the mean of its
vertices' curvature): it is plausible to expect the
diameter of a shape to slightly increase where the
Gaussian curvature is less than zero, that is, where
the normals of the faces converge and the neigh-
borhood is concave. This assumption, while not
taking into account the shape of the other side of
the mesh, is still good enough for small neighbor-
hoods.
The �nal formula for each unknown face is:

∑
v∈N(p)

wvf(p)−
∑

v∈N(p)∩Ω

wvf(v) =∑
v∈N(p)∩∂Ω

wvf∗(v)− curv(p)

where the Laplacian is computed on the dual
graph of the mesh. The above formulation causes
each unknown SDF to be a function of the known
values over the boundary and the local curvature,
whereas a face with no known neighbors will ob-
tain a value completely dependent on the curvature
variation.

4.2 Face Selection

We did not point out how we select the faces over
which we compute the SDF. In early stage of our
development we were using fancy schemes for iden-
tifying the correct subset of set that were thought

Figure 3: SDF computation on the ant using
5% (left) and 100% (right) of the primitives,
shown from red to blue according to the lo-
cal thickness. It is noticeable how the pres-
ence of small local di�erences doesn't a�ect
the global result with each segment easily

distinguishable

to maximize the dispersion of the selected faces
over the mesh.

This choice had one major advantage: the deter-
ministic choice of the face subset, but also a clear
disadvantage since the selection stage was time con-
suming and the improvement over the original SDG
was de�nitely moderate.

We then decided to follow a randomized scheme
in selecting the faces. We, thus, compute an initial
permutation of the face set and, in a second step,
we select any single face in a simple manner, just
picking every nth face and setting a �ag on it iden-
tifying it as a seed for the solution of the Poisson
equation. The mix of randomized input and Pois-
son equation revealed to be the best choice for our
purposes.

5 RESULTS AND DISCUSSION

In this section we discuss the results obtained by
our method in terms of time and error between the
optimized and unoptimized version. For segmen-
tation purposes it isn't mandatory that the SDF
value of each single primitive is correct; in fact the
segmentation process tends to split patches where
the change rate is high on a signi�cant area, while
ignoring local peaks on the gradient. Therefore the
correctness of a single face or vertex is discarded in
favor of an overall correctness that is achieved by
our propagation algorithm for a dense enough sam-
pling. We can see in �gure 3 that there is no sub-
stantial di�erence between the downsampled (5%)
and original (100%); the di�erences in the values
are restricted to a local point of view, whereas the
global segmentation remains consistent.

To further discuss the relevance of these di�er-
ences we show in �gure 4 a map of the errors be-
tween a 10% subsampled and a complete SDF with
blue being zero and red being the max di�erence.
We can see how the highest di�erences are located
along the boundaries of the mesh parts, due to the

GraVisMa 2010 Full Papers

- 68 -

sensitiveness of the original SDF de�nition on di-
ameter variation.
However table 1 shows that the magnitude of this

di�erences is low and doesn't strongly in�uence the
outcome of the segmentation; moreover, the peaks
in the errors occur on a small set of boundary faces,
rapidly decreasing in their neighborhood: this may
result in a fuzziness of the �nal segmentation bor-
der, with a negligible number of faces that are as-
signed to a patch that is di�erent from the expected
one, but still no substantial errors in the �nal seg-
mentation.
As for the computational advantages of this op-

timization, we show in �gure 5 a plot of the maxi-
mum and average error over the percentage of sam-
ples. Figure 6 shows the timings for the same com-
putations. Timings don't re�ect the ones presented
in [18] and are obtained by an unoptimized single-
thread implementation using the VCG library for
the ray-triangle. We can anyway obtain an imple-
mentation independent speedup with a small error
cost.
What is relevant of the ADSF can be understood

looking with one eye at table 1 and the other at �g-
ure 5 reporting data about the same mesh: this will
tell us that introducing less then 3% of error in the
computation selecting only one face every tenth (as
already mentioned this does not in�uence the over-
all segmentation at all) we gain one order of magni-
tude in the time spent for the computation passing
from sixty to slightly more than six seconds.

6 CONCLUSIONS AND FUTURE
WORK

In this paper we presented our proposal for
speeding-up an algorithm for mesh segmentation
that uses the SDF function. We showed how the
Poisson equation de�ned on the mesh vertices
can be used to propagate, with a limited error,
the value of a subsampled SDF by computing the
function for a randomly distributed set of faces.

Faces % Max SDF error Avg. SDF error

50% 0.4022 0.0099
20% 0.5054 0.0198
10% 0.5292 0.0272
5% 0.5538 0.0374
2% 0.5374 0.0575
1% 0.5813 0.0695

Table 1: Max and average error in SDF ac-
cording to the percentage of faces used for
computation. The number are normalized
over the SDF values, so they ranges from 0
to 1. The computation was performed on

the horse mesh.

Figure 4: In this picture you can visually
appreciate the di�erence between the SDF
computed on all the faces and a subset (10%
of the total number). The image on top rep-
resents the result of the computation of the
SDF on all the faces, while the one in the
bottom represents the results of the compu-
tation performed on only 10% of the faces.
In the middle image, the di�erences between
the two results are graphically mapped on
the mesh, with blue indicating no di�erence
and colors towards red indicating larger and

larger di�erences.

The percentage of the samples can go down to 5%
without sensible di�erences in the outcome.

A future improvement that we would like to ex-
plore is the choice of the samples according to
their morphological signi�cance instead of a ran-
dom choice (see �gure 7 for an example); we would
like to study the behavior of our strategy if us-
ing a Gaussian sphere subsampling [9] where the
samples are uniformly distributed over a Gaussian

GraVisMa 2010 Full Papers

- 69 -

Figure 5: Average error in SDF in function
of the percentage of faces used for �ve dif-
ferent meshes. Green line are errors when
selecting 10% of the faces, red line when
selecting 20% and blue line when selecting

50%.

Figure 6: Computational times in function
of the number of selected faces. The times
were taken while processing the horse mesh.

sphere according to their normal resulting, there-
fore, more representative of the shape.

We also plan to improve the spatial organiza-
tion for the intersection search: computing the ray-
mesh intersection is a well known problem in Com-
puter Graphics even outside the computational ge-
ometry area. In fact there is a lot of work on ray-
tracing due to its centrality in rendering, and many
of the techniques adopted in this �eld can be ap-
plied to the SDF problem in order to optimize the
intersection search. While the original paper uses
octrees as a mean of spatial indexing, it's reason-
able to think that a KD-Tree can outperform it
even when the data grow large or huge. It would
be interesting to see how a specialized structure can
further lower the computational times. One more
open issue is how the parallelism implicit in ray-
tracers can be exploited to work out a GPU imple-
mentation of the whole accelerated SDF. Further-

Figure 7: Random face sampling (7%) - The
quasi-uniform sampling gives no weight to

the features of the mesh.

more, works on ray-tracing showed the usefulness
of the SIMD paradigm with ray packing.

ACKNOWLEDGEMENTS

We would like to thank Lior Shapira for his sugges-
tions and helpfulness.

REFERENCES

[1] Aseem Agarwala, Mira Dontcheva, Maneesh
Agrawala, Steven Drucker, Alex Colburn,
Brian Curless, David Salesin, and Michael Co-
hen. Interactive digital photomontage. In SIG-
GRAPH '04: ACM SIGGRAPH 2004 Papers,
pages 294�302, New York, NY, USA, 2004.
ACM.

[2] Marc Alexa. Mesh editing based on discrete
Laplace and Poisson models. In SIGGRAPH
'06: ACM SIGGRAPH 2006 Courses, pages
51�59, New York, NY, USA, 2006. ACM.

[3] Marco Attene, Bianca Falcidieno, and Michela
Spagnuolo. Hierarchical mesh segmentation
based on �tting primitives. The Visual Com-
puter, 22:181�193, 2006.

[4] Mikhail Belkin, Jian Sun, and Yusu Wang.
Discrete Laplace operator on meshed surfaces.
In SCG '08: Proceedings of the twenty-fourth
annual symposium on Computational geome-
try, pages 278�287, New York, NY, USA, 2008.
ACM.

[5] H. Blum. A transformation for extracting new
descriptions of shape. In Models for the Per-
ception of Speech and Visual Form, pages 362�
380, 1967.

[6] Alexander I. Bobenko. Delaunay triangu-
lations of polyhedral surfaces, a discrete

GraVisMa 2010 Full Papers

- 70 -

Figure 8: Examples of application of ASDF to several di�erent meshes. We preferred, for
sake of understanding, here and in the rest of the paper, to show just the result of ASDF

instead of the results of the segmentation phase.

Laplace-Beltrami operator and applications.
In SCG '08: Proceedings of the twenty-fourth
annual symposium on Computational geome-
try, pages 38�38, New York, NY, USA, 2008.
ACM.

[7] Ming Chuang, Linjie Luo, Benedict J. Brown,
Szymon Rusinkiewicz, and Michael Kazhdan.
Estimating the Laplace-Beltrami operator by
restricting 3D functions. Computer Graphics
Forum, 28(5):1475�1484, July 2009.

[8] David Cohen-Steiner, Pierre Alliez, and Math-
ieu Desbrun. Variational shape approxima-
tion. In SIGGRAPH '04: ACM SIGGRAPH
2004 Papers, pages 905�914, New York, NY,
USA, 2004. ACM.

[9] Pablo Diaz-Gutierrez, Jonas Bösch, Renato
Pajarola, and M. Gopi. Streaming surface
sampling using gaussian ε-nets. The Visual
Computer, 25:411�421, 2009.

[10] Sagi Katz and Ayellet Tal. Hierarchical mesh
decomposition using fuzzy clustering and cuts.
In SIGGRAPH '03: ACM SIGGRAPH 2003
Papers, pages 954�961, New York, NY, USA,
2003. ACM.

[11] Michael Kazhdan, Matthew Bolitho, and
Hugues Hoppe. Poisson surface reconstruc-
tion. In SGP '06: Proceedings of the fourth
Eurographics symposium on Geometry pro-
cessing, pages 61�70, Aire-la-Ville, Switzer-
land, Switzerland, 2006. Eurographics Asso-

ciation.

[12] Yunjin Lee, Seungyong Lee, Ariel Shamir,
Daniel Cohen-Or, and Hans-Peter Seidel. In-
telligent mesh scissoring using 3D snakes. In
PG '04: Proceedings of the Computer Graph-
ics and Applications, 12th Paci�c Conference,
pages 279�287, Washington, DC, USA, 2004.
IEEE Computer Society.

[13] Anat Levin, Assaf Zomet, Shmuel Peleg, and
Yair Weiss. Seamless image stitching in the
gradient domain. In In Eighth European Con-
ference on Computer Vision (ECCV 2004),
pages 377�389. Springer-Verlag, 2003.

[14] Alan P. Mangan and Ross T. Whitaker. Par-
titioning 3D surface meshes using watershed
segmentation. IEEE Transactions on Visual-
ization and Computer Graphics, 5(4):308�321,
1999.

[15] Michela Mortara, Giuseppe Patanè, Michela
Spagnuolo, Bianca Falcidieno, and Jarek
Rossignac. Blowing bubbles for multi-scale
analysis and decomposition of triangle meshes.
Algorithmica, 38(1):227�248, 2003.

[16] D. L. Page, A. F. Koschan, and M. A. Abidi.
Perception-based 3d triangle mesh segmenta-
tion using fast marching watersheds. In 2003
Conference on Computer Vision and Pattern
Recognition (CVPR 2003), pages 27�32, June
2003.

GraVisMa 2010 Full Papers

- 71 -

[17] Patrick Pérez, Michel Gangnet, and Andrew
Blake. Poisson image editing. In SIGGRAPH
'03: ACM SIGGRAPH 2003 Papers, pages
313�318, New York, NY, USA, 2003. ACM.

[18] Lior Shapira, Ariel Shamir, and Daniel Cohen-
Or. Consistent mesh partitioning and skele-
tonisation using the shape diameter function.
The Visual Computer, 24:249�259, 2008.

[19] Richard Szeliski. Image alignment and stitch-
ing: a tutorial. Found. Trends. Comput.
Graph. Vis., 2(1):1�104, 2006.

[20] Matthew Uyttendaele, Ashley Eden, and
Richard Szeliski. Eliminating ghosting and
exposure artifacts in image mosaics. In 2001

Conference on Computer Vision and Pattern
Recognition (CVPR 2001), pages 509�516, De-
cember 2001.

[21] Dong Xu, Hongxin Zhang, Qing Wang, and
Hujun Bao. Poisson shape interpolation.
Graph. Models, 68(3):268�281, 2006.

[22] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi,
Hujun Bao, Baining Guo, and Heung-Yeung
Shum. Mesh editing with poisson-based gra-
dient �eld manipulation. In SIGGRAPH '04:
ACM SIGGRAPH 2004 Papers, pages 644�
651, New York, NY, USA, 2004. ACM.

GraVisMa 2010 Full Papers

- 72 -

Operators for Multi-Resolution Morse Complexes in

Arbitrary Dimensions

Lidija Čomić
Faculty of Engineering
University of Novi Sad
Trg D. Obradovića 6
Novi Sad, Serbia
comic@uns.ac.rs

Leila De Floriani
Dept of Computer Science

University of Genova
Via Dodecaneso 35

Genova, Italy
deflo@disi.unige.it

Federico Iuricich
Dept of Computer Science

University of Genova
Via Dodecaneso 35

Genova, Italy
federico.iuricich@gmail.com

Abstract

Ascending and descending Morse complexes, defined by the critical points and integral lines of a scalar
field f defined on a manifoldM , induce a subdivision ofM into regions of uniform gradient flow, and thus
provide a compact description of the morphology of f on M . We propose a dual representation for the
ascending and descending Morse complexes of f in arbitrary dimensions in terms of an incidence graph.
We describe atomic simplification and refinement operators on the Morse complexes and we investigate
the effect of those operators on the graph-based representation of the two complexes. Simplification and
refinement operators form a basis for a hierarchical multi-resolution representation of Morse complexes,
from which it will be possible to dynamically extract representations of the morphology of the scalar
field f over M , at both uniform and variable resolutions.

1 Introduction

resenting morphological information extracted
from discrete scalar fields is a relevant issue in sev-
eral application domains, including terrain mod-
eling, volume data analysis and visualization, and
time-varying 3D scalar fields. Morse theory offers
a natural and intuitive way of analyzing the struc-
ture of a scalar field f as well as of compactly rep-
resenting the scalar field through a decomposition
of the domain of f into meaningful regions associ-
ated with the critical points of the field. The as-
cending and the descending Morse complexes are
defined by considering the integral lines emanat-
ing from, or converging to the critical points of
f , while the Morse-Smale complex describes the
subdivision of M into parts characterized by a
uniform flow of the gradient between two critical
points of f .

Structural problems in Morse and Morse-Smale
complexes, like over-segmentation in the presence
Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

GraVisMa e conference proceedings, ISBN R
GraVisMa’e, p, e
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

of noise, or efficiency issues arising because of the
very large size of the input data sets, can be faced
and solved by defining simplification operators on
such complexes and on their morphological repre-
sentations.

Here, we present atomic operators for simpli-
fying and refining Morse complexes. Such oper-
ators are defined in arbitrary dimensions and af-
fect a constant number of entities in the Morse
complexes. We show in [6] that the simplifica-
tion operators together with their refinement ones
define a basis for simplifying Morse (and Morse-
Smale) complexes. Moreover, the general cancel-
lation operator defined in Morse theory [19] can
be expressed as a suitable combination of our op-
erators.

We represent the ascending and descending
Morse complexes as an incidence graph. This rep-
resentation is based on encoding the incidence re-
lations of the cells of the Morse complexes, and
exploits the duality between the ascending and de-
scending complexes. We define the effect of the
simplification and of the refinement operators on
the incidence-based dual representation of the de-
scending and ascending Morse complexes. The
two operators are defined in a dimension inde-
pendent way, and their effect on the graph-based
representation of the Morse complexes is easy to
describe and implement. Moreover, they form the

GraVisMa 2010 Full Papers

- 73 -

Skala
Obdélník

Skala
Obdélník

Skala
Poznámka
Accepted nastavil Skala

Skala
Poznámka
Accepted nastavil Skala

basis for the definition of a hierarchical model of
the Morse complexes. A hierarchical representa-
tion of the morphology of a scalar field is critical
for interactive analysis and exploration in order
to maintain and analyze characteristic features at
different levels of abstraction.
The remainder of the paper is organized as fol-

lows. In Section 2, we review some basic notions
on Morse theory and Morse complexes. In Sec-
tion 3, we discuss some related work. In Section
4, we describe a dual incidence-based representa-
tion of the Morse complexes. In Sections 5 and
6, we present simplification and refinement oper-
ators respectively and we describe their effect on
the incidence-based representation of the Morse
complexes. Finally, in Section 7, we draw some
concluding remarks and discuss current and future
work.

2 Morse Theory and Morse
Complexes

Morse theory studies the relationship between the
topology of a manifold M and the critical points
of a scalar (real-valued) function defined on the
manifold (for more details on Morse theory, see
[19, 20]).
Let f be a C2 real-valued function defined over

a closed compact n-manifold M . A point p is
a critical point of f if and only if the gradient
∇f = (∂f

∂x1
, ..., ∂f

∂xn
) (in some local coordinate sys-

tem around p) of f vanishes at p. Function f is a
Morse function if all its critical points are non-
degenerate (i.e. the Hessian matrix Hesspf of
the second derivatives of f at p is non-singular).
The number i of negative eigenvalues of Hesspf is
called the index of critical point p, and p is called
an i-saddle. A 0-saddle, or an n-saddle, is also
called a minimum, or a maximum, respectively.
An integral line of f is a maximal path which is
everywhere tangent to the gradient of f . Each in-
tegral line connects two critical points of f , called
its origin and its destination.
Integral lines that converge to (originate at) a

critical point p of index i form an i-cell ((n−i)-cell)
p called a descending (ascending) cell, or manifold,
of p. The descending and ascending cells decom-
poseM into descending and ascending Morse com-
plexes, denoted as Γd and Γa, respectively, see Fig-
ure 1 (a) and (b) for a 2D example. We will denote
as p the descending i-cell of an i-saddle p. A Morse
function f is called a Morse-Smale function if the
descending and the ascending manifolds intersect
transversally. A Morse-Smale complex is defined
by the connected components of the intersection

p p’q

z

r

r

r c
p

pz

zp
p

p

c

z

1 1
1

1

2

2
2

2
3

3

3

z

4

5

4

5

p q
p’

z

z

z

z

z

1

2

3

4

5

r

r

1c

c2

1

2

r3

(a) (b)

Figure 1: A portion of a descending Morse com-
plex in 2D, with the descending cells of maxima
p and p′ highlighted (a), and the dual ascending
Morse complex, with the ascending cells of minima
z1 and z2 highlighted (b).

of descending and ascending Morse complexes. If
f is a Morse-Smale function, then complexes Γa

and Γd are dual to each other.

3 Related Work

In this Section, we review related work on mor-
phological representations of scalar fields provided
by Morse or Morse-Smale complexes. We concen-
trate on two topics, which are relevant to the work
presented here, namely: computation and simpli-
fication of Morse and Morse-Smale complexes.
Several algorithms have been proposed in the

literature for decomposing the domain of a 2D
scalar field f into an approximation of a Morse,
or a Morse-Smale, complex. Recently, some algo-
rithms in higher dimensions have been proposed.
For a review of the work in this area, see [3].
The extraction of critical points of a scalar field

f defined on a simplicial mesh has been investi-
gated in 2D [2, 21], and in 3D [15, 25, 26, 24, 12]
as a basis for computing Morse and Morse-Smale
complexes. Algorithms for decomposing the do-
main M of f into an approximation of a Morse,
or of a Morse-Smale complex in 2D can be classi-
fied as boundary-based [1, 4, 13, 22, 23], or region-
based [5, 9]. In [12], an algorithm for extracting
the Morse-Smale complex from a tetrahedral mesh
is proposed. The algorithm, while interesting from
a theoretical point of view, exhibits a large com-
putation overhead, as discussed in [18].
Discrete methods rooted in the discrete Morse

theory proposed by Forman [14] are computa-
tionally more efficient. In [9], a dimension-
independent approach based on region growing
has been proposed which implements the discrete
gradient approach and computes the descending
and the ascending Morse complexes. In [18], a
region growing method, inspired by the water-
shed approach, has been proposed to compute the
Morse-Smale complex. In [16], a Forman gradient

GraVisMa 2010 Full Papers

- 74 -

vector field V is defined, and an approximation of
the Morse-Smale complex is computed by tracing
the integral lines defined by V .
One of the major issues that arise when com-

puting a representation of a scalar field as a
Morse, or as a Morse-Smale, complex is the over-
segmentation due to the presence of noise in the
data sets. Simplification algorithms have been de-
veloped in order to eliminate less significant fea-
tures from a Morse-Smale complex. Simplification
is achieved by applying an operator called cancel-
lation, defined in Morse theory [19]. It cancels
pairs of critical points of f , in the order usually
determined by the notion of persistence, which is
the absolute difference in function values between
the paired critical points [13]. In 2D Morse-Smale
complexes, the cancellation operator has been in-
vestigated in [4, 13, 17, 23, 27]. The cancellation
operator on Morse-Smale and Morse complexes of
a 3D scalar field has been investigated in [17] and
[7], respectively.

4 A Dual Incidence-Based
Representation for Morse
Complexes

In this Section, we discuss a dual representation
for the ascending and the descending Morse com-
plexes Γa and Γd, that we call the incidence-based
representation. The underlying idea is that we can
represent both the ascending and the descending
complex as a graph by considering the boundary
and co-boundary relations of the cells in the two
complexes. In the discrete case, we consider a rep-
resentation for the simplicial mesh Σ which gen-
eralizes an indexed data structure commonly used
for triangle and tetrahedral meshes [10], and we
relate the two representations into the incidence-
based data structure.
Recall that there is a one-to-one correspondence

between i-saddles p and i-cells p in the descend-
ing complex Γd, and dual (n − i)-cells in the as-
cending complex Γa, 0 ≤ i ≤ n. We exploit this
duality to define a representation which encodes
both the ascending and the descending complexes
at the same time as an incidence graph [11]. The
incidence graph encodes the cells of a complex
as nodes, and a subset of the boundary and co-
boundary relations between cells as arcs. The inci-
dence graph associated with an n-dimensional de-
scending Morse complex Γd (and with an ascend-
ing Morse complex Γa) is a graph G = (N,A), in
which

1. the set of nodes N is partitioned into n + 1

q r rr c c1 2 3 1 2

zz z z z1 2 3 4 5

p’ p p p p p1 2 3 4 5p

Figure 2: A portion of the incidence graph encod-
ing the connectivity of descending and ascending
Morse complexes illustrated in Figure 1 (a) and
(b), respectively

subsets N0, N1,...,Nn, such that there is a
one-to-one correspondence between nodes in
Ni (which we will call i-nodes) and the i-cells
of Γd (and thus the (n− i)-cells of Γa),

2. there is an arc joining an i-node p with an
(i+1)-node q if and only if the corresponding
cells p and q differ in dimension by one, and
p is on the boundary of q in Γd (q is on the
boundary of p in Γa),

3. each arc connecting an i-node p to an (i+1)-
node q is labeled by the number of times i-cell
p (corresponding to i-node p) in Γd is incident
to (i+1)-cell q (corresponding to (i+1)-node
q) in Γd.

Attributes are attached to the nodes of the inci-
dence graph, containing information about geom-
etry, and function values, while arcs have no asso-
ciated (geometric) attributes. Note that the inci-
dence graph provides also a combinatorial repre-
sentation of the 1-skeleton of a Morse-Smale com-
plex. Figure 2 shows a portion of the incidence
graph encoding the connectivity of the descending
Morse complex in Figure 1 (a), and of the ascend-
ing Morse complex in Figure 1 (b).
We have designed and implemented a data

structure based on the incidence graph by encod-
ing this latter as a standard adjacency list. We
associate with each 0-node p (corresponding to a
minimum) a list of the n-simplexes of a simplicial
complex Σ forming the corresponding ascending
n-cell of p. Dually, we associate with each n-node
p (corresponding to a maximum) a list of the n-
simplexes forming the corresponding descending
n-cell of p. The resulting data structure is the
incidence-based representation.

5 Simplification Operators

In Morse theory, a general cancellation operator
has been defined that allows eliminating any pair
of critical points of consecutive index which are

GraVisMa 2010 Full Papers

- 75 -

connected by a unique integral line [19]. One of
the drawbacks of such operator, when applied to a
Morse-Smale complex, is that the number of cells
in the complex can increase, and, when applied to
a Morse complex, the number of incidences among
cells can also increase.
In [8], we have defined two dual simplification

operators in arbitrary dimensions, which we call
removal and contraction. The two simplification
operators are defined in a dimension-independent
way. They are defined by imposing constraints
on a cancellation operator, that allow us to avoid
creating new cells in the Morse-Smale complex or
new incidences in the Morse ones. The two op-
erators form a complete set of basic operators for
simplifying Morse complexes on a manifold M , as
detailed in [6]. Moreover, the classical cancellation
operator [19] can be seen as a macro-operator and
expressed as a sequence of our atomic operators.
A persistence value is associated with a simplifi-
cation operator, and thus we apply simplifications
in order of increasing persistence [13].
The first operator, called a removal of index i,

1 ≤ i ≤ n−1, removes an i-saddle q and an (i+1)-
saddle p, provided that q is connected by a unique
integral line to an (i+ 1)-saddle p, and to exactly
one other (i + 1)-saddle p′ different from p, or to
just one (i+1)-saddle p. In the first case, a removal
of q and p is denoted as rem(p, q, p′), while in the
second case as rem(p, q, ∅). The second operator,
that we call a contraction of index i, 1 ≤ i ≤
n− 1, removes an i-saddle q and an (i− 1)-saddle
p provided that q is connected by a unique integral
line to an (i−1)-saddle p, and to exactly one other
(i − 1)-saddle p′ different from p, or to just one
(i−1)-saddle p. In the first case, a contraction of q
and p is denoted as con(p, q, p′), and in the second
case as con(p, q, ∅). For the sake of simplicity, we
discuss here only removals and contractions of the
first kind.

5.1 Simplification on Morse com-
plexes

The removal and contraction operators have a
dual effect on the descending and the ascending
Morse complexes. The effect of a contraction of
index i on Γd (Γa) is the same as the effect of a
removal of index n− i on Γa (Γd). For the sake of
brevity, we describe the effect of the two operators
on the descending Morse complex only.
The effect of a removal rem(p, q, p′) on the de-

scending Morse complex Γd is as follows: i-cell q,
corresponding to i-saddle q is deleted and (i+ 1)-
cell p, corresponding to (i+ 1)-saddle p is merged
into (i + 1)-cell p′, which corresponds to (i + 1)-

(a) (b)

Figure 3: Portion of a 3D descending Morse com-
plex before and after a removal rem(p, q, p′) of in-
dex 2 (a), and of index 1 (b).

saddle p′. A contraction con(p, q, p′) deletes i-cell
q and merges (i − 1)-cell p into (i − 1)-cell p′ in
Γd. i-cell q is contracted, and each i-cell in the
co-boundary of p is extended to include a copy of
i-cell q, i.e., each i-cell in the co-boundary of p is,
after contraction, the union of itself with i-cell q.
The 2D case is simple, as our operators reduce

to a minimum-saddle or a maximum-saddle can-
cellation operator. In 2D, there are exactly one re-
moval and exactly one contraction operator (both
of index 1). A removal deletes a 1-cell (saddle) q,
and merges the two 2-cells (maxima) which shared
q. It is the same as a maximum-saddle cancel-
lation. A contraction contracts a 1-cell (saddle)
q and collapses the two 0-cells (minima) which
bounded q. It corresponds to a minimum-saddle
cancellation. Note that both operators involve an
extremum and a saddle.
In 3D, there are two removal and two contrac-

tion operators. A removal of index 2 involves a
2-saddle q and a maximum p (it is a maximum-2-
saddle cancellation). In the descending complex,
it removes a 2-cell q, and merges 3-cell p into a
unique 3-cell p′ incident in q and different from p,
as illustrated in Figure 3 (a). A removal of index 1
involves a 1-saddle q and a 2-saddle p. It is defined
only if 1-cell q is incident to exactly two different
2-cells p and p′. It removes 1-cell q and merges 2-
cell p into 2-cell p′, as illustrated in Figure 3 (b).
Thus, it is a special case of a 1-saddle-2-saddle
cancellation.

5.2 Simplification on the Incidence
Graph

A removal, or contraction, simplification on the
Morse complexes induces a modification on the in-
cidence graph G = (N,A) representing such com-
plexes, that we call a simplification modification.
Each simplification modification can be expressed
as a deletion of two nodes p and q from N , and a
replacement of a subset A+ of the arcs in A with
another subset A− of arcs. For the sake of brevity,
we will consider only a removal rem(p, q, p′) of in-

GraVisMa 2010 Full Papers

- 76 -

(a) (b)

Figure 4: Removal rem(p, q, p′) on a 3D descend-
ing Morse complex (a) and on the corresponding
incidence graph (b).

dex i, 1 ≤ i ≤ n− 1.
Let G = (N,A) be the incidence graph rep-

resenting both the descending and the ascend-
ing Morse complexes Γd and Γa before a removal
rem(p, q, p′). Then,

• i-node q is connected through an arc in A to
exactly two different (i + 1)-nodes p and p′,
such that the label of arcs (q, p) and (q, p′) is
1, and to an arbitrary number of (i−1)-nodes
from a set Z = {zh, h = 1, .., hmax};

• node p is connected to an arbitrary number
of i-nodes from a set R = {rj , j = 1, .., jmax :
rj 6= q}, and to an arbitrary number of (i +
2)−nodes from a set S = {sk, k = 1, .., kmax};

• node p′ is connected to an arbitrary number
of i-nodes from a set C = {cl, l = 1, .., lmax :
cl 6= q}, and to an arbitrary number of (i+2)-
nodes from a set D = {dm,m = 1, ..,mmax}.

These conditions translate the feasibility condition
of a removal operator.
For example, before the removal rem(p, q, p′), il-

lustrated in Figure 4 (b), 1-node q is connected to
exactly two different 2-nodes p and p′ (correspond-
ing to 2-saddles), and to two 0-nodes z1, and z2
(corresponding to minima), which are not shown
in the Figure. 2-node p is connected to 1-nodes r1,
r2 and r3 and 2-node p′ is connected to 1-nodes
c1, c2 and c3. Nodes p and p′ are connected to
exactly the same 3-nodes s1 and s2, which are not
shown in the Figure.
As an effect of a removal rem(p, q, p′) on G,

nodes p and q are deleted, as well as all the arcs
incident into q, and all the arcs incident into p and
connecting p to (i + 2)-nodes in S. All the arcs
incident into p and connecting p to i-nodes in R
(with the exception of arc (p, q)), become incident
in p′. Note that the effect of a contraction on G
is exactly the same as that of a removal, except
for the fact that in a removal q is an i-node, and
p and p′ are (i + 1)-nodes, while in a contraction
q is an i-node and p and p′ are (i− 1)-nodes.

Thus, a simplification modification induced by
a removal can be expressed as a local modification
of the incidence graph G = (N,A) which produces
a graph G′ = (N ′, A′), where:

• N ′ = N\{p, q}, A′ = (A\A+)∪A−, such that

- A+ = {(q, p)}∪{(q, p′)}∪{(q, zh) : zh ∈ Z}∪
{(p, rj) : rj ∈ R} ∪ {(p, sk) : sk ∈ S},
A− = {(p′, rj), rj ∈ R}.

Nodes p, q, p′, zh, rj and sk are as described
above. In addition, for each arc (p, rj), rj 6= q,
such that (p′, rj) is also an arc in A (i.e., such
that rj = cl, for some l), the label of arc (p′, rj)
is increased by the label of arc (p, rj). A contrac-
tion can be expressed as a modification of graph
G in a completely dual fashion. Thus, a simpli-
fication modification on the incidence graph can
be expressed as a pair (A+, A−), i.e, as the col-
lections of the arcs which are removed (A+) and
which are inserted (A−).
In the example in Figure 4, after the removal

of 1-saddle q and 2-saddle p, nodes q and p are
deleted from the incidence graph (N ′ = N\{q, p}),
arcs connecting q to p and p′, and arcs connecting
1-node q to 0-nodes z1 and z2 (not illustrated in
the Figure) are deleted, as are arcs connecting 2-
node p to 3-nodes s1 and s2 (not illustrated in the
Figure). Arcs connecting 2-node p to 1-nodes r1,
r2 and r3 are replaced by arcs connecting 2-node
p′ to 1-nodes r1, r2 and r3.
The effect on the incidence-based representa-

tion, that is the incidence graph extended with
the references to the underlying simplicial decom-
position, is restricted to the incidence graph when
a simplification does not involve an extremum.
When we perform a removal rem(p, q, p′) of in-
dex n − 1, then the set of n-simplexes forming
the descending cell of p are merged into the set of
n-simplexes forming the descending cell of p′. Du-
ally, a contraction con(p, q, p′) of index 1 merges
the n-simplexes of the ascending cell of p with n-
simplexes of the ascending cell of p′.

6 Refinement Operators

We have defined two refinement operators [6],
which are inverse of the two simplification opera-
tors discussed in Section 5. Thus, they have the ef-
fect of introducing an i-saddle and an (i+1)-saddle
by splitting an existing i-saddle or an (i + 1)-
saddle. They are defined as an undo of the cor-
responding simplifications. Before performing a
refinement, the situation around the two newly
introduced saddles, i.e., around the correspond-
ing cells in the Morse complexes, needs to be the

GraVisMa 2010 Full Papers

- 77 -

same as it was at the time of the inverse simplifi-
cation. Like the two simplification operators, the
two refinement operators are dual to each other.
The first operator, called an insertion of index i,
splits an (i + 1)-saddle p′ into p′ and an (i + 1)-
saddle p by inserting an i-saddle q. The second
operator, called an expansion of index i, splits an
(i− 1)-saddle p′ into p′ and an (i− 1)-saddle p by
expanding an i-saddle q.

6.1 Refinement on Morse Com-
plexes

In this Subsection, we discuss the effect of the
refinement operators on the ascending and de-
scending Morse complexes. In a descending com-
plex Γd, an insertion of index i, denoted as
ins(p, q, p′), which is the inverse (undo) of the re-
moval rem(p, q, p′), consists of splitting an (i+1)-
cell p′ into two new (i+1)-cells p and p′, by insert-
ing an i-cell q into (i+1)-cell p′. i-cell q is shared
by (i+1)-cells p and p′. For the correct application
of the operator, we need to specify explicitly:

• the new cells p and q, and the existing (i+1)-
cell p′,

• i-cells rj in R, j = 1, .., jmax, which were on
the boundary of (i + 1)-cell p′ before the in-
sertion, and which are on the boundary of
(i+ 1)-cell p after the insertion,

• (i−1)-cells zh in Z, h = 1, .., hmax, which are
on the boundary of i-cell q after the insertion,
and

• (i+2)-cells sk in S, k = 1, .., kmax, which are
in the co-boundary of (i + 1)-cell p after the
insertion.

Note that the (i + 1)-cells in the co-boundary of
i-cell q after the insertion are exactly (i+ 1)-cells
p and p′. The cells in Z (which will be on the
boundary of i-cell q), in R (which will be on the
boundary of (i + 1)-cell p), and in S (which will
be in the co-boundary of (i+1)-cell p) need to be
the same as the corresponding cells on the bound-
ary and in the co-boundary of p and q before the
inverse removal rem(p, q, p′).
Figure 5 (a) shows an insertion ins(p, q, p′) of

index 1 of 1-cell q and 2-cell p into 2-cell p′ in a
2D descending Morse complex. It is specified by
1-cell q, 2-cells p and p′, 0-cells z1 and z2 on the
boundary of 1-cell q, and 1-cell r1 on the boundary
of 2-cell p. (The co-boundary of 2-cell p in 2D
is empty.) Figure 5 (b) shows the effect of the
insertion ins(p, q, p′) of index 1 in a 3D descending
Morse complex. It is specified by 1-cell q, 2-cells p

z1

c2

z2

r1

z1

c2

z2

r1

(a) (b)

Figure 5: Insertion ins(p, q, p′) of index 1 on a
descending Morse complex in 2D (a), and in 3D
(b). It is specified by cells p, q and p′, and cells
in the immediate boundary and on the immediate
co-boundary of the introduced cells p and q.

and p′, 0-cells z1 and z2 on the boundary of 1-cell
q, 1-cells r1, r2 and r3 on the boundary of 2-cell p,
and 3-cells s1 and s2 in the co-boundary of 2-cell
p.
An expansion of index i, denoted as exp(p, q, p′),

which is the inverse of contraction con(p, q, p′),
consists of splitting an (i − 1)-cell p′ in Γd into
two new (i− 1)-cells p and p′ by expanding a new
i-cell q bounded by p and p′. It is specified by
a list of cells on the immediate boundary and on
the immediate co-boundary of the new cells p and
q, which are the same as the corresponding cells
before contraction con(p, q, p′).

6.2 Refinement on the Incidence
Graph

Like a simplification operator on Morse complexes,
a refinement operator on Morse complexes in-
duces a modification on the incidence graph G′ =
(N ′, A′) representing these complexes, that we call
a refinement modification. Since a refinement op-
erator is defined as an undo of the corresponding
simplification operator, each refinement modifica-
tion on the incidence graph is also an undo of the
corresponding simplification modification. A re-
finement modification can be expressed as an in-
sertion of two nodes p and q into N ′, and a re-
placement of a set A− of arcs in A′ with set A+.
Nodes p and q are the nodes which were elimi-
nated by the inverse simplification modification,
and A− and A+ are exactly the same sets of arcs
which defined the inverse simplification modifica-
tion. In other words, a refinement modification
inverse to a simplification modification defined by
(A+, A−) is defined by (A−, A+).
Specifically, given an insertion operator

ins(p, q, p′), the corresponding refinement mod-
ification of the incidence graph G′ = (N ′, A′)
produces a graph G = (N,A), where:

• N = N ′ ∪ {p, q}, A = (A′\A−) ∪A+, where

- A− = {(p′, rj), rj ∈ R},
A+ = {(q, p)}∪{(q, p′)}∪{(q, zh) : zh ∈ Z}∪

GraVisMa 2010 Full Papers

- 78 -

(a) (b)

Figure 6: (a) Insertion operator ins(p, q, p′) of a
1-cell q and 2-cell p in the 3D descending complex,
and (b) the corresponding refinement modification
of the incidence graph.

{(p, rj) : rj ∈ R} ∪ {(p, sk) : sk ∈ S}.

Here, (i − 1)-nodes zh ∈ Z correspond to (i − 1)-
cells on the boundary of i-cell q, i-nodes rj ∈ R
correspond to i-cells on the boundary of (i + 1)-
cell p, and (i + 2)-nodes sk ∈ S correspond to
(i + 2)-cells in the co-boundary of (i + 1)-cell p.
Arc (p′, rj) is removed from A if label of arc (p′, rj)
minus label of arc (p, rj) equals 0. Otherwise, arc
(p′, rj) remains in A with label diminished by la-
bel of arc (p, rj). An expansion can be expressed
as a modification of graph G′ in a completely
dual fashion. Figure 6 shows the effect of the
refinement modification induced by an insertion
ins(p, q, p′) of index 1 in 3D. Here, Z = {z1, z2},
R = {r1, r2, r3}, and S = {s1, s2}.

7 Concluding Remarks

We have presented a dimension-independent rep-
resentation which encodes both the ascending and
descending Morse complexes in a single combina-
torial structure, the incidence-based representa-
tion. This is achieved by exploiting the duality
of the two complexes which leads to an incidence
graph representation of their connectivity. We
have described simplification operators for gener-
alizing Morse complexes in arbitrary dimensions
and their inverse refinement operators. In particu-
lar, we have presented their effect on the incidence
graph in a completely dimension-independent way.
The simplification and refinement operators are
the basic ingredients for the definition of a hierar-
chical representation for the dual Morse complexes
in terms of the incidence graph, which will provide
a description of the Morse complexes at different
levels of abstraction.
Currently, we are working on a dimension-

independent implementation of simplification and
refinement operators on the incidence-based repre-
sentation. Our next step is the design and imple-
mentation of a multi-resolution representation for
the two Morse complexes by defining its encod-

ing data structure, an algorithm for computing
it based on iterative simplification, and a selec-
tive refinement algorithm for extracting adaptive
Morse complexes.

Acknowledgements

This work has been partially supported by the
National Science Foundation through grant CCF-
0541032, and by MNTR of the Government of the
Republic of Serbia through project 23036.

References

[1] C. L. Bajaj and D. R. Shikore. Topology
Preserving Data Simplification with Error
Bounds. Computers and Graphics, 22(1):3–
12, 1998.

[2] T. Banchoff. Critical Points and Curvature
for Embedded Polyhedral Surfaces. American
Mathematical Monthly, 77(5):475–485, 1970.

[3] S. Biasotti, L. D. Floriani, B. Falcidieno,
P. Frosini, D. Giorgi, C. Landi, L. Papa-
leo, and M. Spagnuolo. Describing shapes
by geometrical-topological properties of real
functions. ACM Comput. Surv., 40:Article
12, 2008.

[4] P.-T. Bremer, H. Edelsbrunner, B. Hamann,
and V. Pascucci. A Topological Hierarchy for
Functions on Triangulated Surfaces. Transac-
tions on Visualization and Computer Graph-
ics, 10(4):385–396, July/August 2004.

[5] F. Cazals, F. Chazal, and T. Lewiner. Molec-
ular Shape Analysis Based upon the Morse-
Smale Complex and the Connolly Function.
In Proceedings of the nineteenth Annual Sym-
posium on Computational Geometry, pages
351–360, New York, USA, 2003. ACM Press.

[6] L. Čomić and L. De Floriani. Dimension-
Independent Simplification and Refinement
of Morse Complexes. submitted.

[7] L. Čomić and L. De Floriani. Cancellation
of Critical Points in 2D and 3D Morse and
Morse-Smale Complexes. In Discrete Geome-
try for Computer Imagery (DGCI), Lecture
Notes in Computer Science, volume 4992,
pages 117–128, Lyon, France, Apr 16-18 2008.
Springer-Verlag GmbH.

GraVisMa 2010 Full Papers

- 79 -

[8] L. Čomić and L. De Floriani. Modeling
and Simplifying Morse Complexes in Arbi-
trary Dimensions. In Workshop on Topologi-
cal Methods in Data Analysis and Visualiza-
tion (TopoInVis’09), Snowbird, Utah, Febru-
ary 23 - 24 2009.

[9] E. Danovaro, L. De Floriani, and M. M.
Mesmoudi. Topological Analysis and Char-
acterization of Discrete Scalar Fields. In
T.Asano, R.Klette, and C.Ronse, editors,
Geometry, Morphology, and Computational
Imaging, volume LNCS 2616, pages 386–402.
Springer Verlag, 2003.

[10] L. De Floriani and A. Hui. Shape Represen-
tations Based on Cell and Simplicial Com-
plexes. In Eurographics 2007, State-of-the-art
Report. September 2007.

[11] H. Edelsbrunner. Algorithms in Combinato-
rial Geometry. Springer Verlag, Berlin, 1987.

[12] H. Edelsbrunner, J. Harer, V. Natarajan, and
V. Pascucci. Morse-Smale Complexes for
Piecewise Linear 3-Manifolds. In Proceedings
19th ACM Symposium on Computational Ge-
ometry, pages 361–370, 2003.

[13] H. Edelsbrunner, J. Harer, and A. Zomoro-
dian. Hierarchical Morse Complexes for
Piecewise Linear 2-Manifolds. In Proceedings
17th ACM Symposium on Computational Ge-
ometry, pages 70–79, 2001.

[14] R. Forman. Morse Theory for Cell Com-
plexes. Advances in Mathematics, 134:90–
145, 1998.

[15] T. Gerstner and R. Pajarola. Topology Pre-
serving and Controlled Topology Simplifying
Multi-Resolution Isosurface Extraction. In
Proceedings IEEE Visualization 2000, pages
259–266, 2000.

[16] A. Gyulassy, P.-T. Bremer, B. Hamann,
and V. Pascucci. A Practical Approach to
Morse-Smale Complex Computation: Scal-
ability and Generality. IEEE Transactions
on Visualization and Computer Graphics,
14(6):1619–1626, 2008.

[17] A. Gyulassy, V. Natarajan, V. Pascucci, P.-
T. Bremer, and B. Hamann. Topology-Based
Simplification for Feature Extraction from 3D
Scalar Fields. In Proceedings IEEE Visualiza-
tion’05, pages 275–280. ACM Press, 2005.

[18] A. Gyulassy, V. Natarajan, V. Pascucci,
and B. Hamann. Efficient Computa-
tion of Morse-Smale Complexes for Three-
dimensional Scalar Functions. IEEE Transac-
tions on Visualization and Computer Graph-
ics, 13(6):1440–1447, 2007.

[19] Y. Matsumoto. An Introduction to Morse
Theory, volume 208. American Mathemati-
cal Society, 2002.

[20] J. Milnor. Morse Theory. Princeton Univer-
sity Press, New Jersey, 1963.

[21] X. Ni, M. Garland, and J. C. Hart. Fair
Morse Functions for Extracting the Topo-
logical Structure of a Surface Mesh. In In-
ternational Conference on Computer Graph-
ics and Interactive Techniques ACM SIG-
GRAPH, pages 613–622, 2004.

[22] V. Pascucci. Topology Diagrams of Scalar
Fields in Scientific Visualization. In S. Rana,
editor, Topological Data Structures for Sur-
faces, pages 121–129. John Wiley & Sons Ltd,
2004.

[23] S. Takahashi, T. Ikeda, T. L. Kunii, and
M. Ueda. Algorithms for Extracting Cor-
rect Critical Points and Constructing Topo-
logical Graphs from Discrete Geographic El-
evation Data. In Computer Graphics Forum,
volume 14, pages 181–192, 1995.

[24] S. Takahashi, Y. Takeshima, and I. Fu-
jishiro. Topological Volume Skeletonization
and its Application to Transfer Function De-
sign. Graphical Models, 66(1):24–49, 2004.

[25] G. H. Weber, G. Schueuermann, H. Ha-
gen, and B. Hamann. Exploring Scalar
Fields Using Critical Isovalues. In Proceed-
ings IEEE Visualization 2002, pages 171–
178. IEEE Computer Society, 2002.

[26] G. H. Weber, G. Schueuermann, and
B. Hamann. Detecting Critical Regions in
Scalar Fields. In G.-P. Bonneau, S. Hah-
mann, and C. D. Hansen, editors, Proceedings
Data Visualization Symposium, pages 85–94.
ACM Press, New York, 2003.

[27] G. W. Wolf. Topographic Surfaces and Sur-
face Networks. In S. Rana, editor, Topologi-
cal Data Structures for Surfaces, pages 15–29.
John Wiley & Sons Ltd, 2004.

GraVisMa 2010 Full Papers

- 80 -

Using Geometric Algebra for Visualizing Integral Curves
Werner Benger

Center for Computation & Technology

Louisiana State University

Baton Rouge, LA-70803

werner@cct.lsu.edu

Marcel Ritter

Institute for Astro- and Particle Physics

University of Innsbruck

Innsbruck, A-6020

marcel@cct.lsu.edu

ABSTRACT
The Differential Geometry of curves is described by
means of the Frenet-Serret formulas, which cast first,
second and third order derivatives into curvature and
torsion. While in usual vector calculus these quantities
are usually considered to be scalar values, formulating
the Frenet-Serret equations in the framework of Geo-
metric Algebra exhibits that they are best described by
a bivector for the curvature and a trivector for the tor-
sion. The bivector curvature field is directly suitable for
visualization of integral curves for vector fields, pro-
viding “Frenet Ribbons” which are much richer in their
visual expressiveness than lines. The set of quantities
in the Frenet-Serret formalism allows to study numer-
ical pitfalls for computing Frenet Ribbons. We show
how to address them and demonstrate the applicabil-
ity of the technique upon a complex numerical data set
from computational fluid dynamics.
Keywords: Frenet Ribbon, pathline, streamline, com-
putational fluid dynamics, curvature, torsion

1 INTRODUCTION
Numerical algorithms ultimately need to work with co-
ordinates in the form of real numbers, thus Rn. How-
ever, the early introduction of coordinates in the math-
ematical formulation of algorithms is, though common
practice, highly problematic, as it obscures the view to
the actual mathematical properties of the involved ob-
jects. Once an abstract mathematical object has been
dismantled into numbers, even simple properties be-
come complex. For instance, Sethian formulates the
issue as “the use of a coordinate system has nothing
to do with the problem, but it has severely constrained
our options” [8] and Hermann Weyl wrote “The in-
troduction of numbers as coordinates by reference to
the particular division scheme of the one-dimensional

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

GraVisMa 2010 conference proceedings, ISBN XXX-XXXX-XX
GraVisMa’2010, Brno, 2010
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

open continuum is an act of violence [...]”[12]. In other
words: while the algebraic operations on real num-
bers, the one-dimensional space R, are part of com-
mon knowledge, it is a severe and unnecessary restric-
tion to reduce other spaces – in particular n-dimensional
manifolds such as used in geometry – to this set of
one-dimensional algebraic operations (which is the pro-
cess of introducing coordinates). Rather n-dimensional
manifolds may carry an algebraic structure by them-
selves which should just be used, such as demonstrated
by the coordinate-free approach of Geometric Algebra
(GA) [2] which can directly be implemented using pro-
gramming languages such as C++.

Curvature and torsion are common measures to ex-
press the properties of curves [7], as they represent
the second and third derivative. In scientific visualiza-
tion these measures serve to analyze the properties of
streamlines in vector fields, but they can also be deter-
mined directly from the vector field itself, bypassing the
process of computing an integral line [11].

Curvature and torsion are commonly introduced us-
ing vector algebra in the Euclidean space, involving
formulations based on the cross-product. This formu-
lation has several drawbacks: it hides the fact that tor-
sion is a signed quantity, changing the sign under reflec-
tion; it relies on Cartesian coordinates, obscuring how
to compute torsion with an explicit metric tensor such
as required for curved space in relativity or curvilinear
coordinates in computational fluid dynamics, and last
not least formulations based on the cross-product do
not generalize to higher dimension, which is required
when we want to extend the formalism to study time-
dependent vector fields in a four-dimensional frame-
work. While there are n-dimensional vector calculus
formulations of the Frenet-Serret formulae [7] avail-
able, GA improves the intuition of the involved objects.

The Frenet-Serret apparatus fails when the curvature
becomes zero. Extensions to the Frenet frame have
been proposed using quaternion formulations [6, 5]. In
this paper we restrict ourselves to a review of the Frenet
frame enhanced by a coordinate-free geometrical inter-
pretation which is more intuitive than quaternions or
vectors. The presented calculus is independent from the
dimension of the underlying manifold and is expected
to generalize to higher dimensions and treatment of par-
allel transport more intuitively in future work.

GraVisMa 2010 Full Papers

- 81 -

Skala
Obdélník

2 MATHEMATICAL BACKGROUND
2.1 Differential Geometry
An n-dimensional manifold M is a topological space
that locally looks like Rn. For each point there exists
a neighborhood and a mapping, called a chart {xµ} :
M→Rn. The transition from one chart {xµ} to another
chart {xµ̄} defines n coordinate transformation func-
tions {xµ}

(
{xµ̄}−1

)
: X → Y with X ,Y ⊂ Rn.If these

are differentiable k times, then the manifold is said to
be C k. Space and time is modeled in physics as a C ∞-
manifold. The laws of physics are independent of the
choice of a coordinate system, which provide just rep-
resentations of the mathematical objects.
Curves vs. Lines A curve is a mapping from a scalar
λ ∈ R, the curve parameter, to a point on a manifold:
q : R→M : λ 7→ q(λ). The image of q in M is a line,
a one-dimensional manifold. A certain line can be de-
scribed by many curves which are distinct by different
parameterizations. To describe a curve in a certain chart
{xµ} a coordinate function is used to extract a function
for each coordinate of the chart:

qµ : R → R
λ → qµ(λ) = xµ(q(λ))≡ xµ ◦q(λ) (1)

This set of n functions qµ(λ) is the representation of
the curve q in a coordinate system.
Tangential Vectors A tangential vector v may be un-
derstood as a small displacement of neighboring points
on a curve, where the components of the tangent vector
are given by vµ = dqµ(λ)/dλ . Given a differentiable
function f : M→ R we may evaluate it along the curve
f (q(λ)) : R→ R and find the directional derivative of
f along q in a chart {xµ} as

d
dλ

f (q(λ)) =
dqµ

dλ

∂ f
∂xµ

(2)

We may thus identify the tangential vector v with the
derivation operation d/dλ , which is an interpretation
independent of any coordinate system:

v≡ d
dλ

=
dqµ

dλ

∂

∂xµ
=: q′(λ) (3)

The set of all derivatives ∂

∂xµ in all directions at a point
p defines the tangential space Tp(M), which is a vector
space (in contrast to M, which in general is not).
Wedge (Outer) Product The wedge product is de-
noted by the symbol “∧” and was introduced by Her-
mann Grassmann in the 19th century. It allows to
construct a vector space Λ2(Tp) from the tangential
space Tp by introducing the anti-symmetric (or wedge)
product ∧ : Tp×Tp → Λ2(Tp) with u,v ∈ Tp, whereby
u ∧ v = −v ∧ u. Higher orders of the form Λk(Tp)
with k ≤ dim(M) consist of so called k-vectors with
scalars as 0-vectors, vectors as 1-vectors, bivectors as
2-vectors, and so forth.

Dot (Inner) Product The metric tensor field is a scalar-
valued symmetric bilinear function g operating on tan-
gential vectors, given at each point p ∈M:

g : Tp(M)×Tp(M)→ R : u,v 7→ gp(u,v) (4)

The metric tensor field allows to define the inner (“dot”)
product u · v := gp(u,v) of two tangential vectors. The
dot symbol “·” is used by convention as a shortcut, but
implying involvement of the metric tensor which needs
to be explicitly specified for a manifold. In contrast,
the wedge product is defined on the tangential space
without any additional structure.
Arc Length and Curve Tangent Vector Arc length
s is defined as the length of integrated curve segments

s(λ) :=
λ∫
0
|q′(λ̃)| dλ̃ with |v| =

√
(gp(v,v)). Deriva-

tion by the arc length will be denoted by dots:

v̇ :=
d
ds

v≡ dλ

ds
d

dλ
v = λ̇ v′ . (5)

In general, derivation along a curve requires to employ
a tangential transport and affine connection ∇. It fol-
lows from (2.1) by derivation on both sides: ds

dλ
= |q′|,

which allows to express the derivation by arc length s
via the derivation by the curve parameter:

v̇ =
1
|q′|

v′ or
d
ds

=
dλ

ds
d

dλ
=

1
|q′|

d
dλ

(6)

Specifically it follows that the tangential vector q̇ with
respect to arc length - defined as the tangent vector t -
is a unit vector |q̇|= 1 due to t := q̇ = 1

|q′| q′.

2.2 Geometric Algebra
Geometric Algebra is the generalization of vector cal-
culus to form a complete set of algebraic operations
on tangential vectors and k-vectors. Its central con-
cept is the introduction of the invertible geometric prod-
uct. Given two (tangential) vectors u,v and a metric
g, the requirements on the geometric product uv are to
be associative, left- and right-distributive and to fulfill
u2 = uu = g(u,u). These postulates lead to the ge-
ometric product as uv = u · v + u∧ v , which is now
invertible.It is important to keep in mind that the ge-
ometric product is not commutative, thus in general
uv 6= vu and one needs to distinguish among left- and
right-multiplication. As the geometric product sums a
scalar value and a bivector it operates no longer on tan-
gential vectors alone, but on the 2n-dimensional space
of multivectors V ∈

⊕n
k=0 Λk(Tp)

Inner and Outer Product in GA Expressing the inner
and outer product via the geometric product may well
lead to easier expressions since the geometric product
is invertible and associative. For 1-vectors the inner

GraVisMa 2010 Full Papers

- 82 -

product is given by the symmetric part of the geometric
product, the outer product as the anti-symmetric part:

u · v≡ 1
2
(uv+ vu) , u∧ v≡ 1

2
(uv− vu) . (7)

Another useful operator, the Hodge-star operator ?,
maps k-multivectors to (n− k)-vectors via the product
with a pseudoscalar (an n-multivector) Ω ∈ Λn(Tp).

? : Λ
k(Tp)→ Λ

n−k(Tp) : V 7→ΩV . (8)

It allows to identify vectors and bivectors in three-
dimensional space. For instance, the cross product in
three-dimensional vector calculus corresponds to

u× v≡ ?(u∧ v) , (9)

the difference being that “×” is only defined in 3D,
whereas the right side works in arbitrary dimensions.
Vector Projections Using the geometric product on
two arbitrary vectors u,v the expression wuw with a unit
vector w = v/|v| yields the vector u as reflected at the
vector v. Adding the reflected vector wuw to u yields
the component of the vector u that is parallel to w:

u‖v =
1
2

(
u+

vuv
|v|2

)
, (10)

while subtraction yields the perpendicular component

u⊥v =
1
2

(
u− vuv
|v|2

)
, (11)

where evidently u = u‖+ u⊥. In GA (11) is called a
rejection operation. Both components correspond to the
inner and outer product (7) when multiplied with the
inverse vector v−1 ≡ v/|v|2:

u‖v =
(uv+ vu)

2
v
|v|2

= (u · v)v−1 = v−1(u · v) ,

(12)

u⊥v =
(uv− vu)

2
v
|v|2

= (u∧ v)v−1 =−v−1(u∧ v) .

(13)

Relation to Vector Calculus In 3D Euclidean space,
we get the orthogonal component via the cross-product:

u⊥v =
v× (u× v)

v2 (14)

Using the vector triple product formula relating cross
and dot product a× (b× c) = b(a · c)− c(a ·b) we see

u⊥v =
u(v · v)− v(u · v)

v2 = u− (u · v)v/v2 ≡ u−u‖v.
(15)

Derivative of a Unit Vector The derivative d/dλ ,
denoted by a prime as shortcut in the following expres-
sions, of an (arbitrary) unit vector field v/|v| along a
curve yields a vector field that is orthogonal to the orig-
inal vector field v:

d
dλ

v
|v|

=
|v| d

dλ
v− v d

dλ
|v|

|v|2
(16)

d
dλ

v2 =
d

dλ
vv = vv′+ v′v = 2v · v′ (17)

d
dλ
|v|= d

dλ

√
v2 =

v · v′

|v|
(18)

therefore

d
dλ

v
|v|

=
1

2|v|

(
v′− vv′v
|v|2

)
(11)
= v′⊥v/|v|

≡ (v′∧ v)v−1

|v|
≡ (v′∧ v)v

|v|3

(19)

i.e. the derivative of a unit vector field v along a curve
is perpendicular to the original field. A visualization of
this behavior is shown later in Fig. 5. The same fact is
evident from v · d

dλ

v
|v| = 0, noticing eqn. (18) becomes

zero for a unit vector |v|= 1,
Consecutively applying the operations of derivation

and normalization on the tangential vectors of a curve
leads to a systematic scheme allowing to study a curve’s
properties, known as the Frenet-Serret formulas.

2.3 Frenet-Serret Formulae
Curvature of a Curve The curvature κ of a curve
is defined as the magnitude of the rate of change of the
unit tangent vector twith respect to arc length:

κ := |ṫ|=
∣∣∣∣ d
ds

t
∣∣∣∣≡ 1
|q′|
|t ′| (20)

The derivative of the tangent vector is perpendicular to
q′ by means of (19):

t ′ =
q′′⊥q′

|q′|
≡ (q′′∧q′)q′

|q′|3
. (21)

The curvature can thus be seen as the rejection (per-
pendicular component) of the second derivative q′′ =
d/ds q′ by the velocity q′ normalized by the speed:

κ =

∣∣∣∣q′′⊥q′

|q′|2

∣∣∣∣= |(q′′∧q′)q′|
|q′|4

(22)

By construction the curvature κ is independent of the
parameterization and is a measure that only depends on
the line, as in (20) we differentiate with respect to arc
length, not the curve parameter.

GraVisMa 2010 Full Papers

- 83 -

Relation to Vector Calculus By means of (14) we
may express t ′ in (21), and thus ṫ, as a cross product,

ṫ =
q′′⊥q′

|q′|2
=

(q′′∧q′)q′

|q′|4
=

q′× (q′′×q′)
|q′|4

(23)

such that via |a× (b×a)|= |a| |b×a| we get the com-
monly shown formula for curvature as

κ =
|q′× (q′′×q′) |

|q′|4
=
|q′| |q′′×q′|
|q′|4

=
|q′′×q′|
|q′|3

. (24)

Normal Vector and Osculating Bivector Derivation
and normalization of the tangential vector t = q′/|q′|
yields the normal unit vector, a quantity independent of
the curve parameterization:

n :=
t ′

|t ′|
≡ ṫ
|ṫ|

(20)
≡ 1

κ
ṫ

(6)
=

1
κ

1
|q′|

t ′ (25)

By definition of the curvature (20) we trivially arrive at
the first Frenet-Serret equation:

t ′ = |t ′| n = |q′| κ n or ṫ = κ n (26)

The tangent and normal vector define the osculating
plane of the curve, called the binormal vector t× n in
vector calculus. It corresponds to a bivector in Geomet-
ric Algebra (t ·n = 0):

b := tn = t ∧n =−n∧ t =−nt . (27)

This “osculating bivector” b is a unit bivector fulfilling
b2 =−1. The associated “curvature bivector” κb= t∧ ṫ
fulfills (t ∧ ṫ)2 =−κ2.
Relation to Vector Calculus The normal vector ex-
pressed in derivatives of the curve q becomes in Eu-
clidean vector calculus, using (23) and (24):

n =
q′× (q′′×q′)
|q′| |q′′×q′|

(28)

Torsion Trivector The change of normal vector yields
the form of a unit vector derivative (19):

n′ =
t ′′⊥t ′

|t ′|
≡ (t ′′∧ t ′) t ′−1

|t ′|
(29)

To compute the change of the osculating bivector, we
utilize the Leibniz rule on (27), notice that t ′ and n are
parallel by eqn. (26) and reorder terms to find

ḃ =
1
|q′|

(
t ′∧n︸︷︷︸

0

+t ∧n′
)
=

1
|q′|

t ∧ (t ′′∧ t ′) t ′−1

|t ′|

=− 1
|q′|

t ∧ t ′∧ t ′′

|t ′|2︸ ︷︷ ︸
=:τ

t ′/|t ′|︸ ︷︷ ︸
n

=− t ∧ ṫ ∧ ẗ
κ2 n =:−τn

(30)

This is the third Frenet-Serret equation,

b′ =−τ n |q′| or ḃ =−τ n (31)

which in this formulation relates the change of the os-
culating bivector to the normal vector via the torsion
trivector τ . With the geometric product being invertible
we can easily express n by means of b by noting t−1 = t
due to |t|= 1, finding n = t−1b = tb. Derivation yields

ṅ = ṫb+ tḃ = κn b− t τn (32)

and using nb = ntn =−nnt =−t with tτ = τ t provides
via tn = b the second Frenet-Serret equation:

ṅ =−κ t− τ b (33)

Here b is a bivector (describing curvature) and τ is a
trivector (describing torsion). It is evident that τ is not
a scalar, but a pseudo-scalar - it changes sign under re-
flection: a helix with positive torsion seen in a mirror
exhibits negative torsion.
Relation to Vector Calculus In a chart the torsion
trivector will be expressed as a three-indexed object
τ = τi jk ∂i ∧ ∂ j ∧ ∂k . These are 2n components, but in
three dimensional Euclidean space they reduce to a sin-
gle number and the torsion trivector can be associated
with a scalar |τ| by means of the hodge-star operator
as ?τ = |τ|Ω. It expresses the torsion trivector relative
to an orientation Ω describing the left-handedness or
right-handedness of the chosen coordinate system. We
can express eqn. (33) through the vector dual~b to the
bivector b = ?~b = Ω~b, which due to Ω2 =−1 yields the
usual Frenet-Serret equation for vectors:

ṅ =−κ t−|τ|Ω Ω~b =−κ t + |τ|~b . (34)

3 VISUALIZING CURVES
3.1 Integral Curves
Given a vector field v : M→ T (M) : q 7→ v(q) a curve
q(λ) is an integral curve on this vector field if it fulfills
d

dλ
q = v

(
q(λ)

)
. The properties of the integral curve

are determined by the vector field itself. Curvature and
torsion can be computed directly as curvature and tor-
sion fields from the vector field [11] based on the vector
field’s Jacobian. As the previous has shown, these are
actually bivector and trivector fields, not scalar fields.

3.2 Verification Vector Field
Verification of computational methods on behalf of an-
alytical test data sets is of utmost importance. Here,
a vector field is used for verifying the computational
methods and is constructed to yield clearly defined re-
sults (stream lines) in the form of circles: v = ∂ϕ =

(−y,x,0)/
√

x2 + y2. To check the independence of the

GraVisMa 2010 Full Papers

- 84 -

curve parameterization we provide a non-constant ve-
locity depending on the angle relative to the coordinate
system: v=

[
1+Asin

(
ϕ arctan y

x

)]
∂ϕ with A an ampli-

tude of the modification and ϕ a modification factor for
the angular dependency. With A = 0.9 and ϕ = 1.0 we
get a vector field that is nearly zero for y< 0 and is large
up to |v|= 1.9 for y > 0, as show in Fig. 1. The integral
lines of this vector field are closed circles. To simulate
data stemming from a numerical simulation the vector
field is sampled to uniformly spaced locations and in-
terpolated to arbitrary locations where the integral line
passes through.

Figure 1: 2D slice of an axial vector field with non-
constant (but non-vanishing) velocity sampled on a grid
of 163 points (left image). The integral lines of this
vector field are closed circles (right image) of constant
curvature, with curvature increasing toward the center.

3.3 Fields for Visual Analysis
The differential geometric treatment of curves system-
atically leads to a set of fields that allow to study the
properties of a curve. Some of these fields are lo-
cal quantities, i.e. they can be computed from the
properties of a curve at each point and its neighbor-
hood, but are otherwise independent of global quan-
tities which depend on the entire shape of the curve.
Both local and global quantities are of interest. Some
of them are dependent on the parameterization and oth-
ers are pure line quantities which do no change under
re-parameterization.

1. Proper time: T =
∫

1/|q̇(λ)|dλ

2. Arc length: s =
∫

ds

3. Velocity: q′

4. Coordinate Acceleration: q′′

5. Energy: E = |q′|2/2

6. Tangential vector: t = q′/|q′|

7. Normal vector: n = t ′/|t ′|

8. Osculating bivector: b = tn

9. Curvature: κ = |ṫ|= |(q′′∧q′)q′|/|q′|4

10. Curvature bivector κb = t ∧ ṫ

11. Torsion trivector: τ = (t ∧ ṫ ∧ ẗ)/κ2

12. Torsion: |τ|= |ḃ|= |t ∧ ṫ ∧ ẗ|/κ2

These quantities will be of type scalar, vector, bivector
and trivector, each of these types requiring a different
kind of visualization method along the curve. Scalar
fields are commonly displayed via color-coding, vec-
tor fields via arrow icons. With bivectors and trivec-
tors being elements of Geometric Algebra beyond the
usual vector calculus, there are no common visualiza-
tion methods for these types of fields. However, Frenet
Ribbons, discussed in 3.4, provide a direct visualization
of the osculating bivector field.
Scalar Fields The set of available scalar fields from
the above set can be organized - for planar curves (zero
torsion) - with respect to their properties of being local
or global and their dependence on the curve parameter-
ization (line quantity vs. curve quantity):(

T s
E κ

)
=̂

(
global/curve global/line
local/curve local/line

)
(35)

As demonstrated in Fig. 2, displaying these four quanti-
ties along a line provides four different views with com-
plementary information. If we modify the input vec-
tor field by an arbitrary modulation of its amplitude,
then the right column of Fig. 2 will remain unchanged,
while only the left column will undergo changes. On
the other hand, the lower row will be independent of
the placement of integral seed points. Mapping proper

(a) Proper Time- T (b) Arc Length - s

(c) Energy - E (d) Curvature - κ

Figure 2: Visualization matrix of scalar fields on a curve:
proper time T , arc length s, energy E and curvature κ . Upper
row are global (integral) quantities, right column are indepen-
dent of parameterization.

time to colors provides a notion of the time that a par-
ticle requires to reach a certain point on this trajectory.

GraVisMa 2010 Full Papers

- 85 -

A colormap that uses gradient steps is furthermore able
to emphasize the increments of proper time along the
line, even in mere grayscale depiction. It provides a vi-
sual indication of the velocity and therefore the original
vector field. Particles are traveling slower in the lower

(a) Value→ color hue (b) Value→ intensity steps

Figure 3: Visualizing a dense set of curves: Proper time with
color map, showing advancement of time along the curves,
and proper time with “zebra” colormap, depicting the velocity
along the curve.

section of Fig. 3, which is conveyed better by the cho-
sen gradient colorization. Fig. 4 shows the scalar fields
with the "zebra" map applied.

(a) T (b) s (c) E (d) κ

Figure 4: “Zebra” colorization scheme applied to the
matrix of scalar fields (Fig. 2) for a dense set of curves:
proper time, arc length, energy, curvature.

Vector Fields The velocity q′ along a curve is supposed
to be identical with the value of a vector field v(q(s)) if
q is an integral curve. For vector fields given on dis-
crete points its visualization may provide insight into
the behavior of the interpolation algorithm, as discussed
in 3.5, which in particular is non-trivial for curvilinear
grids [9] [4] [10].

Same as with scalar fields, we can distinguish among
curve and line quantities based on the dependency of
a vector field on the curve parameterization. Since all
vector fields “live” in the tangential space Tp(M), they
are local by nature. The notion of global vs. local is
hereby replaced by order of derivation, firstly consider-
ing first and second order:(

q′ t
q′′ n

)
=̂

(
1st/curve 1st/line
2nd/curve 2nd/line

)
(36)

The corresponding vector fields are shown in Fig. 5.
Note that the acceleration q′′, Fig. 5(c) is not normal
to the velocity q′, Fig. 5(a), but lays in the same plane
as the normal vectors n, Fig. 5(d). We can thus see
Fig. 5 as a direct visualization of eqn. (21) which states
that the direction of the normal vector is given by the

projection of the acceleration on the velocity n ∝ q′′⊥q′ .

(a) Velocity q′ (b) Tangents t = q′/|q′|

(c) Acceleration q′′ (d) Normals n = t ′/|t ′|

Figure 5: Visualization matrix of vector fields on a curve:
velocity and acceleration (left column) depend on the curve’s
parameterization, tangents and normals (right column) are
pure geometrical quantities. Upper row includes first order
derivatives of the curve, lower row is based on second order
derivations.

3.4 Visualizing the Curvature Bivector:
Frenet Ribbons

A Frenet Ribbonis a direct visualization (Fig. 6) of the
curvature bivector field κ b = t ∧ ṫ along a curve q.
The Frenet Ribbon is the surface generated by sweep-
ing the tangential derivative vector t ′ along the curve
q. Its width depicts the curvature κ = |ṫ|, the location
of the surface relative to the curve q depicts the sign of
the curvature, since osculating plane is described by the
bivector t ∧ ṫ =−ṫ ∧ t.

(a) Frenet Ribbon (b) Ribbon and normals

Figure 6: A Frenet Ribbon is generated by sweeping the
curve normal vectors along the curve. Colorization by energy.

Using modern graphics hardware, Frenet Ribbons
are very suitable to be implemented using geometry
shaders which allow generating the actual geometry
completely on the GPU while just providing the line
and normal vector information for each vertex. Con-
sequently rendering Frenet Ribbons is about as fast as

GraVisMa 2010 Full Papers

- 86 -

Figure 7: Accuracy and performance of integration methods:
Euler integration with stepsize 1.0, 180 steps; stepsize 0.2,
720 steps; 8th order Runge-Kutta (DOP853), 40 steps.

drawing line primitives unless there occur huge poly-
gons to be rendered due to locations of very high cur-
vature. Usually rendering is possible in realtime with at
least 30fps using a decent modern graphics card which
supports geometry shaders.

3.5 Numerics
Integration Method The forward Euler method is
the most simple method to advance a point at a curve
via q(s+∆) = q(s)+∆ v(q(s)) for a constant step size
∆. It is known to always gives overshoots of the curve,
which can be cured somewhat by reducing the step-
size ∆. But it is never able to achieve the same accu-
racy as an higher order integration schemes such as the
DOP853 Runge-Kutta scheme of order 8th with adap-
tive step size control [3], as demonstrated in Fig. 7. In
theory, all line and curve quantities are supposed to be
independent of the chosen method. In practice, they
will differ.
Interpolation Scheme With vector field data given
at an equidistant spatial sampling (“uniform grid”) it is
required to interpolate grid points to a smooth location.
With linear interpolation the discretized manifold is
C 1, first order derivatives become discontinuous which
shows up visibly in the curvature (Fig. 8(c)). Cubic in-
terpolation via Catmull-Rom splines yields a somewhat
smoother curvature, Fig. 8(b), yet artifacts are still vis-
ible. While Euler integration yields inaccurate results,

(a) analytic (b) bi/tri-cubic (c) bi/tri-linear

(d) analytic (e) bi/tri-cubic (f) bi/tri-linear

Figure 8: Curvature on Euler (upper row) and DOP853 inte-
gration (lower row).

the DOP853 integrator exhibits a remarkable behavior
when visualization curvature (Fig. 8): it apparently ap-
proaches the curve by a combination of “undershoot-
ing” and “overshooting”, which is more sensitive to the
interpolation method.
Discretization Resolution The sampling density of
an analytic function influences the accuracy of an in-
tegration scheme. As depicted in Fig. 9, increasing
the grid resolution does smooth out the curvature as
computed by the Euler scheme. For the more accurate
DOP853 scheme however the “meandering” behavior
as observed in Fig. 8 remains, just on a smaller scale.

(a) Euler, 163 (b) Euler, 643 (c) DOP, 163 (d) DOP, 643

Figure 9: Dependency of Frenet Ribbons and curvature on
grid resolution.

Differentiation Scheme We implemented curvature
computation directly by means of the definition (20)
κ = |ṫ|. Given a discrete set of N vertices along a line
with pi ∈M, vi ∈ Tpi(M) for i ∈ [0,N), we arrive at

t− := vi−1/|vi−1| ∆− := |pi− pi−1|
t0 := vi/|vi|

t+ := vi+1/|vi+1| ∆+ := |pi+1− pi|

ṫ− :=
t0− t−

∆−
ṫ+ :=

t+− t0
∆+

ṫ =
1
2
(ṫ−+ ṫ+) ⇒ κ = |ṫ|

This is a second order scheme for differentiation, where
division by the arc length ∆ of a finite curve segment
yields ṫ (not t ′), taking into account non-equidistant step
sizes between succeeding points on the line. In the spe-
cial case of constant step size, such as with Euler inte-
gration, the term t0 will be discarded. When using the
adaptive DOP853 scheme this symmetric formula us-
ing the tangential vector at i− 1 and i+ 1 is important
to yield smooth results. Boundary conditions (i = 0 and
i = N−1) need to be treated differently. The computa-
tion of the torsion trivector is a direct implementation of
eqn. (30), requiring one more numerical differentiation
of t ′:

ẗ :=
ṫ+− ṫ−

∆++∆−
⇒ τ =

t0∧ ṫ ∧ ẗ
κ2 (37)

The method applied to a numerical dataset stemming
from a large-scale computational fluid dynamic simula-
tion is demonstrated in Fig. 10, showing Frenet Ribbons
exposing the curvature bivector and torsion.

Curvature and torsion of pathlines are suitable indi-
cators of the mixing quality of fluids [1]. Within a large

GraVisMa 2010 Full Papers

- 87 -

numerical dataset their depiction via Frenet Ribbons is
useful for data mining purposes as slight deviations in
curvature and torsion show up prominently.

(a) Frenet Ribbons with Color-Encoded Curvature

(b) Frenet Ribbons with Color-Encoded Torsion

Figure 10: Frenet Ribbons in a numerical vector field. Rib-
bons color-encoded by curvature or torsion, lines by proper
time with gradient map.

4 CONCLUSION
In this article we have reviewed the Frenet-Serret equa-
tions describing the Differential Geometry of curves in
the formalism of Geometric Algebra. This leads to a
more intuitive formulation of curvature as a bivector
and torsion as a trivector, explaining sign changes un-
der reflection. The formalism is valid also in higher
dimensional spaces, thereby generalizing vector alge-
bra employing cross-products and quaternion formula-
tions. The apparatus is applied to the numerical com-
putation of integral curves in discretized vector fields
and investigated for its dependency on numerical arti-
fact such as interpolation scheme, integration method,
sampling resolution and differentiation scheme. A real-
world example is demonstrated on behalf of a dataset
from computational fluid dynamics where Frenet Rib-
bons visualize the trajectories of test particles, exhibit-
ing curvature and torsion.

5 ACKNOWLEDGMENTS
This research employed resources of the Center for
Computation & Technology at Louisiana State Univer-
sity, which is supported by funding from the Louisiana
legislature’s Information Technology Initiative. Por-
tions of this work were supported by NSF/EPSCoR

Award No. EPS-0701491 (CyberTools). We thank Pe-
ter Wagner, Gunther Bergauer and our anonymous re-
viewers for comments and corrections.

REFERENCES
[1] B. Bohara, W. Benger, M. Ritter, S. Roy,

N. Brener, and S. Acharya. Time-curvature and
time-torsion of virtual bubbles as fluid mixing in-
dicators. IADIS Computer Graphics, Visualiza-
tion, Computer Vision and Image Processing 2010
(CGVCVIP 2010), 2010.

[2] C. J. L. Doran and A. N. Lasenby. Geometric al-
gebra for physicists. Cambridge University Press,
2003.

[3] S. N. E. Hairer and G. Wanner. Solving ordi-
nary differential equations I, nonstiff problems,
2nd edition. Springer Series in Computational
Mathematics, Springer-Verlag, 1993.

[4] N. Fujimatsu and K. Suzuki. New interpola-
tion technique for the cip method on curvilinear
coordinates. Journal of Computational Physics,
229(16):5573 – 5596, 2010.

[5] A. J. Hanson. Quaternion Frenet Frames: Making
Optimal Tubes and Ribbons from Curves. Tech-
nical report, Indiana University, 1994.

[6] A. J. Hanson and H. Ma. Visualizing flow with
quaternion frames. In VIS ’94: Proceedings of the
conference on Visualization ’94, pages 108–115,
Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[7] W. Kühnel. Differentialgeometrie.
Vieweg+Teubner, 2010.

[8] J. Sethian. Level set methods: An act of violence -
evolving interfaces in geometry, fluid mechanics,
computer vision and materials sciences. American
Scientist, 1996.

[9] D. Stalling. Fast Texture-Based Algorithms for
Vector Field Visualization. PhD thesis, Free Uni-
versity Berlin, 1998.

[10] S. Ushijima, I. Nezu, M. Sanjou, and Y. Sakane.
Quintic spline interpolation (qsi) scheme with col-
located grid on general curvilinear coordinates.
XXIX IAHR CONGRESS, Beijing, China., Sept.
2001.

[11] T. Weinkauf and H. Theisel. Curvature measures
of 3d vector fields and their applications. In Jour-
nal of WSCG 2002, International Conference in
Central Europe on Computer Graphics, Visualiza-
tion and Computer Vision, Plzen, Czech Republic,
Number 10, pages 507–514. WSCG, 2002.

[12] H. Weyl. Philosophy of Mathematics and Natu-
ral Science. Princeton University, Princeton, NJ,
1949.

GraVisMa 2010 Full Papers

- 88 -

Automatic texture classification of metallographic
images by Gabor Filter

Petr Kotas

Dept. of Applied Mathematics,

VŠB - Technical University of
Ostrava,

17. listopadu 15, CZ-708 33
Ostrava, Czech Republic

Petr.Kotas@vsb.cz

Pavel Praks

Dept. of Applied Mathematics,

VŠB - Technical University of
Ostrava,

17. listopadu 15, CZ-708 33
Ostrava, Czech Republic

Pavel.Praks@vsb.cz

Ladislav Válek

Research – Production
Technology, ArcelorMittal Ostrava

a.s., Ostrava, Czech Republic

ladislav.valek@arcelormittal.com

ABSTRACT
In this paper an alternative method for the automatic pattern classification of metallographic images is presented.
The aim of the pattern classification is to help monitoring the process quality in the steel plant of the company
ArcellorMittal Ostrava plc, Ostrava, the Czech Republic. The here presented approach is based on the well
known Gabor filter, which provides suitable results in various texture analysis applications. In our case, the real
metallographic samples are firstly separated from the image background. Then, a texture extraction is provided.
The extracted samples are processed by applying the Gabor filter with various properties, from which selected
texture features are formed. Effects of a dimension reduction technique for quality of similarity retrieval are
studied.

Keywords
metallography, LSI, Gabor wavelet, texture analysis, industrial applications, image retrieval

1. INTRODUCTION
The aim of our research activity is to develop and test
methods for visual analysis of digital images of
metallographic samples. For quality modeling of
metallographic images, it is important to retrieve
visually similar images according to a user defined
image, a query image.

The steel plant produces variety of steels with various
properties, according to needs of consumers (pipes,
building structures, energetics - metals for
transformers, etc.). Steel samples from the cast billets
are taken from continuous casting machine. These are
crosscuts of the cast billets. These samples are
conveyed into the metallography laboratory where
they are mechanically adjusted. In order to stress a
sample macrostructure, crosscut etching is done
[Zeljkovic09].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

Consequently, digital photographs of these etched
crosscuts are being taken. In our digital image
database, we try to recognize two basic production
technologies of steels: alloyed and carbonic, see their
different textures (Figure 2). The alloyed structure of
image samples is characterized by visible segments.
On the other hand, carbonic samples have small-
grained structure without grains. Moreover, there are
two basic shapes of metal samples, square and
round.

Metallographic laboratories of ArcelorMittal Ostrava
a.s. uses a system of standards for marking the macro
 structures. Usually this classification is not easy. For
this reason, we represent digital images by feature
vectors, which represent information hidden in
textures of digital images of metallographic samples.
Recently, we experimented with feature vectors
obtained by the wavelet transformation and the eigen-
space analysis. In all cases, the feature vector can be
viewed as a sequence of image descriptors [Praks08a,
Praks08b]. In this paper, an industrial application of
the texture retrieval by the Gabor filter is presented.

The paper is structured as follows. Section 2
describes the theoretical background of the Gabor
filter for the texture analysis. In Section 3, three used

GraVisMa 2010 Communication Papers

- 89 -

image similarity models are presented. The
experimental comparison of these approaches for the
image classification follows in Section 4, while
Section 5 closes the paper with conclusions and
future works.

2. GABOR FILTER
In this section we describe fundamentals of 2D Gabor
filters for the texture analysis. We show how texture
samples could be represented in order to reduce the
amount of data generated for the comparison. We
refer to [Kruz00a], [Zhan00a] and [Man00a] for the
general description of Gabor wavelets and further
details in this topic. Also we refer readers interested
in wavelets to [Fraz00a].

Gabor wavelet
For an image I(x,y) with size PxQ is the Gabor
wavelet transform defined as

I=∬
S , T

I x−s , x−t ∗ mn s ,t ds dt ,

(1)

where S and T correspond to the wavelet size.
Moreover, mn  x , y is the complex conjugate of
mn x , y  , which is the self-similar Gabor wavelet.

Finally, mn  x , y is generated from the mother-
wavelet

  x , y= 1
2 x  y

e
−1

2  x2

 x
2

y2

 y
2 

cos 2 x , (2)

where x and  y are standard deviations of the
gaussian envelope and  is the wavelength of the
cosine factor.
In the next text m and n will range from 1 to M and
from 1 to N, respectively.
The self-similar Gabor wavelet is defined through
multiples of mother-wavelet:

 mn x , y=a−mx , y (3)

with m and n specifying scale and orientation of the
function respectively, and

x=a−m xcosysin
y=a−m−xsinycos

, (4)

where a>0 and =n/N .
All variables above are adopted from [Zhan00a] and
are defined as follows:

 a=U h

U l 
1

M −1
, (5)

 m, n=amU l , (6)

 x ,m ,n=
a1 2ln2
2am a−1U l

, (7)

 y ,m , n=
1

2 tan  
2N

 U h
2

2ln 2
− 1

2 x , m , n 
2

.

(8)

We chose U h=0,4 and U l=0,05 , because these
values are widely used in the literature.
On Figure 2 a sample filter bank, we used in our
experiments, with four angles and five frequency
scales is shown.

Texture sample representation
Here we show how to use the frequency information
obtained via Gabor wavelets to form features that
fully represents the given texture sample.

 mn=∬
x y
∣I x , y ∣dx dy (9)

mn=∬
x y

 ∣I  x , y ∣−mn
2
dx dy

(10)

where symbols mn and mn denotes mean and
standard deviation of frequency responses to Gabor
filters, respectively.
For the further refinement of the given
metallographic samples we used a circular ratio, as
we have to split square samples and circular ones.
The circular ratio is defined as

Figure 1: Sample Gabor filter bank for M=5 and
N=4.

GraVisMa 2010 Communication Papers

- 90 -

C=
AR

AB
, (11)

where AR is area of the whole (segmented) sample
and AB is area within the bounding box,
respectively. The value of C will be close to 1 for
rectangular shapes and less than 1 for any other
shapes. Since we have only rectangular and circular
samples, we use only one feature for the shape
description of the analyzed sample.

3. SIMILARITY MEASURING
The goal of the similarity measurement is to find
similar samples, which are described by the feature
vector defined in Section 2.
For similarity measurement three types of measure
were studied. We used a standard cosine similarity
defined as

=
x⋅y

∥x∥∥y∥
, (12)

which describes an angle between vectors x and y. A
small angle mean vectors are close (“similar”) to each
other.
The distance between two responses to Gabor filter is
defined as

 d mni , j =mn
i −mn

j 2mn
i −mn

j 2 . (13)

The distance between two feature vectors is defined
as a sum of all responses to the Gabor filter,

D i , j=∑
m
∑

n
d mn i , j . (14)

We also studied an effect of the dimension reduction
on accuracy of the measurement.
For this task the Singular value decomposition (SVD)
was used. SVD is defined as

 A=U V T (15)

where A is a document matrix, U and V are matrices
having reduced document and keyword dimension
respectively and  is a diagonal matrix with
singular values. This kind of dimension reduction is
also used for the latent semantic indexing (LSI).
Details of LSI and SVD could be found in [Lars00a].
A dimension reduction has several positive affects on
the original document matrix. It reduces amount of
information needed for image descriptors. Moreover,
it is used for automated noise reduction [Praks08b].

4. RESULTS
For our experiments we build two training databases
both having unique texture samples that represents
typical members of all metallographic images in our
data set. These two databases have 3 and 5 distinct
textures for each type of data.
For experiments we compared results of all three
similarity measurement methods described in the
previous section.
The query database was constructed from 42 different
samples. Some samples were chosen to be the same
as in the training database for verification.
Results for both training databases are shown in
Table 1. For example, when the cosine similarity is
used, there was only one image retrieval failure in 42
retrieved cases, which gives us the probability of
incorrect retrieval 1/42 ~ 2.4 %. Some visual results
are presented in Figure 3 and Table 2. In order to
achieve well arranged results, only the most
significant images are presented. Image retrieval
results are presented by decreasing order of
similarity. The query image is situated in the upper
left corner. The similarity of the query image and the
retrieved image is also presented. In order to achieve
well arranged results, only 7 most visually similar
images are presented.

training set lsi cosine tex. dist.

3 28,5% 2,4% 31%

5 12% 2,4% 35,7%

Table 1: Results for similarity measure – probability
of incorrect retrieval.

Our experiments show that all three methods prove to
be successful in detecting similar samples, but each
of them has advantages and disadvantages.

Figure 2: Example of two different textures of
metallographic samples: carbonic (left) and alloyed
(right).

GraVisMa 2010 Communication Papers

- 91 -

The cosine similarity is the most accurate and robust
to training set size, but is sensitive to noise in the
texture data.
The texture distance is relatively stable towards the
size of the training data and seems to be less sensitive
to noise.
LSI shows to have worse results for training set of
size 3 and better size 5. This is not unexpected result.
LSI in its nature reduces the number of required data
needed for the object representation. This principle
works well for large sets of data, but it is irrelevant
for small data sets. This will result in removing
information needed for the successful classification
of the texture sample. For small data-sets, it is very
difficult to distinguish the signal-to-noise ratio.

Image Similarity

SCK60U9.jpg 1

SCK60U14.jpg 1

SCK60U36.jpg 1

SDK53M29.jpg 0.9998

Table 2: An example of image retrieval results by the
Gabor filter without LSI.

Figure 3: An example of LSI image retrieval results by
the Gabor filter.

5. Conclusions
The objective of this research is visual monitoring of
properties of various steels in the steel plant. The

experimental digital images of metallography samples
have been provided by the company ArcelorMittal
Ostrava plc (Ostrava, Czech Republic).

In this paper, we presented an industrial application
of the Gabor filter for texture retrieval of
metallographic macro-structures. It is a combination
of the Gabor filter representation with image retrieval
by LSI, which was applied in a real industrial
environment. The first results prove high
performance of the image retrieval results. Our
results indicate that the Gabor filter method can
automatically recognize the shape (square vs. round)
and the type of images found in our image database
(alloyed vs. carbonic samples). The shapes of
samples were recognized in all case without any
problems. For the texture retrieval, the probability of
the recognition error for alloyed vs. carbonic samples
is only 2,4% for the cosine similarity measure. The
here presented image retrieval results are very
consistent with the human expert opinion [Praks08a].
In the future, it would be interesting to detect, extract
and analyze detailed metallurgical relations in
images, which are hidden in the digital image
database of metallographic samples.

ACKNOWLEDGMENTS
This work was supported by the project FR—TI1/432
of the Ministry of Industry and Trade of the Czech
Republic.

REFERENCES
[Fraz00a] Michael W. Frazier, An Introduction To Wavelets through linear

algebra, Springer 1999

[Kruz00a] S.E. Grigorescu, N. Petkov and P. Kruizinga (2002) Comparison
of texture features based on Gabor filters. IEEE Trans. on Image
Processing, 11, 1160-1167

[Lars00a] L. Elden (2007) Matrix Methods in Data Mining and Pattern
Recognition. SIAM

[Man00a] B. S. Manjunath, W. Y. Ma (1996) Texture Features for Browsing
and Retrieval of Image Data. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18, 837-842

[Tai00a] T. S. Lee (1996) Image Representation Using 2D Gabor Wavelets.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 18,
959-971

[Zhan00a] D. Zhang, A. Wong, M. Indrawan and G. Lu (2000) Content-
based Image Retrieval Using Gabor Texture Features. IEEE
Transactions PAMI., 13-15

[Praks08a] P. Praks, M. Grzegorzek, R. Moravec, L. Válek, and E. Izquierdo
(2008): Wavelet and Eigen-Space Feature Extraction for Classification
of Metallography Images. Information modelling and knowledge bases
XIX. Vol. 166. pg. 190 – 199. ISBN 9781586038120

[Praks08b] Praks P., Kučera R., Izquierdo E.(2008): The sparse image
representation for automated image retrieval. ICIP 2008.
DOI:10.1109/ICIP.2008.4711682

[Zeljkovic09] Zeljkovic V., Praks P., Vincelette R., Tameze C., Valek L.,
Automatic Pattern Classification of Real Metallographic Images. 2009
IEEE Industry Applications Society Annual Meeting. Houston, TX

GraVisMa 2010 Communication Papers

- 92 -

Parallelization of a method for detecting non-
stationary photometric perturbations in projection

screens with CUDA

Antonio Díaz-Tula
Departamento de Ciencia de la

Computación
Universidad de Oriente

Ave. Patricio Lumumba, 9500
Santiago de Cuba, Cuba

diaztula1@gmail.com

Miguel Castañeda-Garay
Departamento de Ciencia de la

Computación
Universidad de Oriente

Ave. Patricio Lumumba, 9500
Santiago de Cuba, Cuba
mcgaray_cu@yahoo.es

Óscar Belmonte-Fernández
Departamento de Ingeniería y
Cienca de los Computadores

Universitat Jaume I, Spain
Oscar.Belmonte@lsi.uji.es

ABSTRACT
 The human-computer interaction using large projection screens is gaining more space nowadays. For these
screens several computer vision techniques have been developed that allow the user to interact with the system
through the projected images using laser pointers, special pens and the hands. On this work is presented the
parallelization of a method for the real-time detection of non-stationary photometric perturbations in projection
screens using the Computed Unified Device Architecture, in order to overcome the elevated running time of the
serialized implementation on CPU. A comparison of the results is presented to establish the acceleration of the
parallel algorithm against its original version on CPU.

Keywords
parallelization, photometric perturbation, projection screens, CUDA.

1. INTRODUCTION
High definition projection screens are gaining more
space each day. Such screens are boosting the
presence of multiple spectators, detailed model
visualization, immersion sense and the creation of a
natural environment of interactive collaboration
between multiple users.
As a consequence, several computer vision
techniques are being developed that allow users to
interact with the system through projected images
using laser pointers [Kirs98a], special pens
[LaRo03a] and the hands [Koik01].
In [Mig09a] a local method for the real-time
detection of non-stationary photometric perturbations
in projected images was presented from
modifications performed to the global method
presented in [Jay04a] for the detection and removal
of shadows in projected images.

The new method is based on computing the
differences between the images of a projector frame
buffer and the corresponding projected image
captured by a camera. To carry out this comparison,
a previous process of geometric and photometric
calibration between the projector, the camera and the
screen is needed.
To test this method a system prototype that uses a
camera/projector pair was implemented, and it
proved to be very robust when facing spatial
variations of the projector’s light intensity over the
projection surface and the incidence on this surface
of external locally-stationary factors.
But in the experimentation only about ten images per
second were processed using a Core 2 Duo (2.66
GHz) processor, a NVIDIA GeForce 8400 GS GPU
and a Logitech 9000 Pro Webcam, with a latency
time of 95 milliseconds. This phenomenon cause
visible differences of inaccuracy when detecting
perturbations whose positions move across the screen
[Mig09a].
Two main reasons were identified: the serial
execution on CPU, and the latency time in the
VRAM- to-RAM transfer of the projector frame
buffer.
The method proposed in [Mig09a] is parallelizable as
the information processing in several parts of the
computation follows the Single Instruction Multiple
Data (SIMD) model [Flynn72a].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2010 Communication Papers

- 93 -

The latency time is introduced during the copy of the
projector frame buffer from VRAM to conventional
RAM for the estimation process.
The Computed Unified Device Architecture (CUDA)
gives the possibility to exploit the enormous parallel
computing capabilities of the NVIDIA’s Graphics
Processing Unit (GPU), when applied to general
purpose problems, as long as those problems are
parallelizable by the SIMD model.
CUDA gives a subset of the C language to write
kernels that run in parallel on GPU as a hierarchy of
threads groups, with very low control and schedule
overhead, fast barrier synchronization and shared
memory usage [CUD09].
This makes CUDA a suitable technology to improve
the running time of the method proposed in [Mig09a]
,because of two main reasons: it provides a powerful
SIMD programming environment, and its global
memory is located at VRAM as well as the projector
frame buffer, that would decrease the latency time.
In this work is presented the parallelization of the
local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens using CUDA.
The remainder of the content is structured as follows:
section 2 gives a brief summary of the local method
presented in [Mig09a] for the real-time detection of
non-stationary photometric perturbations in
projection screens; section 3 covers the
parallelization of the previously mentioned method
and finally, section 4 shows the results.

2. SUMMARY ON THE LOCAL
METHOD FOR DETECTING
PHOTOMETRIC PERTURBATIONS
The local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens is based on the
comparison of two images: one of them represents
the real image captured by the camera of the

projected image (the camera image), and the other
one is the image that “should” be captured by the
camera (the estimated image).
Roughly speaking, if there were no lights or any
other phenomena interfering with the projection
process, the camera image and the estimated image
should be very similar. Otherwise, these images must
present differences in the regions where such
perturbations are influenced.
To make a correspondence between the coordinates
of the camera image, the projection surface image
and projector frame buffer image, a geometric
calibration process is needed, thus obtaining
transference functions for the coordinate systems of
such images. For the geometric calibration, the
planar homography method described in [Suk01a]
was used.
In the method presented in [Mig09a] the projector
frame buffer resolution is higher than the camera
resolution, which implies that a set of closely located
pixels at the projector frame buffer are captured by
the camera as a single pixel.
For this reason, the projector frame buffer is
conceived as a matrix of rectangular regions, whose
intersection is null and whose joint is equal to the
buffer.. This partition is performed in order to obtain
a matrix with a row and column number equal to the
camera resolution, which in turn is the given
resolution to the estimated image.
For each region of the projector frame buffer there is
a single corresponding point in the estimated image.
In turn, for each point of the estimated image there is
a single corresponding point in the camera image, but
for a given point in the camera image there may exist
0, 1 or more points in the estimated image (see Fig.
1).
To homogenize the color range of both the camera
image and the estimated image a process of
photometric calibration is needed.

Figure 1 Correspondence between a region in the projector frame buffer, a point in the estimated image and a

point in the camera image.

GraVisMa 2010 Communication Papers

- 94 -

The photometric calibration process is established to
make a correspondence between the color range of
the camera image, the projection surface image and
the projector frame buffer image.
This calibration is needed because the projector
frame buffer image and the camera-captured image
have different photometric ranges due to several
internal and external factors such as: differences in
the color spaces and brightness level between the
projector and the camera; the location of the
projector with respect to the camera, which cause
brightness variations according to its position; the
influence of the environmental light over the screen;
the camera’s internal features, as well as the
adjustment of its intrinsic and extrinsic parameters;
the existence of spots or irregularities on the
projection surface, among others [Mig09a].
To perform this calibration, a model that produces
transference functions between color spaces was
used; those functions allow estimating the image that
the camera should grab from the image of the frame
buffer. For each region in the frame buffer such
functions are obtained, one for each RBG color
component. It differs from the method presented in
[Jay04a] where the transference functions are
obtained for the entire screen (global) and not for
each region.
The color transference functions are previously
evaluated for every possible value of each color
component for each region of the frame buffer, and
the results are stored in three-dimensional tables in
order to avoid revaluating these functions each time
during the estimation process.
Thus, the photometric calibration of each region in
the frame buffer is given by three three-dimensional
tables, one for each color component:
byte [camHeight][camWidth][64] redTable
byte [camHeight][camWidth][64] greenTable
byte [camHeight][camWidth][64] blueTable
To obtain the color components for a pixel in the
estimated image, the average of the estimated color
components for all the pixels in the frame buffer that
belong to the corresponding region for the estimated
pixel is computed.
Given a pixel in the frame buffer with coordinates
(x, y) and color components red, green and blue, its
corresponding coordinates in the estimated image are
(regX(x), regY(y)) and the estimated values are:
estRed = redTable [regX(x)] [regY(y)][red /4]
estGreen=greenTable[regX(x)][regY(y)][green/4]
estBlue=blueTable [regX(x)] [regY(y)][blue /4]

The function regX(x) gives the row of the estimated
image that correspond to the pixel with row x in the

frame buffer; the function regY(y) gives the column
of the estimated image that correspond to the pixel
with column y in the frame buffer.
The value of each color component is divided by 4 in
order to reduce the amount of memory needed to
store the tables of each region of the frame buffer.
The sequence of steps to detect the photometric
perturbations is stated as follows:
1. Obtain the image of the projector frame buffer

(in RGB format) in the variable frameBuffer.
2. For each pixel in this image with coordinates

(x, y) obtain the coordinates (x’, y’) where
x’=regX(x) y y’=regY(y), then for the color
components red, green and blue of
frameBuffer[x][y] compute the estimated values
by querying the entry
colorTable[x’][y’][color/4]. Given that for
several pixels in frameBuffer the same
coordinates (x’, y’) will be obtained (for all that
belong to the same region), the average must be
computed for each color component.

3. Compare each pixel in the estimated image with
its corresponding pixel in the camera image for
each color component; if the difference between
two values is greater than a given threshold, then
a possible photometric perturbation may exist.

3. PARALLELIZATION OF THE
LOCAL METHOD FOR DETECTING
PHOTOMETRIC PERTURBATIONS
The first step is to copy the projector frame buffer to
be processed with CUDA. One objective is to avoid
the transference of this buffer to the RAM.

Reading the projector frame buffer for its
processing with CUDA
It can be consulted in various CUDA SDK examples,
that it is possible to write parallel algorithms to post-
process the frame buffer of a window through the
CUDA’s interoperability with OpenGL. As described
in [CUD09], OpenGL buffer objects can be mapped
with CUDA to be accessed from the kernels.
In our problem we need to read the entire projector
frame buffer, that is, the “Desktop”. Whereas
OpenGL does not provide any functions to create
rendering contexts, this must be done using the
underlying operating system’s API (hence, loosing
portability that way). The method was implemented
for the Microsoft Windows XP operating system.
To carry out the reading of the projector frame buffer
we follow these steps:

GraVisMa 2010 Communication Papers

- 95 -

 Create a top-level, layered window that covers
the entire Windows’s desktop; this window will
be invisible.

 Create a hardware-accelerated OpenGL
rendering context associated with this window
and make it current.

 Create a Pixel Buffer Object (PBO) with enough
memory to store the entire projector frame buffer
(this is related to the screen size and color
depth). The PBO memory is usually allocated in
VRAM and controlled by OpenGL.

 Use the OpenGL’s function glBindBuffer to link
our PBO to the reading operations over the
frame buffer.

 Use the OpenGL’s function glReadPixels to
perform the copy of the frame buffer to the PBO.

Then we just need to use the CUDA’s API function
cudaGLMapBufferObject to map the PBO and its
content is ready to be accesed from CUDA’s
threads.

Parallelization of the estimation and
compare algorithms
3.2.1 Estimation algorithm in CPU.
The estimation algorithm takes as input the projector
frame buffer, the color tables of each region in this
buffer, the dimensions of the estimated image and the
projector frame buffer, and returns the estimated
image, that is, the image that the camera should
capture at exactly that moment.
The estimation algorithm in CPU is as follows:
Remark: All the coordinates are row major order.
Input: Projector frame buffer, dimensions of the
frame buffer and the estimated image, color tables of
all the regions in the projector frame buffer.
Output: Estimated image.
Step 1. Initialize the estimated image with 0.
Step 2. For each pixel in frameBuffer with

coordinates (i, j) do steps 3 to 7:
Step 3. Compute the region to which belongs the

pixel (i, j) in the estimated image:
i’=i*cammeraHeight /frameBufferHeight
j’=j*cammeraWidth /frameBufferWidth

Step 4. Obtain the pixel’s color components:
red = frameBuffer[i][j] & 0x000000FF
green=(frameBuffer[i][j] & 0x0000FF00)>>8
blue =(frameBuffer[i][j] & 0x00FF0000)>>16

Step 5. Compute the estimated color components:
estRed = redTable [i’][j’][red /4]
estGreen = greenTable[i’][j’][green /4]

estBlue = blueTable [i’][j’][blue /4]
Step 6. Add the estimated values to the

corresponding pixel in the estimated image:
redEstimImg [i’][j’] += red
greenEstimImg [i’][j’] += green
blueEstimImg [i’][j’] += blue

Step 7. Increase the count of pixels from
frameBuffer that belong to the computed region:

regionCount[i’][j’]++
Step 8. For each pixel in the estimated image with

coordinates (i’,j’) divide by the pixel count for
each color component:

redEstim [i’][j’] /= regionCount[i’][j’]
greenEstim[i’][j’] /= regionCount[i’][j’]
blueEstim [i’][j’] /= regionCount[i’][j’]

Algorithm 1. Estimation algorithm in CPU.

3.2.2 Decomposition of the algorithm.
As can be easily seen, the same steps repeat over
different data, this allows a data parallelism over a
shared address space [Gra03a].
We used the output data decomposition technique,
where each output element can be independently
computed as a function of the input. The value of
each pixel in the estimated image (output) depends
only on the corresponding frame buffer’s region and
its color tables (input).
This partition leads to the definition of a task as
computing a pixel in the estimated image. The
number of tasks is equal to the product of the
estimated image’s width and height. For example,
76800 tasks are obtained from a resolution of
320x240. This decomposition can be classified as
fine texture according to its granularity. Figure 2
gives us a graphical scheme of the parallel algorithm.
Still an issue must be analyzed: all the regions of the
frame buffer do not have the same size, i.e., the rows
and columns number may be different for two or
more regions. This may influence in the performance
of the algorithm when the threads of the same warp
diverge in their execution paths.
But there are several reasons in favor of this
approach:
(i) There is uniformity in the sense that each thread

computes exactly a pixel of the estimated
image, thus being unnecessary any
communication and synchronization
mechanisms between threads.

(ii) Each thread will write on a single pixel in the
estimated image, so there is no need to use
atomic instructions (available only for
computing capabilities 1.1 or above).

GraVisMa 2010 Communication Papers

- 96 -

Figure 2. Scheme of the estimation algorithm if GPU.

3.2.3 Determining the execution
configuration.
When data decomposition is applied to a problem,
generally the task mapping is static [Gra03a], where
the tasks are distributed among the available
processors before the algorithm execution.
Our problem adjusts to a Blocks Distribution Scheme
[Gra03a], where the resulting matrix (the estimated
image) is divided in areas of k1 columns and k2 rows,
so that each thread must compute all the estimated
pixels of a given area.
CUDA’s threads are organized in a hierarchy of one-
dimensional, bi-dimensional or three-dimensional
thread blocks; those in turn are organized in a one-
dimensional or bi-dimensional grid of blocks.
The GPU have a number of multiprocessors, and
each multiprocessor have eight streaming processors.
When the CPU launches the execution of a grid, its
blocks are enumerated and distributed to the
available multiprocessors. When a multiprocessor
finishes the execution of a block, it gets assigned
another non-executed block. This execution model is
scalable, so we can define any number of threads
without worrying about the number of
multiprocessors.
When the number of thread blocks increases to a
large amount, GPUs with a few multiprocessors will
not be favored, as plenty of time will be used in
distributing the non-executed blocks to the
multiprocessors as they become available, and this
time may be significant against the running time of
each block.
For that reason the value of k1 and k2 must be
obtained so each thread computes an area of k1 x k2
pixels of the estimated image. These values can be
adjusted depending on the number of available
multiprocessors, thus giving more scalability to the
implementation.

The thread blocks are set to be bi-dimensional and
have 16x16 = 256 threads, a value that is
recommended in [CUD09] to obtain a good
performance. The blocks grid is also bi-dimensional
and it size will be:
grid.x = ceil(cameraWidth / 16* k1)
grid.y = ceil(cameraHeight / 16* k2)
For instance, if we want a maximum number of 512
blocks per multiprocessor we proceed as follows:

11 *16
)

*16
(

k
hcameraWidt

k
hcameraWidtceil 

22 *16
)

*16
(

k
htcameraHeig

k
htcameraHeigceil 

512
***256

*

21


mpCountkk

htcameraHeighcameraWidt

mpCountk
htcameraHeighcameraWidtk

**131072
*

1
2 

It is desirable that k1 be a divisor of cameraWidth
and k2 be a divisor of cameraHeight, because, then
the number of pixels to estimate is uniformly
distributed among all threads.
Table 1 shows some possible execution
configurations.
Camera
resolution

Multiprocessor
s (MPs) count

k1 k2 Blocks per
MPs

320x240 2 1 1 150
800x600 2 1 2 469
1024x768 2 1 3 512

Table 1. Execution configurations for different
camera resolution and multiprocessors count.

GraVisMa 2010 Communication Papers

- 97 -

3.2.4 Parallel estimation and compare
algorithms.
We expose next the parallel estimation algorithm:
Remark: All the coordinates are row major order.
Input: Initial coordinates of the estimated image area
that the thread will compute, values of k1 and k2,
color tables and projector frame buffer regions of the
estimation area. Size of the projector frame buffer
and the estimated image.
Output: Corresponding area of the estimated image.
Step 1. For each pixel in the estimated image area

with coordinates (i’, j’) do steps 2 to 8:
Step 2. Initialize redSum, greenSum and blueSum

with zero.
Step 3. Compute in pixelCount the number of pixels

in the corresponding projector frame buffer
region.

Step 4. For each pixel in the corresponding
frameBuffer region with coordinates (i, j) do
steps 5 to 7:

Step 5. Obtain the color components of the pixel
from frameBuffer:

red = frameBuffer[i][j]& 0x000000FF
green =(frameBuffer[i][j]& 0x0000FF00)>>8
blue =(frameBuffer[i][j] & 0x00FF0000)>>16

Step 6. Compute the estimated values for each color
component:

estRed = redTable [i’][j’][red /4]
estGreen = greenTable[i’][j’][green /4]
estBlue = blueTable [i’][j’][blue /4]

Step 7. Add the estimated values:
redSum [i’][j’] += estRed
greenSum[i’][j’] += estGreen
blueSum [i’][j’] += estBlue

Step 8. Write the averaged results in the estimated
image:

redEstimImg [i’][j’]= redSum/pixelCount
greenEstimImg[i’][j’]=greenSum/pixelCount
blueEstimImg [i’][j’]= blueSum/pixelCount
Algorithm 2. Parallel estimation algorithm in GPU.

The algorithm for comparing the images was also
parallelized. The same execution configuration that
was previously exposed is use for this algorithm.
The parallel version of the compare algorithm
introduces some execution overhead, since the
camera image must be copied to the CUDA’s global
memory to perform the comparison with the
estimated image (that already is at global memory).
Next we expose the parallel compare algorithm:

Remark: All the coordinates are row major order.
Input: Initial coordinates of the estimated image area
and the camera image area that the thread will
compare, values of k1 and k2, size of the images.
Output: Binary matrix area with 1 in the pixels where
a photometric perturbation may exists.
Step 1. For each pixel in the estimated image area

and the camera area with coordinates (i, j) do
steps 2 to 3:

Step 2. Compute the differences between color
components:

red= abs(redEstimImg [i][j] – redCamera [i][j])
green = abs(greenEstimImg[i][j] – greenCamera[i][j])

blue=abs(blueEstimImg[i][j] – blueCamera [i][j])
Step 3. Compare and write the results in the output

matrix:
outImg[i][j]=(red>redThreshold||
green>greenThreshold || blue>blueThreshold)?1:0
Algorithm 3. Parallel compare algorithm in GPU.

Some implementation details.
3.3.1 Execution phases.
The process of working with the GPU was divided in
three main phases:
o Initialization phase: the necessary memory is
allocated in CUDA and in the host, the color tables
for each region are copied to CUDA’s global
memory, several constants are initialized and the
execution configuration for the algorithms is
determined.
o Execution phase: the parallel algorithms are
invoked. The normal order should be:

Estimation algorithm, requires no transference
between the host and the device.
Compare algorithm, requires two transferences
between host and device: receives the camera
image, and return the resulting binary matrix.
There is some relaxation in the sense that both the
estimation algorithm and the compare algorithm
can be called more than once repeatedly, although
if the compare algorithm is called before any call
to the estimation algorithm then the results are
inconsistent.

o Termination phase: all resources are released
from the GPU and CPU, and the working session
with CUDA is closed.

GraVisMa 2010 Communication Papers

- 98 -

3.3.2 Use of shared memory.
Global memory accesses are less time-expensive
while less memory transactions are require. If all
threads in a half-warp (0 to 15 or 16 to 31) follow a
memory access pattern (which differs according to
the computing capability) then the memory accesses
can be coalesced and only a few (one or two)
memory transactions are required, thus improving
performance.
Due to the nature of our problem, when the threads
of a half-warp accesses its color tables to estimate a
color, say the red, each can have access to any of 64
bytes, so the total area they can address is
64*16=1024 bytes, and one of the requirements for
coalescence is that all the threads in the half-warp
accesses an aligned memory segment having at most
128 bytes [CUD09] for computing capabilities 1.2 or
above. For computing capabilities 1.0 and 1.1 the
coalescence requirement are stricter, so no
coalescence will be met for any computing
capabilities.
Two choices are available: the use texture fetches or
shared memory; we chose the second one since it is
possible to obtain a bank-conflicts free distribution
with a probability of 1/16 that the desired value exists
in shared memory for each thread and each color
component.
As the blocks have 16x16 threads, we define a matrix
of shared memory with the same size for each color
component, which totalize (256 threads)*(4 bytes)*
(3 colors) = 3 Kb of shared memory per block. This

low value allows for several active blocks per
multiprocessor, improving the overall performance.
Figure 3 gives an idea of the use of shared memory
in the estimation algorithm.
This distribution is bank-conflicts free. Table 2
shows the distribution of each word of shared
memory to the banks of shared memory.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

…

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 2. Distribution of each word of shared memory
in a 16x16 word matrix to the banks.

The number inside each cell represents the bank of
shared memory on which the 32-bit word of shared
memory is located. As can be seen, all threads of
each half-warp own a word of shared memory that
lies in a distinct bank, thus avoiding bank conflicts.
This shared memory size per thread gives the
possibility to estimate up to 16 different values per
color component without accessing the global
memory, because 256/4 = 64 entries in the color
table, divided by 4 bytes on each shared memory
word = 16 values.
It should also be considered that it’s not likely that
there exist many sudden variations of color in an
image, because generally the changes of colors are
softened and progressive.

Figure 3. Use of shared memory.

GraVisMa 2010 Communication Papers

- 99 -

EXPERIMENTATION AND RESULTS
To evaluate the parallel implementation of the local
method presented in [Mig09a] for the real-time
detection of non-stationary photometric
perturbations in projection screens some
experimentation was made.
The parallel algorithms were integrated to an
existing system prototype implemented in Java
through the Java Native Interface (JNI). A little
effort was needed to make the system call either,
the existing serial implementation on CPU or the
new parallel implementation with CUDA.
The experimentation was carried out in a Core 2
Duo processor at 2.66 MHz and a GeForce 8400
GS GPU (having two multiprocessors). The screen
resolution was 1024x768 and the camera resolution
was 320x240, both with 32 bit color in RGB
format. The development environment for the
experiment was NetBeans IDE 6.5 over Microsoft
Windows XP SP2, and the version of CUDA 2.2.
Table 3 shows the results of running both the serial
and parallel algorithms in the system prototype. For
the parallel algorithms, experimentation was made
both using shared memory and not using shared
memory.
As can be seen, without using shared memory a
speedup of 1.7x was achieved, in contrast with the
higher 2.8x speedup obtained when using shared
memory.

Se
ria

l
im

pl
em

en
ta

tio
n

Pa
ra

lle
l

im
pl

em
en

ta
tio

n

Pa
ra

lle
l

im
pl

em
en

ta
tio

n
(w

ith
ou

t u
si

ng

sh
ar

ed

m
em

or
y)

Latency
time

95 ms 35 ms 57 ms

Averag
e FPS

10 28 17

 Table 3. Experimentation results.

The number of concurrent threads per iteration in
the parallel implementation is equal to 320x240 =
76800 for the estimation algorithm, plus 76800 for
the compare algorithm, making a total of 153600
threads.

CONCLUSIONS
In this work, it was presented the parallelization of
the local method presented in [Mig09a] for the real-
time detection of non-stationary photometric
perturbations in projection screens using the
Computed Unified Device Architecture.

The implementation requires neither
communication nor synchronization between
threads. It is also designed to be scalable and
compatible with computing capabilities 1.0 or
above, and a bank conflicts free access to shared
memory is used in order to improve performance,
obtaining a speedup of 2.8x in the experimentation.
Still some other optimizations may be introduced to
the implementation in the future for trying to
achieve better results.

REFERENCES
[CUD09] NVIDIA CUDATM Programming Guide

2.2, 2009 NVIDIA Corporation.
[Flynn72a] Flynn, M. J.: Some Computer

Organizations and Their Effectiveness”, IEEE
Transactions on Computers, vol. C-21, Sept.
1972.

[Gra03a] Grama, A., Karypis G. et al., Introduction
to parallel computing, Addison-Wesley, 2003.

[Jay04a] JAYNES C., WEBB S., STEELE M.:
Camera-based detection and removal of
shadows from interactive multiprojector
displays. IEEE Transactions on Visualization
and Computer Graphics 10, 3 (2004).

[Kirs98a] Kirstein, C., Muller, H.: Interaction with
a projection screen using a camera-tracked laser
pointer. In: Proceedings of the International
Conference on Multimedia Modeling. IEEE
Computer Society Press (1998).

[Koik01] Koike, H., Sato, Y., Kobayashi, Y.:
Integrating paper and digital information on
EnhancedDesk: a method for real-time finger
tracking on augmented desk system. In: ACM
Trans. On CHI, 8 (4), pp. 307--322 (2001).

[LaRo03a] La Rosa, F., Costanzo, C, Lannizzotto,
G.: VisualPen: A Physical Interface for natural
human-computer interaction. In: Physical
Interaction (PI03) – Workshop on Real World
User Interfaces. 2003.

 [Mig09a] Castañeda-Garay, M., Belmonte-
Fernández, O., Gil-Altaba, J., Pérez-Rosés, H.,
Un Método para la Detección en Tiempo Real
de Perturbaciones Fotométricas en Imágenes
Proyectadas, Congreso Español de Informática
Gráfica CEIG’09, San Sebastian, Sept. 9-11
(2009), Páginas 239-242. The Eurographics
Digital Library, http://diglib.eg.org.

 [Suk01a] Sukthankar, R., Stockton, R.G., Mullin,
M.D.: Smarter presentation: Exploiting
homography in camera-projector systems. In:
Proceedings of International Conference on
Computer Vision, pp 247--253. Vancouver,
Canada, July 9-12 (2001)

GraVisMa 2010 Communication Papers

- 100 -

Rendering Pipeline Modelled by Category Theory

Jiří Havel
Faculty of Information Technology

Brno University of Technology
ihavel@fit.vutbr.cz

Adam Herout
Faculty of Information Technology

Brno University of Technology
herout@fit.vutbr.cz

ABSTRACT

This paper describes basic concepts from category theory, which are commonly used in functional programming. These con-
cepts are applied to shader programming and to the renderingpipeline and the whole rendering pipeline is formally modelled
using category theory. This model can be used for more abstract and formal approach to shader programming. Mathemat-
ical formalization of the rendering pipeline and its stagescan be helpful in shader compiler design, for proving algorithms,
complexity analysis, and other tasks.

Keywords: Rendering, Shaders, Category Theory

1 INTRODUCTION
Category theory [Wal92, ML71] is an abstraction of
mathematical structures and relations between them. It
started as a "generic abstract nonsense", but now it is
heavily used not only in mathematics, but also in com-
puter science and especially functional programming.
Many categorical concepts give rise to common pieces
of code used to combine computations together. >From
these abstractions, especially functors and monads are
almost ubiquitous [Mog89].

Although the rendering pipeline is programmable, its
overall structure is basically fixed. The design of pro-
gramming languages for shader programming perfectly
corresponds to the structure. Some experimental shad-
ing languages tried to offer a slightly more abstract
way. Two notable examples are the Gpipe1 library for
Haskell and Sh [MQP02, MDTP+04] for C++. Both
are, however, limited to OpenGL 2 or DirectX 8 func-
tionality.

The Sh library views shaders as objects, that can be
combined using two operations – serial and parallel
composition. These two operations, however, perfectly
correspond to a category with products, which will be
described in the next section.

The GPipe library achives the same functionality by
a different approach. It operates on streams of primi-
tives and transforms them by series of functions – using
functors from the category theory.

Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted
without fee provided that copies are not made or dis-
tributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

1 http://www.haskell.org/haskellwiki/GPipe

The rest of the paper will discuss correspondences
between those approaches. Section 2 will introduce a
category-based model of the rendering pipeline stages
and extend programming of pipeline stages to a descrip-
tion of the whole pipeline. Section 3 will raise the ab-
straction of the pipeline description to a composition of
stream transformers. Section 4 summarizes the intro-
duced categories as a model of the rendering pipeline.

2 CATEGORY WITH STREAMS
A category (C) consists of a set of objects (objC) and
a set of arrows or morphisms (arrC) that link these
objects. An arrowf : A → B has a domainA and a
codomainB from objC. The set of arrows fromA to B
is denoted as HomC(A,B). Arrows must be composable
(1a), every object must have one identity arrow (1b)
(1c) and arrow composition must be associative (1d).

∀ f : A → B,g : B →C ∃(g ◦ f) : A →C (1a)

∀O ∈ obj C ∃1O : O → O (1b)

∀ f : A → B,1B ◦ f = f ◦1A = f (1c)

h ◦ (g ◦ f) = (h ◦ g)◦ f (1d)

A classical example is the categorySet, whose objects
are sets and arrows are mappings between those sets.

N-ary functions and tuples are modelled using prod-
ucts – composite objects. ProductP is an object con-
sisting of objectsOi, i = 0, . . .N with projection arrows
(pi : P → Oi) that extract its member objects. For ev-
ery objectZ that has arrowsai : Z → Oi to all members
of P, exactly one arrowaP to the product exists, such
thatai = pi ◦aP, see Figure 1. An exaple of the product
type can be the structure data type, that is a product of
its elements. When describing function, the arrowaP is
a combination of functions returning the elements of a
structure to a function returing the whole structure.

Let us define a category of GPU programs called
Gpu. Objects of Gpu are basic and structured
datatypes of graphical shaders and arrows are func-
tions (both built-in and composite). Both structured

GraVisMa 2010 Communication Papers

- 101 -

Figure 1: Product in a category

datatypes (structure and array) fullfil the requirement
for product types2 as do the basic vector types. With
streams from the following subsection, every possible
shader will be an arrow inGpu.

2.1 Streams are Functors
Functor is a structure-preserving mapping be-
tween categories. FunctorF : A → B be-
tween categoriesA and B consists of a map-
ping Fobj : obj A → obj B and mappingss
FA1,A2 : HomA(A1,A2) → HomB(Fobj(A1),Fobj(A2)) for
every pair of objectsA1, A2 from A. Functors must
also preserve arrow composition and identity arrows.

Homogenous abstract data types like lists, stacks, or
queues are constructed by functors. TheFobj creates
structured types from the basic ones. The mappings for
arrows convert simple arrows to arrows working with
new types – usually doing the same for every element
of the new type. In functional programming, this fam-
ily of mappings is denoted bymap. map : (X → Y) →
(F(X) → F(Y)), whereF is a functor, i.e., for a given
arrow on the simple data type,map defines the corre-
sponding arrow on the structured data type.

In shader programming, one abstract data type is
ubiquitous – the stream of values (vertices, primitives,
fragments). It is a sequence of elements, that is,
however, never handled directly, but implicitly by the
streaming nature of the rendering pipeline. Stream
types in the categoryGpu are constructed using a
functor Stream : Gpu → Gpu. This functor creates
streams of elements of any basic type (and recursively
streams of streams). For everyX andY from objGpu,
the mapping for arrows is simply defined as

map : (X → Y) → (Stream(X)→ Stream(Y))

map(f)(x1, . . . ,xn) = (f (x1), . . . , f (xn)).

The mappingmap(f) transforms every stream element
by the functionf , see Figure 2.

Streams are not the only functors in the category
Gpu, but arrays and basic vector types are functors as
well. For these data types,map works similarly to its
stream counterpart.

2 Objects like sums (discriminated unions) or exponentials (partially
applied functions) are hard to express on GPU, so will not be used in
this paper.

Figure 2: Functorial transformation principle.

For categoriesA and B a categoryBA exists: the
functor category, whose objects are functors fromA to
B. Arrows of this category are callednatural transfor-
mations. For every functorF and G from BA, natu-
ral transformationφ : F → G and arrow f ∈ A, must
φ ◦F(f) = G(f)◦φ .

Natural transformations change only the structure of
an abstract data type, but the elements of the type are
left unchanged. For example, a transformation between
an array of streams and a stream of arrays is a natu-
ral transformation. Natural transformations are heavily
used in the following subsections.

2.2 Streams are Monads
Monad is a special type of functor used in functional
programming to represent computations and control
structures, to embed side effects, or model a process-
ing pipeline.

Monads in category theory is a functorF , together
with two natural transformationsη : 1C → F and µ :
F2 → F (F2 = F ◦ F). The corresponding triplet in
functional programming consists of a functorF and
mappingsunit : A → F(A) and join : F(F(A)) → F(A)
[Mog88].

Mapping unit creates the monad type from
one element and join merges two layers of
the monad to one. In the categoryGpu, the
transformation unit : X → Stream(X) creates a
stream with a single element. The transformation
join : Stream(Stream(X))→ Stream(X) joins a stream
of streams to one single stream by concatenation.

In functional programming, thebind transformation
is used more thanjoin and it better describes the prop-
erties of monads.

bind : (X → F(Y)) → (F(X) → F(Y))

bind(f) = join◦map(f)

In Gpu, the transformation bind : (X →

Stream(Y)) → (Stream(X) → Stream(Y)) uses
the provided mapping to transform a stream. The
type shows that every element of the input stream is
used to create a new stream and such new streams are
concatenated together. In other words, 0−N elements
can be created from every single input element and the
input elements are processed separately, as shown by
Figure 3.

A perfect example of monadic processing of a stream
is the geometry shader. From every primitive of the
input stream, zero or more primitives are generated and
those new streams are concatenated. Also, the fragment

GraVisMa 2010 Communication Papers

- 102 -

Figure 3: Monadic transformation schema.

shader can be described by a monad, as it can output
empty streams or streams with a single element.

2.3 Streams are Comonads

Functor and monad are sufficient to describe stream
transformers that access single elements of a stream.
For accessing multiple elements, a categorical dual to
a monad can be used – the comonad. Comonads can
represent some information in a context. In the case of
streams, the context of each element are the neighbor-
ing elements.

As dual functor to a monad, comonad is a func-
tor with two natural transformations in opposite di-
rection as the monad. These areextract : F → 1C
andduplicate : F → F2. The functional programming
forms areextract : F(X) → X andduplicate : F(X) →
F(F(X)). Mappingextract discards the context of a
value andduplicate duplicates the context for every in-
put.

Similarly to monad functionbind, comonad has its
dualextend.

extend : (F(X) → Y) → (F(X) → F(Y))

extend(f) = map(f)◦ duplicate

As the type suggests,extend can not change the el-
ement count, but contrary tobind, the output elements
depend on the context of the input elements as shown
by Figure 4.

Figure 4: Comonadic transformation schema.

In Gpu several implementations of the comonad for
streams are possible. Preceding or following elements
can form a context of a stream element – the underlying
implementation can be a delay link for example. The
actual implementation is not important for the scope of
this paper.

The primitive assembly can be viewed as a comonad
(followed by a monad); however, because of the inde-
pendence on actual stream contents, primitive assem-
bly can be also modelled as a natural transformation.
The tesselation control or hull shaders have also the
comonadic structure, although they do not operate on
stream but on array with index.

3 PIPELINE CATEGORY
The previously introduced categoryGpu mixes the
pipeline structure and the stages implementation. We
can construct a category, that models only the pipeline
structure and abstracts the actual implementation of the
stages.

For a categoryC with monadM, which contains ar-
rows of typeA → M(B),A,B ∈ obj C, exists another
categoryK,

obj K = obj C

HomK(A,B) = HomC(A,M(B))

The arrow composition inK is defined asgK ◦ fK =
bind(gC)◦ fC, so kategoryK expresses composition of
stream transformations. This category is calledKleisli
category of C.

Dual to Kleisli category, also theCoKleisli category
L for every categoryC exists, with a comonadN.

obj L = obj C

HomL(A,B) = HomL(N(A),B)

Similarly, the arrow composition inL is defined asgL ◦

fL = gC ◦ extend(fC).
For the categoryGpu, we can construct apipeline or

stream category Pipe. Objects of this category are basic
and structured shader types and arrows are functions
of type Stream(X) → Stream(Y). Arrows fall to three
groups.

• map(f), f is an arrow ofGpu without streams.

• bind(g), g is an arrow of the Kleisli category of
Gpu.

• extend(h), h is an arrow of the CoKleisli category of
Gpu.

This category provides a superset of all stream trans-
formations possible on GPU. In functional program-
ming, this kind of structure is calledArrows [Hug00,
Pat01].

From the axioms for functor, monad and comonad
[GLMP01], the following equivalences can be derived:

map(f)◦map(g) = map(f ◦ g) (2a)

map(f)◦ bind(g) = bind(map(f)◦ g) (2b)

bind(g)◦map(f) = bind(g ◦ f) (2c)

map(f)◦ extend(h) = extend(f ◦ h) (2d)

extend(h)◦map(f) = extend(g ◦map(f)) (2e)

extend(h)◦ bind(g) = map(h)◦ duplicate◦ join ◦map(g)
(2f)

bind(g)◦ extend(h) = bind(g ◦ h)◦ duplicate(x)
(2g)

GraVisMa 2010 Communication Papers

- 103 -

When applied to the shader programming, these
equations are intutive. Equation (2a) shows that two
vertex-shader-like stages can be composed to one.
Equations (2b) and (2c) show the composition of
a geometry-shader-like stage with the following or
preceding vertex shader. Equations (2d) and (2e) show
the same for a comonadic shader.

The categoryGpu has product types – tuples (struc-
tures) of basic types or streams. For arrows of type
map(f), the tuples of streams are isomorphic to streams
of tuples. Therefore, also streams of tuples have the
properties of product types. The languageSh uses these
properties for parallel composition of shaders.

When arrows of typebind(f) are considered, the
product properties are lost. As outputs of two arrows
can be differently structured, they cannot be gener-
ally merged together without mutual affection. This
limits Sh-style parallel composition capabilities to ver-
tex shader, tesselation evaluation, and fragment shader
without discard.

The stream category can contain only streams of
tuples. Because tuples inPipe are not products, the
arrows generally can not be combined in parallel.
This parallel composition is limited tofunctorial and
comonadic arrows.

4 MODEL OF THE RENDERING
PIPELINE

Randering pipeline can be described using two cate-
gories.Gpu models complete GPU functionality from
implementation of shader stages to the whole pipeline
structure. Pipeline categoryPipe models the pipeline
structure by composition of simple shaders without
considering their implementation.

The simple shaders can be classified according to
their capabilities. The pipeline stages can be classified
similarly.

• Functorial shaders change only single stream ele-
ments. The results do not depend on the context and
the stage cannot change the stream’s structure. Ex-
isting stages: Vertex shader, Tesselation evaluation
shader, Fragment shader without discard.

• Monadic shaders can expand and remove elements.
Their input is limited to one element. Existing stages
: Rasterization, Fragment shader with discard, Frag-
ment tests, Geometry shader, Hardware tesselator.

• Comonadic shaders can process the context of the
element – the input consists of several elements
(possibly the whole stream). The output is, however,
limited to one element. Existing stages : Primitive
assembly.

Using equivalences from (2), the stages can be
composed from multiple simple shaders. Functorial

stages can be composed only from functorial shaders.
The (co)monadic stages can be composed from
both (co)monadic and functorial shaders, as every
(co)monad is a functor.

Also functorial and comonadic stages can be con-
structed using parallel composition. BothSh andGPipe
use only equivalence (2a). Following equivalences can
be used to extend the model capability to cover geome-
try and tesselation shaders.

5 CONCLUSION
This paper introduced a model of the rendering pipeline
using category theory. Although the mathematics in
this paper is not novel, it is not commonly seen in
the field of computer graphics. Two categories are
defined and used:Gpu describing pipeline capabili-
ties, structure and implementation andPipe for abstact-
ing the pipeline structure and composition from simple
shaders.

The formalism introduced in this paper can be used
for classification of different shader operations and for
automatic optimization of shader programs on inter-
stage level. Notably the equivalences from equation 2
form rewrite rules for moving computations between
different stages of the rendering pipeline. However ap-
plication of these rules is not trivial. Following work
will focus on searching suitable rules, probably using
genetical algorithms.

The model is inspired by two actual shader languages
and will be used for their extension. ThePipe category
can be also possibly used to describe generic stream
processing.

ACKNOWLEDGEMENT
This work was partially supported by the BUT FIT
grant FIT-10-S-2 and by the research project “Security-
Oriented Research in Information Technology”
CEZMSMT, MSM0021630528.

REFERENCES
[1] Neil Ghani, Christoph Lüth, Federico De Marchi,

and John Power. Algebras, coalgebras, monads and
comonads, 2001.

[2] John Hughes. Generalising monads to arrows.Sci-
ence of Computer Programming, 37:67–111, May
2000.

[3] Saunders Mac Lane.Categories for the Woring
Mathematician. Springer, 1971.

[4] Michael McCool, Stefanus Du Toit, Tiberiu Popa,
Bryan Chan, and Kevin Moule. Shader algebra. In
SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers,
pages 787–795, New York, NY, USA, 2004. ACM.

[5] Michael D. McCool, Zheng Qin, and
Tiberiu S. Popa. Shader metaprogramming.
In HWWS ’02: Proceedings of the ACM

GraVisMa 2010 Communication Papers

- 104 -

SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 57–68, Aire-la-Ville,
Switzerland, Switzerland, 2002. Eurographics
Association.

[6] Eugenio Moggi. Computational lambda-calculus
and monads. pages 14–23. IEEE Computer Society
Press, 1988.

[7] Eugenio Moggi. Notions of computation and mon-
ads. Information and Computation, 93:55–92,
1989.

[8] Ross Paterson. A new notation for arrows. InInter-
national Conference on Functional Programming,
pages 229–240. ACM Press, September 2001.

[9] R. F. C. Walters.Categories and Computer Science.
Cambridge University Press, 1992.

GraVisMa 2010 Communication Papers

- 105 -

GraVisMa 2010 Communication Papers

- 106 -

Development of Human Interface Software in our
Dental Surgical System based on Mixed Reality

Hiroshi Noborio

Osaka EC University
Kiyotaki 1130-70, Shijo-nawate,

 Osaka 575-0063, Japan
nobori@noblab.osakac.ac.jp

Yoshinori Yoshida
Osaka University

Yamadaoka 1-8, Suita,
Osaka, 565-0871, Japan

y-yoshi@dent.osaka-u.ac.jp

Taiji Sohmura
Osaka University
Yamadaoka 1-8

Suita, Osaka, 565-0871, Japan
sohmurat@dent.osaka-u.ac.jp

ABSTRACT
In this paper, we develop a dental surgical system based on mixed reality, which a dental doctor can scrape a
concave tooth with complicated shape by a bar located at the tip of turbine. In this system, we represent a tooth
and a dental bar as an octree (a set of voxels) and sets of points, respectively. Based on the octree s hierarchical
structure in positioning, we quickly detect an intersection between octree-based tooth and point-based bar.
Moreover, according to the intersection set, we scrape a tooth by a bar while making force and moment. Finally,
many doctors flexibly pick up visual and tactile parameters according to a lot of their experiences. In addition,
our system automatically evaluates a student operation against a professional one by comparing their scraping
tooth shapes. For this reason, dental students can learn many kinds of surgical operations on demand via PC and
internet.

Keywords
Mixed reality system, dental surgical simulation, automatic skill evaluation.

1. INTRODUCTION
Many kinds of medical or dental surgical education
systems have been proposed [Kne03], [DA04],
[DD09], [Fra10]. In this paper, we construct a smart
but cheaper dental surgical simulation system.
Recently, an undergraduate dental student has few
chances to experience practices dental surgical
operations for patients. Therefore, the system is quite
useful for student education.

As very few similar works, we f
approach [LSM04], [HLM06a], [HLM06b]:
volumetric implicit surface is used for surface
modeling and haptic rendering while scraping. The
main defective points are as follows: (1) A virtual
tooth is roughly approximated, which is not a real
patient data captured from a practical CT scanner. (2)
Each bar and turbine are roughly expressed by
combination of bigger ball and circle pillar. This
approximation differs from real kinematic
relationship between tooth, bar, turbine which are
really used by a dental doctor in a hospital.

On these observations, we propose the other dental

surgical simulation system. First of all, all teeth data
are captured from real patients, and dental bar,
turbine, miller are captured from real dental tools by
a dental CT scanner in a hospital. Then, we convert
patient tooth and dental bar into an octree (a set of
cubes) and a set of points. Then, based on the
hierarchical structure of octree representation in
positioning, we can quickly check an intersection
volume of an octree-based tooth and a point-based
dental bar. Using the intersection volume, we
simultaneously and precisely calculate force and
moment artificially.

Our system is a mixed reality system which consists
of visual, tactile, and sound realities. Therefore, we
can learn a lot of realistic operation skills on demands.
Moreover, our system has two wonderful
characteristics as follows: (1) A doctor flexibly and
directly selects physical parameters concerning to
visual and tactile realities. Needless to say, the doctor
has many practical experiments. For this reason, our
system's realities are extremely improved. (2) This
system automatically evaluates a student's skill by a
numerical number between 0 and 100. The numerical
point is calculated by comparing two teeth deformed
by profession and beginner. Therefore, a student
himself can learn several kinds of dental operation
skills on-demand without the help of any professional
person.

In this paper, we briefly explain our dental
simulation system, models of patient teeth and dental
tools in section 2. Especially in our system, a dental

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2010 Communication Papers

- 107 -

doctor uses dental bar and mirror cooperatively. For
this reason, our system has two haptics (force
feedback devices) PHANToM OMNI. In section 3,
we explain how to improve visual reality, and then in
section 4, we explain how the doctor selects a lot of
parameters for cutting tooth. In section 5, we indicate
evaluation functions for two typical operation tasks.
Finally in section 6, we conclude this research.

2. SYSTEM STRUCTURE
In this section, we firstly describe the system
architecture of our dental surgical simulation. Then,
we explain dental turbine and mirror in our dental
surgical system. In succession, we show models of
patient teeth, dental bars, turbine, and mirror.

Architecture
The reality of our dental simulation comes from the
following three aspects [NSK*08a], [NSK*08b]. One
is a visual reality designed by the OpenGL. The
OpenGL is the most popular API for computer
graphics. Another is a sound reality which motor and
drill sounds are directly memorized by a high-quality
microphone. According to the speed of turbine, we
can hear a mixture of rotating motor and drilling
tooth, which is controlled by the OpenAL. The other
is a tactile reality made from the OpenHaptics. The
OpenHaptics, especially, HDAPI (Haptic Device
API) is the API for controlling completely a force
feedback device PHANToM provided by SensAble
Technologies Inc. Our basic software roughly
consists of three procedures such as calculating
collision check, doing interference volume, and
generating force sequence [NK10]. Each force is
always felt by the force feedback device PHANToM
OMNI based on the OpenHaptics (HDAPI).

Finally, all are combined by Microsoft Foundation
Class (MFC) as a human interface (Figures 1 and 2).
In our dental simulation system, in order to save
production cost, we use a popular PC with normal
graphics card, the cheaper haptic (force-feedback)
device. This is quite important for constructing an
educational system.

 Figure 1. Panorama of dental simulation system.

Turbine and mirror in a dental hospital
In our system, we express all dental data without
checking their intersection, for example, dental
turbine and mirror by STL. If a dentist treats a molar
tooth, he should checks its part by using the dental
mirror because he cannot observe the inner part
straightforwardly.

Figure 2. Architecture of dental simulation system.

Figure 3. Cooperative treatment of dental mirror

and bar.

Then, a dentist removes a decayed tooth by a dental
bar. This is achieved by two force feedback devises
of dental bar and mirror. By using these tools, the
dentist can act similar surgical treatments (Fig.3). For
mounting this dental mirror, we use the technique of
off screen rendering. The technique is as follows: the
picture seen from the other side of the dental mirror is
the same as the picture that is reflected in the front of
the mirror. Therefore, the camera image seen back of
the mirror is described in the dental mirror.

Various models
2.3.1 Model of tooth, turbine, and bar
In order to capture real shapes of tooth, bar, and
turbine in a dental hospital, we use a computed
tomography (CT) scan (Figures 4 and 5). It uses X-
rays so as to make detailed pictures of structures in
and around a human oral. Therefore, we can exactly
and individually capture teeth, maxilla, mandible
bone, lips, and muscles as several kinds of data
structures including STL format. The STL format is
one of standard formats for the exchange of surface
shape data, especially in rapid prototyping field,
which replaces the original surface with a collection
of triangulated surface segments. In our system, we
precisely use triangular polyhedrons (STL) with the
highest resolution 100% from the popular CT scanner

GraVisMa 2010 Communication Papers

- 108 -

with high precision.

Figure 4. (a) Real dental turbine, (b) real dental
bar, (c) virtual dental turbine, (d) virtual dental

bar.

Figure 5. Many kinds of STL-based bars.

Figure 6. An octree representing a 3-D

environment with objects. It has the hierarchical
structure in positioning.

2.3.2 Octree-based tooth model
In this system, actual STL forms of patient teeth and
also dental bars are converted into octree-based teeth
and point-based bar, respectively (Fig.6) [JT80].
Based on the hierarchical structure in positioning, the
intersection between octree-based tooth and point-
based bar can be calculated with high-speed. First of
all, we describe a classic method converting the STL
format into the octree as follows: If a cube of an
octree is inside some convex STL polyhedron, the
cube is represented as a black node in the octree. If a
cube of an octree is outside all convex STL
polyhedrons, the cube is represented as a white node
in the octree. Otherwise, the cube is represented as a
mix node. Moreover, this procedure is recursively
continued for only mix nodes until the octree level
corresponds to a given maximum level. The mix node
is converted to the black node if the octree level
corresponds to the maximum one (Fig. 6).

This classic method is quite time consuming
because a 3-D concave STL tooth should be
converted into a set of 3-D convex STL parts. To
overcome this defective problem, we propose a new
method using GPU (Graphics Processing Unit). In
general, the STL format can be efficiently converted
into octree at high speed by using GPU (Graphics
Processing Unit) (Figures 7 and 8). T s Z
buffer and parallel schemes quickly convert the STL
polyhedral model into a set of 3-D hexahedra as a
raster scanner, and then the hexahedron set is easily
converted into the octree (Fig.9).

Figure 7: Conversion from many perpendiculars

of an object to an octree.

We show row data of STL teeth before conversion,
and numbers of octree nodes, their memory storage
(Bytes) after conversion in Tables 1, 2 and 3,
respectively. Here, as a pre-processing in our system,
we indicate conversion time from STL-based teeth to

GraVisMa 2010 Communication Papers

- 109 -

octree-based teeth by GPU (Fig.10). Here the
accuracy is 2 octree with level 9,

 with level
10. As shown in Fig.10, we understand that the
computation complexity (processing time) directly
depends on not the number of STL patches but the
octree level. As a result, we usually use the most
precise 100% STL teeth in our research.

As contrasted with this, each dental bar is firstly
converted from STL form into an octree, and then is
converted from the octree into a set of points which
are vertices of octree cubes (Fig.11). Furthermore, we
note that those of dental bar are relatively small
enough. Therefore, all are completely stored in the
main memory in a personal PC.

Teeth Patch number Vertex number

6% STL 8,996 26,988

12% STL 18,016 54,048

25% STL 36,036 108,108

50% STL 72,096 216,288

100% STL 144,216 432,648

Table 1. Numbers of patches and vertices
of row STL tooth.

Figure 8. Conversion from a concave STL

polyhedron to an octree via many digital intervals
by GPU. (a) Depth calculation and interval

collection of STL by GPU. (b) If a cube is to be

inside its intersecting intervals, we give a black
node for the cube. (c) If a cube is to be outside its

intersecting intervals, we give a while node for the
cube. (d) Otherwise, we give a mix node for the

cube.

Figure 9. (a) STL-based teeth before conversion.

(b) Octree-based teeth after conversion.

Figure 10. Conversion time from STL-based teeth

to octree-based teeth by GPU.

2.3.3 Multi-layers structure
Each tooth has the multi-layers structure of enamel,
dentin, dental pulp, and dental caries [GH91]. In
order to improve the visual reality, a dental doctor
easily chooses these colors. In addition, the doctor
can select those spring, damper, friction, hardness
coefficients so as to improve the tactile reality. The
force magnitude and direction depend on an
intersection set between point-based bar and octree-
based tooth, and substantially depends on the speed
before collision (Figures 11 and 12).

Level 8 9 10

6% STL 135,649 549,209 2206,913

12% STL 136,425 553,369 2214,377

25% STL 136,377 552,633 2212,721

50% STL 136,385 552,049 2214,505

100% STL 136,441 552,489 2213,633

Table 2. Numbers of nodes in the octrees
after conversion.

Level 8 9 10

6% STL 4,595,712 19,292,160 77,508,608

12% STL 4,624,384 19,378,176 77,545,472

GraVisMa 2010 Communication Papers

- 110 -

25% STL 4,624,384 19,349,504 77,492,224

50% STL 4,624,384 19,333,120 77,549,568

100% STL 4,624,384 19,349,504 77,520,896

Table 3. Memory storage of the octrees
after conversion (Bytes).

Figure 11: (a),(b),(c) Many kinds of point-based
bars. (d) Tooth model of Multi-layers structure.

Figure 12: (a) Octree-based decayed tooth, (b)
enamel material, (c) ivory material, (d) dental

pulp in a back tooth (molar).

3. IMPROVEMENT OF VISUAL
REALITY
In the research, a high-speed collision-check
algorithm selects the intersection between octree-
based tooth and point-based bar. The octree-based
tooth consists of many cubes, and therefore their
visibility is bad. To overcome this problem, we firstly
used the traditional marching cubes algorithm [LC87].
However, since the visible reality is still not good, we
modify the traditional algorithm as follows. In the
classic marching cubes algorithm, the normal vector
is determined by considering the XYZ direction
neighborhood 23 = 8 voxels of an arbitrary voxel.
Therefore, in order to improve the reality of visibility,
the normal vector is determined by considering the
neighborhood 43 = 64 voxels, and also the normal
vector is determined by considering 63 = 216 voxels
(Fig.13).

Figure 13. (a),(b),(c) Normal vector normalization
by averaging 23 = 8, 43 = 64, 63 = 216 neighbors in

our modified marching cubes method.

Figure 14. (a),(b),(c) Three images of octree-based

teeth by the modified marching cubes method
under averaging 23 = 8, 43 = 64, 63 = 216 neighbors.

As a result, the reality is quite improved (Fig.14),
and also the calculation time is almost less than the
video rate. However, the time is sometimes over
depending on the operation (conversion of part of
1/323 in whole space) as shown in Fig.15.

Figure 15. Calculation time of normal vector at

each octree level by the modified marching cubes
(Partial conversion of 1/323 whole space).

GraVisMa 2010 Communication Papers

- 111 -

4. PHYSICAL PARAMENTER
SELECTION
In our software, a dentist can flexibly selects many
physics parameters concerning to tactile and visual
realities. For this purpose, we prepare a wonderful
window used by the dentist (Fig.16). First of all, a
doctor selects one of "enamel", "dentin", "dental
pulp", "dental caries" files in order to choose its
spring, damper, frictional coefficients, and hardness
(how to drill a tooth easily). They are physics
parameters for tactile feeling.

Here, the doctor can select the sense for cutting a
tooth by (how much a tooth part is easily drilled) *
(how much a dental bar drills easily) * (rotational
speed of bar). In particular, the hardness is selected
between 0 (not easy to drill) and 1 (easy to drill). We
set enamel, dentin, dental pulp and dental caries as
0.1, 0.1, 1.0, 0.5, respectively, as the initial values
(Fig.16).

Figure 16. A window for determining several
physical parameters concerning to visual and

tactile realities.

On the other hand, the doctor selects a drill cutting

ability between 0 (not easy to drill) and 1 (easy to
drill). Finally, rotational speed of dental bar can be
controlled between 0: 0rpm - 1: about 40000rpm by
stepping or releasing the foot pedal.

Moreover, concerning to physics parameters of
visual reality, the dentist himself straightforwardly
selects RGBA values according to his real
experiences. is red, is green, and is blue of

three primary colors. The means the transparency.
In addition, he chooses "ambient: the light that came
from all directions at a time", "diffuse: reflect in all
directions because of the coming light", "specular:
light that formed a bright, white spot to the reflection
side".

Figure 17.Cavity preparation.

Figure 18. Automatic evaluation system.

5. STUDENT OPERATION
EVALUATION

This system automatically evaluates student s skills in
dental surgical operation (Figures 17 and 18).
Concerning to this, we explain how to evaluate
student operation in two typical dental tasks as
follows (Full marks are 100 point).

(a) Caries removal task (Evaluation whether the

caries was smoothly removed or not) (Figures 19
and 20)

Figure 19. Caries removing task.

GraVisMa 2010 Communication Papers

- 112 -

Figure 20. (a) Professional result, (b) Student

result, and (c) over and under cutting regions are
colored by red and blue, respectively, for caries

removing task.

Measurement contents are as follows: Numbers of
two kinds of force errors, initial and final caries
volumes, start, final, target, and failure time. This
detail is described in Table 4.

No. Item name Detail

1 Score of
removing
caries

= (Final caries volume) / (Initial caries
volume)*50. Full marks are 50 points. It is
expressed by the decimal point.

2 Score of
executing
time

= (failure time - (finish time-start time)) /
(failure time- target time) * 25. Full marks are
25 points. Less than 0 is expressed as 0 point,
and more than 25 is represented as 25 points.
All are represented by the decimal point.

3 Score of
controlling
forces

= (The number of forces more than a given
threshold the number of relatively larger
forces) / (The number of forces more than a
given threshold) * 25. Full marks are 25
points. Less than 0 is expressed as 0 point,
and more than 25 is represented as 25 points.
All are represented by the decimal point.

4 Total score = Score of removing caries (50 points) +
Score of executing time (25 points) + Score of
controlling forces (25 points). Full marks are
100 points.

Table 4. Evaluating terms
for caries removing task.

(b) Cavity preparation task (Evaluation whether the

ideal cavity was built or not) (Fig.21)

Measurement contents are as follows: Under and
over cutting volumes, number of force errors,
start, final, and target time. This detail is
described in Table 5.

Figure 21. Parameter setting and operation

evaluating for the cavity deforming task.

6. SUMMARY
In this paper, we explained our dental surgical
simulation system for educational purpose. Especially,
we illustrate how to obtain visual and tactile realities,
and also show automatic evaluation of student
surgical skills. We ascertained that our system is
superior to previous similar ones concerning to these
activities. This is achieved as follows: (1) our system
was compared with other commercial or non-
commercial surgical systems in several workshop
demonstrations. (2) our system is carefully testing
and investigating by over 100 professors and students
in the faculty of dentistry.

For the education purpose, we frequently heard that
ten cheaper systems (For example, one million
Japanese yen) are better than one expensive system
(For example, 10 million Japanese yen). Because the
system consists of commercial-based PC and graphics
acceleration board, and the cheapest haptic device,
the cost is less than fifty hundred thousand yen.

Furthermore, we use open source software in visual,
tactile, and sound realities as OpenGL, OpenHaptics,
and OpenAL, respectively. Therefore, our dental
surgical simulation system has high extendibility. As
a result, our system has a wonderful potential for
education purpose.

GraVisMa 2010 Communication Papers

- 113 -

No
.

Item
name

Detail

1 Score of
under
cutting
the ideal
cavity

= Under cutting volume * demerit mark
coefficient * 100 / cutting volume proposed by
profession. Under cutting volume is digitally
calculated as (final volume (ideal
cavity volume by profession)). Full marks are
25 points.

2 Score of
over
cutting
the ideal
cavity

= Over cutting volume * demerit mark
coefficient * 100 / cutting volume proposed by
profession. Over cutting volume is digitally
calculated as ((final volume) ideal
cavity volume). Full marks are 25 points.

3 Score of
parallel
operation
of bar

If a dental doctor operates a dental bar in
parallel, its operation force constantly
decreases. For this reason, we indirectly
evaluate the number of parallel operations by
the number of relatively larger forces. As the
larger the number of relatively larger forces*
force error coefficient, the larger the score is.
A threshold of force error is given in advance
such as 3.0 N. Full marks are 25 points. All
are represented by the decimal point.

4 Score of
executing
time

= (executing time - target time) * executing
coefficient / 60. Executing time = final time-
start time. 60 means the translation parameter
from seconds to minutes. Full marks are 25
points. All are represented by the decimal
point.

5 Total
score

= Score of under cutting the ideal cavity (25
points) + Score of over cutting the ideal cavity
(25 points) + Score of parallel operation of bar
(25 points) + Score of executing time (25
points). Full marks are 100 points.

Table 5. Evaluating terms
for cavity deforming task.

7. ACKNOWLEDGMENTS
This is supported in part by 2006 and 2010 Grants-in-
aid for Scientific Research (No.18360128 and
No.22360109) and also is supported in part by the
2007 Modern Good Practice, from the Ministry of
Education, Culture, Sports, Science and Technology,
Japan.

8. REFERENCES
[Kne03] KNEEBONE R.: Simulation in surgical

training: educational issues and practical
implications. Journal of Medical Education
(2003), pp.267 277, vol.37, no.3.

[DA04] DELINGETTE H., AYACHE N.: Soft tissue

modeling for surgery simulation. Computational
Models for the Human Body. N. Ayache, ed.,
Handbook of Numerical Analysis, P. Ciarlet and
N. Ayache, eds., Elsevier (2004).

[DD09] DIBART S., DIETRICH T.: Practical

periodontal diagnosis and treatment planning.
Wiley-Blackwell (2009).

[Fra10] FRAUNHOFER J. A.: Research writing in

dentistry. Wiley-Blackwell (2010).

[LSM04] L.KIM, S.G.SUKHATME, M.DESBRUN:

A haptic rendering technique based on hybrid
surface representation. IEEE Computer Graphics
and Applications (2004), pp.66 75, vol.24, no.2.

[HLM06a] YAU H.T., TSOU L.S., TSAI M.J.:

Haptic interaction and volume modeling
techniques for realistic dental simulation. The
Visual Computers (2006), pp.90 98, vol.22, no.2.

[HLM06b] YAU H.T., TSOU L.S., TSAI M.J.:

Octree-based virtual dental training system with a
haptic device. Computer-Aided Design and
Applications (2006), pp.415 424, vol.3, nos.1 4.

[NSK*08a] NOBORIO H., SASAKI D.,

KAWAMOTO Y., TATSUMI T., SOHMURA
T.: Mixed reality software for dental simulation
system. Proc. of the 7th IEEE Int. Workshop on
Haptic Audio Visual Environments and Games
(2008), pp.19 24.

 [NSK*08b] NOBORIO H., SASAKI D.,

KAWAMOTO Y., SOHMURA T., "Construction
of Dental Simulation System with Mixed Visual,
Tactile, and Sound Realities," Proc. of the 18th Int.
Conf. on Artificial Reality and Telexistence,
Tokyo, Japan, December 1-3, (2008), pp.93-100.

[NK10] NOBORIO H., KAWAMOTO Y.: Digital

collision checking and scraping tooth by dental
bar. Proc. of the 2010 IEEE RAS/ EMBS Int.
Conf. on Biomedical Robotics and
Biomechatronics, (2010), to appear.

[JT80] JACKINS C.L. and TANIMOTO S.L.,

"Octtrees and their use in representing three-
dimensional objects," Computer Vision, Graphics,
Image Processing, (1980), pp.249-270, vol.14,
no.3.

[GH91] GALYEAN T.A. and HUGHES J.F.,

techn Computer Graphics, July (1991),
pp.267-274, vol.25 no.4.

[LC87] LORENSEN W. E. and CLINE H. E.:

Marching Cubes: A high resolution 3D surface
construction algorithm. Computer Graphics, July
(1987), pp.163 169, vol. 21, no. 4.

GraVisMa 2010 Communication Papers

- 114 -

Metaphorical Visualizations of Graph Structures

uboš UkropĽ Martin Jakubéci Peter Kapec

Faculty of Informatics and Information Technologies

Slovak University of Technology

Ilkovi ova 3, 842 16, Bratislava, Slovakiač

{lukrop, matko.jaka}@gmail.com, kapec@fiit.stuba.sk

ABSTRACT
Data visualization of large abstract data sets and complicated relations is a complex research area with different
problems and constraints. Often simple shapes and structures are not very eye-pleasing. Visualization metaphors,
which create a mapping between a well-known problem domain and a new complicated problem domain, can
produce interesting visualizations. In this paper we propose two metaphorical visualizations of graphs and
multidimensional data: we propose a metaphor of soap bubble clusters to visualize graphs and a nebulae (sky)
metaphor, which uses nebulae and stars to visualize graphs and multidimensional data.

Keywords
soap bubbles, nebulae, visualization metaphor, graph visualization, hypergraph

1. INTRODUCTION
Complex data structures in their raw or pure textual
form are unnatural for human perception system and
can be very difficult to understand. To enhance
comprehensibility, such data are often presented in
visual form and represented by abstract geometrical
shapes. This idea is further extended by metaphoric
visualizations that use the analogy with real world
objects. Visualization is often divided into scientific
and information visualization, however there is
a potential overlap, especially when considering
metaphorical visualizations. In this paper we present
two metaphorical visualizations of graph structures
and multidimensional data, which were inspired by
real world phenomena: soap bubbles and nebulae
with stars.

In Section 2 we outline basic information from the
data visualization field related to our work. Section 3
describes proposed technique of graph visualization
using soap bubbles metaphor and Section 4
introduces a metaphoric visualization that uses visual
syntax of stars and nebulae to create unconventional
presentations of graphs and multidimensional data.
The proposed visualization metaphors are illustrated
by visualizations of real data sets. Section 5 discusses
related works and is followed by conclusions.

2. DATA VISUALIZATION
Data is the main object of interest in the visualization.
The goal of information visualization is to display
abstract entities and relations to provide better insight
and easier understanding of information. Important
data types that are used in many areas are graphs and
multidimensional data. Both require specific
approaches for visualization.

Graph visualization
Data, which are decomposable to elements and
relations between them, can naturally be represented
by graphs. Human understanding of graphs is
enhanced by its visualizations. Graph visualization
deals with creating, presenting and navigating
through graphical representations of graphs.
Numerous graph visualization algorithms have been
developed (see [Her00] for survey in this area). Most
of them are specialized according to the type of input
graph – there are algorithms for visualization of trees,
oriented graphs, hypergraphs etc. Problems and
issues of graph visualization are mostly related to the
size of input graph. While trying to visualize large
graphs, we have to deal not only with the limits of
displaying platform, but also with the limits of human
perception system.

First step towards successful visualization is
layouting of graph elements. Graph nodes and edges
are usually placed in two dimensions, though the
usage of 3D or even non-Euclidean geometry is
becoming also common. To produce comprehensible
output, the layout process has to follow certain
aesthetic criteria [Pur00]. Popular methods to solve
this task are force directed layout algorithms that
employ a physical model built according to the graph
structure. Starting from random initial node

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2010 Communication Papers

- 115 -

placement, simulated forces acting between graph's
nodes transforms the layout toward a state with
minimal energy. This method was originally
proposed by Eades [Ead84], but there are also many
other popular variations, e.g. by Fruchterman and
Reingold [Fru91]. After the layout is determined,
nodes and edges are replaced with their graphical
representations usually with the respect to the
conventions accepted in this area.

Visualization of multidimensional data
Visualizing multidimensional data (data with more
than three dimensions) is complicated, because the
human eye is only able to recognize three
dimensions. The best examples of multidimensional
data are database tables that may contain millions of
rows (records) and hundreds of columns
(dimensions).

Many different methods to visualize
multidimensional data in two or three dimensions
have been developed, overview can be found in
[Spe99]. Most approaches use some type of mapping
attributes to visual and/or structural properties e.g.
size, length, color, angle, shape etc. [Sii07]. Very
popular are various projection methods that use
different kinds of projections from higher dimensions
into lower, e.g. Grand tour [Weg92] or SOM [Lat07].

Relatively new approaches use different high-
dimensional clustering methods [Ber02].
An interesting approach, related to graphs, is based
on clustering using a hypergraph model. During the
first step, a weighted hypergraph is constructed to
represent the relations among different items, and
during the second step, a hypergraph partitioning
algorithm is used to find k partitions such that the
items in each partition are highly related [Han97].

Visualization metaphors
The world of computers is full of associations and
descriptions that are based on appearance similarity,
which help us to understand the nature of the
problems. Metaphor is a tool, which enables us to do
this. Metaphors help us to understand one problem
area using another problem area. In general we can
say that a metaphor is a projection between the
source problem domain and the destination problem
domain and we want to understand the destination
area by comparison to the source area [Ave08].

Visualization metaphors use this metaphorical
projection to visualize data. There are different
examples of visualization metaphors: a solar system
metaphor that uses stars and planets [Gra04], a city
metaphor with buildings [Chi05] or a desktop
metaphor [Lar09]. For graph visualizations we can
mention the very popular molecule metaphor
[Ave08]. Others can be also mentioned, e.g.
dashboard metaphor, address metaphor etc.

3. SOAP BUBBLES METAPHOR
Soap bubbles are spherical structures made of thin
soap fluid film that encloses certain volume of air.
Their visual attractiveness and clustering dispositions
led us to the idea to utilize them as a visual syntax
used for visualization of simple graphs. In this
visualization metaphor the graphs are presented as
soap bubble clusters with their nodes represented by
individual bubbles and edges displayed as cross
connections of bubbles that represent the incident
nodes. Since the structure of the cluster could be
quite dense, connection between not adjacent bubbles
will likely occur. Therefore we decided to enhance
this visual representation with conventional graphical
links used to indicate edges. Textual data attached to
graph nodes can be displayed inside the bubbles.

To realize proposed visualization technique three
main problems have to be solved: how to layout
graph elements, how to represent soap bubble cluster
geometry and how to simulate its optical properties to
achieve realistic appearance.

Graph layout
To ensure that layout process will produce 3D
structures similar to soap bubble clusters, couple of
requirements have to be met. For a pair of adjacent
nodes (i.e. bubbles), distance of their centers has to
be approximately equal to the radius of the larger
bubble. On the other hand, a pair of not adjacent
bubbles has to be in maximal correlative distance,
while preserving connections with adjacent nodes.

For this purpose, we utilized a custom iterative force
directed layout algorithm. Each iteration starts with
force accumulation. Force acting is defined between
each pair of nodes. Let i and j be two different nodes,
d distance between their centers and dir unit direction
vector from i to j. Then the force acting between them
is calculated as follows:

 force = 0
 IF i and j are adjacent THEN
 delta = d – max (i.radius, j.radius)
 force = dir * springStiff * delta
 IF delta > 0.0 THEN
 force = force * springCoef
 ELSE:
 delta = d – (i.radius + j.radius)
 IF delta <= repelThreshold THEN
 force = – dir * repelCoef * exp(– delta)
 i.force = i.force + force
 j.force = j.force – force

Simplified interpretation of this is that adjacent nodes
are connected by springs with natural length equal to
node’s larger radius and repulsive forces act between
not adjacent nodes. Default values of parameters of
the simulated spring (springStiff, springCoef), and
repulsing forces (repelThreshold, repelCoef) were
determined experimentally based on observed
behavior. With the mass of nodes assigned
proportionally to their radius, accumulated forces are

GraVisMa 2010 Communication Papers

- 116 -

applied1, resulting in transition to next spatial
configuration. To bring in variability of bubble sizes,
which is typical for real clusters, radius is defined
proportionally to the node degree using the arcus
tangent function.

Cluster geometry
For the purpose of layout it was sufficient to
characterize each bubble only by its position and
radius. However, the rendering process requires more
detailed description of the bubble surface. Isolated
bubbles tend to have regular spherical shape. With
bubbles included inside a cluster, situation is more
complicated. Their surface is deformed according to
cluster structure. In our solution, the structure of
bubble cluster is a direct consequence of graph
layout. Since the graph layout may change very
frequently, we needed a solution that is able to adapt
geometrical representation dynamically in shortest
possible time. The approach presented by Sunkel et
al. [Sun04] is very suitable for dynamic changes.

Bubbles are initially represented by spherical
polygonal meshes. In each rendered frame their shape
is modified in two steps:

1. For each bubble, bubbles with which it collides
are identified. Based on that, list of intersection
planes is built. By intersection plane we mean
a plane that separates a part of the bubble
surface, which is exceeding into another bubble.

2. Vertex shader in GPU accepts the list of
intersection planes that belongs to currently
rendered bubble. Before each vertex is
transformed, it is tested against each intersection
plane. In case it is an exceeding vertex, it is
projected onto the intersection plane along the
normal. This process is illustrated in Fig.1 -
vertex P and all other exceeding vertices are
shifted to form the junctions.

Figure 1. Bubble collisions resolving.

Soap bubble clusters produced with this method will
not embrace all the geometric properties of a real
cluster. However, such realism was not even our
intention.

Visual properties
When the light hits the surface of a soap bubble,
several optical effects are observable. Characteristic
rainbow-like color toning is caused by interfering
light waves. The most distinguished interference

1 We utilized Bullet physical engine for this purpose -
http://bulletphysics.org.

occurs between the wave reflected from outer soap
film boundary and wave once reflected from inner
boundary leaving the film with the same incidence
angle. Resulting light intensity Ir is given by
following equation:

I r=4Ii Rθ sin2 2π
λ

wη cos θ t  (1)

Where Ii is incoming light intensity, θ is incidence
angle, θt is transmitted angle, R(θ) is reflectance, λ is
wave length, w is film thickness and η stands for soap
water index of refraction [Gla00]. Because of Snell’s
law, the refraction of light also occurs. But since the
film thickness is extremely small, it is significant only
at the bubble boundaries [Küc02]. Fresnel effect
causes, that with declining light incidence angle
transparency of the surface raises and reflectivity
becomes less obvious.

Photo-realistic rendering could be achieved by
precise simulation of all the mentioned optical effects
and properties with the use of ray-tracing algorithm.
However, since our visualization technique was
intended to function on conventional hardware in
real-time, we utilized less computationally expensive
solutions. Our approach is based mainly on the works
of Glassner [Gla00] and Iwasaki et al. [Iwa04]. Using
Equation 1 with constant light color (in spectral
representation), and similarly to Iwasaki we
precompute the interference effect and save it into
a 2D texture (see Fig.2a) with vertical coordinate
interpreted as the film thickness and horizontal as
cosine of incidence angle. Alpha channel contains
Fresnel reflectivity used by alpha blending
transparency implementation. Film thickness is
preserved in a grayscale texture that is mapped
directly on the bubble surface (see Fig.2b).

Final soap film color calculation takes place in
a fragment shader and involves texels from
interference texture (which are computed based on
film thickness texture and cosine of incident light
angle), texels from environment cube map and diffuse
material color. Reflections of dynamic objects (i.e.
bubbles) and refraction are omitted.

Figure 2. Interference (a) and thickness (b)
texture.

Using the proposed visualization technique we were
able to interactively visualize smaller graphs (approx.
up to 100 nodes). Fig.3 shows visualization of

GraVisMa 2010 Communication Papers

- 117 -

a graph that exposes relations between scientific
disciplines.

Figure 3. Sample graph visualized by soap
bubbles metaphor.

The soap bubbles metaphor increased visual
attractiveness of visualization, especially comparing
to traditional node-link drawings, though the
readability (especially when presented by static
image) was reduced. To enable user to directly
change the shape of a cluster, mechanism of space
constraints was introduced. Space constraints act as
enclosed barriers that the bubbles do not manage to
cross. Effect of visualization constrained by flatten
box is shown in Fig.4.

Figure 4. Visualization with space constraint.

Fig. 11 demonstrates visualization of concrete data. It
is a part of graph obtained by extraction of software
artifacts from source code of real application2. It
contains all the extracted functions (left part of the
cluster) with one of them represented in detail, with
its parameters and associated comments (right part of
the cluster).

2 LuaDist - http://www.luadist.org

4. NEBULA METAPHOR
Nebulae (or sky) metaphor is used to visualize data
using objects from night sky (from the universe).
Typical objects from the universe are stars, nebulae,
galaxies etc. The main advantage of this metaphor is
that these objects are well known by all people,
including small children.

In this approach, stars are used to represent entities
(nodes of a hypergraph) and nebulae are used to
represent relations (hyperedges of a hypergraph). The
stars can be drawn as 3D shapes, for example spheres
or textured rectangles, called billboards. Nebulae can
be drawn using volumetric rendering or using particle
system. Volumetric rendering gives very realistic
results [Nad00], but its computational complexity
makes it unusable in the case of data visualization.
The reason is that real-time drawing and modification
of many nebulae is needed. Particle systems are
a better solution, but still hard to control in real-time
and to draw hundreds of nebulae. A modification of
particle systems is used, with pre-rendered cloud
particles on a texture, which is mapped on rectangle,
so the nebulae are drawn using billboards as well.

The next problem is how to place the billboards in
space. A hyperedge visits many nodes and the nebula
has to be placed between these nodes. In our
approach, a center of the hyperedge is computed and
the middle of a billboard is placed on the middle of
a line segment, which connects the center of the
hyperedge with a node. Billboards are generated for
every node a hyperedge visits. Fig. 5 shows
a hyperedge with three nodes (circles) and its center
(triangle) and how the corresponding three billboards
are placed (red, green and pink rectangles).

Figure 5. Nebulae billboards placement.

To distinguish between different hyperedges, the
color of the nebulae has to be modified. This is
achieved by setting the color of the rectangle to
a color with alpha channel and then the color of the
rectangle is added to the cloud texture using alpha
blending. The colors of nebulae seen in space are
quite specific, so a set of colors shown in Fig. 6. was
chosen. Also other colors-sets can be used, however
their selection, probably related to data, can produce

GraVisMa 2010 Communication Papers

- 118 -

familiar e.g. clouds/smoke-like visualizations or
completely unfamiliar visualizations.

Figure 6. Nebulae colors [Fad05].

Now that we prepared a metaphorical drawing
method, we have to prepare a hypergraph layout. The
standard way to do this is to convert hypergraph into
a bipartite graph and then use a graph layout
algorithm. In our approach, the hypergraph is
layouted and drawn in its pure form. We use
a modified Fruchterman-Reingold algorithm [Fru91],
where the nodes of a hypergraph are attracted to the
center of the hyperedge. After the attractive and
repulsive forces are computed and applied, the center
of every hyperedge is recomputed as a center of
mass, by computing the average position of all node
positions, which are connected by the hyperedge.

Fig. 7 shows a hyperedge, which represents calling of
a method in software artifacts data. This hyperedge
connects eight nodes, which represent different
parameters. The hyperedge is visualized using
a snebula with eight billboards with cloud textures
and the nodes are visualized using billboards with
a star texture.

Figure 7. Hyperedge visualized using nebulae
metaphor.

Fig. 8 shows a hypergraph with several hyperedges,
which were obtained from a larger hypergraph (Fig.
12) by filtering. Hyperedges are visualized using
nebulae and stars, but with lines and captions
disabled.

To demonstrate the metaphorical visualization a real
data set was used. Fig. 12. presents a visualization of
software artifacts from a real software system, which
was implemented using Lua scripting language. The
data includes different types of methods, classes,

documentation relations etc. It consists of 1233 nodes
and 459 hyperedges.

Figure 8. Hypergraph visualized using nebulae
metaphor.

Hypergraph based multidimensional
clustering
To visualize multidimensional data a simple
clustering method inspired by the work [Han97] was
implemented. This method utilizes the hypergraph
representation and layout. The multidimensional data
is transformed into hypergraph structure and then the
clusters are automatically created by the layout
algorithm. Transforming multidimensional data (rows
and columns) can be done in different ways; we used
classification of numerical values into ranges or
intervals. The clusterisation process is done in these
steps:

1. Create an empty hypergraph.

2. Create a node for every row.

3. Create intervals for every column.

4. Create a relation between every value of
a row and the corresponding interval.

5. Create a hyperedge for every interval of
every column, which is connected by
a relation from step 4 to at least two rows.
This hyperedge consists of nodes that were
created in step 2 and are connected by
a relation from step 4.

6. Apply the layout algorithm to the
hypergraph.

Fig. 9 shows, how it is done on a sample data set,
with six rows and two columns. One interval is
created for every column (red interval for first
column, green interval for second column); the other
values are too different, so no other intervals are
needed. Graphical representation shows the generated
hypergraph, blue circles are rows, green and red
circle are hyperedges, which represent intervals.

Steps 3, 4 and 5 of the process are a little bit
complicated. Intervals in step 3 can be created by

GraVisMa 2010 Communication Papers

- 119 -

different methods, we use a simple approach, where
values of the columns are iterated and the minimum
and maximum values are found. Then the range
between these two values is divided into 10 equal
intervals.

Figure 9. Clustering sample.

After that, we have to find out, to which interval
every value of the columns fits. This is done in step 4.
Then we just create a model of this situation by
representing the relation between a value and its
corresponding interval, by creating hyperedges. So
rows with similar values of a column (values in the
same interval) are connected together by a hyperedge
and attracted by applying the layout algorithm. Fig.
10 shows a clustered dataset with different
information about proteins. It consists of 1484
records and 8 columns (dimensions) and in the
clustering process 1484 nodes and 80 hyperedges
(intervals) were created3.

Figure 10. Clustered protein data visualized using
nebulae metaphor.

3 Data-set from http://archive.ics.uci.edu/ml/datasets.html
Machine learning repository of University of Carolina

5. RELATED WORK
There were numerous attempts of computer
simulation and rendering of soap bubble clusters.
Glassner [Gla00] uses a sequence of CSG operations
to create a cluster model considering geometric
properties of real soap bubble clusters. With precise
optical calculations implemented in a fragment
shader he was able to achieve high level of realism,
but his cluster consists of only three bubbles
(analytical solutions exist merely up to this number)
and relatively high computational complexity makes
his solution inappropriate for real-time rendering.
Ďurikovič targeted mainly dynamics of soap bubble
clusters [Ďur05]. He represents each bubble as
a system of particles connected by springs, taking all
significant forces into account, thus simulating
bubble creation, coalescence and bubble-plane
collisions. Ďurikovič did not describe optical
properties. Iwasaki et al. [Iwa04] combined
mentioned works to simulate and render a small
number of bubbles in real-time on conventional
hardware. They reduced computational complexity
mainly using a precomputed interference effect. Kück
et al. [Küc02] developed rendering and simulation
technique for large liquid foam structures. The foam
is represented by set of spherical polygonal meshes
connected by virtual springs. Junctions between
colliding foam bubbles are computed directly inside
the shader for ray tracing based renderer. Sunkel et
al. [Sun04] came with real-time simplified simulation
of large liquid foams: they are creating approximated
planar bubble junctions in vertex shader by shifting
overlapping vertices to the plane of intersection.
Mentioned works were done only with an intention to
handle this natural phenomenon by the means of
computer science, without presenting concrete
practical applications of their results. We applied
simulation of soap bubbles in the area of data
visualization to create a novel graph visualization
technique, while using existing approaches from both
fields (mainly [Gla00], [Iw04] and [Sun04]).

Few works use visualization metaphors similar to the
nebula metaphor. A sky metaphor was used to
visualize self-organizing maps [Lat07]. It displays
data records as stars and the clustering process
creates star clusters. A visual-analytic tool called IN-
SPIRE and its predecessor SPIRE use a galactic
metaphor [Won04]. The visualization is using stars
and star clusters to help in analyzing of large data.
Info-Vis visual explorer is used to interactively
explore large collections of documents, which are
displayed as stars and collections in the hierarchy are
visualized as bounding polygons [Gra07]. All of
these works are using just stars to show data records
and mostly use star clusters to demonstrate similarity.
Our approach is using a similar method when
showing clustered multidimensional data, but is also
able to show complicated relations displayed as
nebulae. It is the only approach, which utilizes 3D
visualization as well.

GraVisMa 2010 Communication Papers

- 120 -

6. CONCLUSIONS
In this paper we presented two visualization
metaphors applicable on structured data. Soap
bubbles metaphor was utilized to create an
experimental technique of graph visualization using
3D soap bubble clusters. Based on existing methods
and approaches for computer simulation of soap
bubbles and custom force directed layout, it enabled
us to interactively visualize smaller graphs in real-
time. Second presented technique uses nebulae
metaphor for visualization of hypergraphs in 3D.
With visual syntax of stars and colored nebulae, it is
able to visualize also multidimensional data, which
can be transformed to hypergraph representations.
Both proposed metaphors offer an interesting and
unconventional data presentation. Future work will be
dedicated to verifying practical usability by the
means of user testing, quantitative evaluation and
comparison with standard visualization techniques.
Both presented metaphoric visualization are suitable
for further experiments, e.g. adding smoke into
bubbles or applying solar winds to nebulae.

7. ACKNOWLEDGMENTS
This work was supported by grant KEGA 244-
022STU-4/2010: Support for Parallel and Distributed
Computing Education and grant VEGA 1/0848/08:
Connectionist Computational Models for Computer
Grid Environment.

8. REFERENCES
[Ave08] Averbukh V.L. et al. Searching and analysis

of interface and visualization metaphors. Human-
Computer Interaction, New Developments,
Vienna, pp. 49-84, 2008.

[Ber02] Berkhin, P. Survey of clustering data mining
techniques. Technical report, Accrue Software,
San Jose, 2002.

[Chi05] Chiu, P. et al. MediaMetro: browsing
multimedia document collections with a 3D city
metaphor. In: Proc. of the 13th ACM international
conference on Multimedia, pp. 213-214, 2005.

[Ďur05] Ďurikovič, R. Animation of soap bubble
dynamics, cluster formation and collision. Journal
of the Applied Mathematics, Statistics and
Informatics, vol. 1, no. 2, pp. 33-48, 2005.

[Ead84] Eades, P. A heuristic for graph drawing.
Congressus Numerantium, vol. 42, no. 1, pp. 149-
160, 1984.

[Fad05] Fadai, K. Painting a Nebula. Artistic tutorial,
2005.

[Fru91] Fruchterman, T., Reingold, E. Graph drawing
by force-directed placement. Software-Practice &
Experience, vol. 21, no. 11, pp. 1129-1164, 1991.

[Gla00] Glassner, A. Soap Bubbles: Part2. IEEE
Computer Graphics and Applications, vol. 20, no.
6, pp. 99-109, 2000.

[Gra04] Graham, Y.H. et al. A solar system metaphor
for 3D visualization of object oriented software
metrics, In Proc. of the Australasian Symposium
on Information Visualization, Australian
Computer Society, Inc., pp. 53–59, 2004.

[Gra07] Granitzer, M. et al. InfoSky. InfoVis Wiki.

[Han97] Han, S. et al. Clustering in a high-
dimensional space using hypergraph models.
Technical report, Department of computer
science, University of Minnesota, 1997.

[Her00] Herman, I. et al. Graph visualization and
navigation in information visualization: A Survey.
IEEE Transactions on Visualization and
Computer Graphics, vol. 6, no. 1, pp. 24-43,
2000.

[Iwa04] Iwasaki, K. et al. Real-time rendering of
soap bubbles taking into account light
interference. In: Proc. of the Computer Graphics
International (CGI’04), pp. 344-348, 2004.

[Küc02] Kück, H. et al. Simulation and rendering of
liquid foams. In: Proceedings of Graphics
Interface, pp. 81-88, 2002.

[Lar09] Lardinois, F.: Bumptop launches: make your
physical desktop virtual. Blog, ReadWriteWeb,
2009.

[Lat07] Latif, K. and Mayer, R. Sky-metaphor
visualisation for self-organising maps. Journal of
Universal Computer Science, Proc. of 7th
International Conference on Knowledge
Management, pp. 400-407, 2007.

[Nad00] Nadeau, D. R. et al. Visualizing Stars and
Emission Nebulas, In: Proc. of Eurographics,
Eurographics Association, 2000.

[Pur00] Purchase, H. C. A study of graph drawing
aesthetics and algorithms. Interacting with
Computers, vol. 13, no. 2, pp. 147-162, 2000.

[Sii07] Siirtola, H. Interactive visualization of
multidimensional data. PhD dissertation,
University of Tampere, 2007.

[Spe99] Spears, W.M.: An overview of
multidimensional visualization techniques, in
evolutionary computation, Morgan Kaufmann, pp.
104-105, 1999.

[Sun04] Sunkel, M. et al. Rendering and simulation
of liquid foams. In: Proc. of the Vision, Modeling
and Visualization, pp. 285-294, 2004.

[Weg92] Wegman, E.J. The Grand Tour in k-
Dimensions. Computing Science and Statistics,
In: Proc. of the 22nd Symposium on the Interface,
Springer-Verlag, pp. 127-136, 1992.

[Won04] Wong, P.C. et al. IN-SPIRE InfoVis 2004
Contest Entry. In: Proc. of the IEEE Symposium
on Information Visualization, pp. 216–217, 2004.

GraVisMa 2010 Communication Papers

- 121 -

Figure 11. Software artifacts graph visualized by the soap bubbles metaphor.

Figure 12. Software artifacts hypergraph visualized by the nebula metaphor.

GraVisMa 2010 Communication Papers

- 122 -

Reconsidering and Rethinking Quaternionic

Special Relativity

Martin Erik Horn

Johann Wolfgang Goethe University
Department of Physics, Institute of Physics Education

Max-von-Laue-Str. 1
D – 60438 Frankfurt on the Main, Germany

m.horn@physik.uni-frankfurt.de

ABSTRACT
Special relativity can be modelled mathematically with complex quaternions. The relation between this qua-

ternionic special relativity and spacetime algebra will be discussed from a didactical perspective showing the

intrinsic relations between quaternion matrices, Pauli matrices, and Dirac matrices.

Keywords
Special relativity, geometric algebra, Pauli algebra, Dirac algebra, quaternions, physics education.

1. INTRODUCTION
After having taught at several schools I returned

again to academic life and university some years ago.

Knowing nothing about geometric algebra and

spacetime algebra at this time one of the ideas I

followed was to implement quaternions in spacetime.

The didactical path I chose was simple: The Lorentz

transformation is a four-dimensional rotation of space

and time, and quaternions can be used to describe

rotations mathematically in a very elegant manner

[Hor02]. Thus I wanted to find a didactical con-

vincing way of modelling Lorentz transformations

with quaternions.

Then, years later, I heard about geometric algebra

and the rich didactical possibilities it opens. I was

immediately overwhelmed by the clear and precise

way geometrical meaning is given to algebraic ex-

pressions in geometric algebra. And at the same time

the profound algebraic meaning appearing behind

geometric objects, which can be described algebrai-

cally in a clear, precise, and simple way, convinced

me [Hor07]. Therefore I nearly at once changed my

didactical direction and modelled the Lorentz trans-

formation in spacetime algebra [Hor09], which is the

four-dimensional extension of three-dimensional

geometric algebra.

It is now time to connect the two loose ends of qua-

ternion algebra and geometric algebra with respect to

special relativity and to find a didactical bridge from

one system to the other.

2. QUATERNIONIC SPECIAL RELA-

TIVITY
Of course I was not the first who tried to formulate

special relativistic relations using quaternions.

Among others Silberstein [Sil12], [Sil14] Conway

[Con47], Lanczos [Lan19], Flint [Fli20] and Blaton

[Bla35] were the first who succeeded in doing so. A

well-written overview about the historical develop-

ment of special relativity and the relation to the ma-

thematics of quaternions can be found in Klein (1927/

1928) [Kle79], presenting his lectures, which were

given before the invention of Pauli matrices in 1927

[Pau27].

In these early quaternionic special relativistic papers

every quaternionic basic unit i
r

, j
s

, and k
r

 is then in-

terpreted as basic unit vector in x-, y-, and z-direc-

tion. The vector r
s

can then be written as linear com-

bination

 i j k r ct 1 ix iy iz= + + +
r r s rs

 (1)

with
2 2 2

i j k 1= = = −
rr s r

 (2)

and i j j i k = − =
r s s r r

 j k k j i = − =
s r r s r

 (3)

 k i i k j = − =
r r r r s

The arrows indicate that in this style of writing these

objects are indeed thought as vectors [Hor02]. For a

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

GraVisMa 2010 Communication Papers

- 123 -

special reason some of the arrows here show to op-

posite directions.

The basic unit vector 1
r

 with

21 1=
r r

 (4)

is interpreted as vector in the direction of time which

is commutative with respect to every other mathema-

tical object.

A Lorentz transformation is then normally given as

spacetime rotation

 rotr q r q *=
s s s s

 (5)

or
rotr q r q=
s s s s

% (6)

with the unit quaternion

 i j k t x y zq q 1 iq iq iq= + + +
r r s rs

 (7)

Which transformation formula (5) resp. (6) should be

used depends on how these vectors are defined. They

have to mirror the structure of space and time mathe-

matically. Although nature seems to be unique, there

are many different mathematical mirrors which can

be used to describe our world.

3. SPECIAL RELATIVITY IN SPACE-

TIME ALGEBRA

In spacetime algebra the Dirac matrices γt, γx, γy, and 

γz with

 γt
2
 = – γx

2
 = – γy

2
 = – γz

2
 = 1 (8)

and γx γy = – γy γx γt γx = – γx γt

 γy γz = – γz γy γt γy = – γy γt (9)

γz γx = – γx γz γt γz = – γz γt

are the basic unit vectors of our four-dimensional

world we live in [Dor03]. The spacetime vector r
r

can then be written as

 t x y zr ct x y z= γ + γ + γ + γ (10)

and a Lorentz transformation is again a spacetime ro-

tation

rot

r m n r nm= (11)

now n and m being two unit reflection vectors

 t t x x y y z zn n n n n= γ + γ + γ + γ

 t t x x y y z zm m m m m= γ + γ + γ + γ

Because Dirac matrices are behaving like vectors in

spacetime algebra, they can be called Dirac vectors.

4. TRANSLATING BETWEEN QUA-

TERNION ALGEBRA AND DIRAC

ALGEBRA
What is now the relation between these different ma-

thematical structures of quaternion algebra and Dirac

algebra which obviously express the same physical

situation? To answer this question we have to find a

way to translate between these algebras.

Although (2 x 2)-matrices obscure and hide the geo-

metrical meaning of algebraic objects, they can help

us to find this translation.

Already before the invention of Pauli matrices it was

well known that quaternions can be written as (2 x 2)-

matrices [Kle79]. For example they are given in

[Bla35, p. 344] as

0 i

i
i 0

 
=  
 

r
, j

0 1

1 0

− 
=  
 

s

i 0

k
0 i

 
=  

− 

r
,

1 0
1

0 1

 
=  
 

r

These matrices are intrinsically connected with Pauli

matrices [Pau27]

 σx =
0 1

1 0

 
 
 

, σy =
i

i

0

0

− 
 
 

 σz =
1 0

0 1

 
 

− 
, 1 =

1 0

0 1

 
 
 

because the quaternion basic units are mere products

of Pauli matrices:

i i

i i

0 1 0 0

1 0 0 0

−    
=    

−    
, ... (15)

⇒ σx σy = k
r

 σy σz = i
r

 (16)

 – σz σx = j
s

At the same time Dirac vectors are intrinsically

connected with Pauli matrices, because Pauli matrices

are mere products of basic Dirac vectors (see for

example [Dor03, eq. 5.37]:

⇒ γx γt = σx

 γy γt = σy (17)

 γz γt = σz

Now we are in a position to translate equation (1) in-

to equation (10) and equations (5) or (6) into equa-

tion (11).

According to our translation rules (16) the position

vector of equation (1)

 i j k r ct 1 ix iy iz= + + +
r r s rs

 (1)

is equivalent to the confusing position vector in Pauli

algebra

 r’ = ct 1 + ix σy σz – iy σz σx + iz σx σy (18)

“Not surprisingly” the minus sign in front of the y-

coordinate historically “was a potential source of

(12)

(13)

(14)

GraVisMa 2010 Communication Papers

- 124 -

great confusion” [Dor03, p. 34] because we have to

change from a left-handed coordinate system to a

right-handed coordinate system just by flipping the

sign of one of the basic quaternion units, e.g.

 j j− =
s r

= σz σx (19)

resulting in the right-handed position vector

 i j k r ct 1 ix iy iz= + + +
r r r rr

 (20)

and therefore

 r = ct 1 + ix σy σz + iy σz σx + iz σx σy (21)

Inserting the trivector (or pseudoscalar)

 I = σx σy σz (22)

with I
2
 = σx σy σz σx σy σz = – 1 (23)

as complex unit i = I into (21) the Pauli position vec-

tor transforms into

 r = ct – x σx – y σy – z σz (24)

Obviously, this is no pure vector, but a sum of a time-

like scalar ct and a one-dimensional spacelike vector

part.

This mathematical object of Pauli algebra (with one

underlining) can be transformed into an equivalent

mathematical object of Dirac algebra (with two un-

derlinings) using equations (17)

 R = ct – x γx γt – y γy γt – z γz γt (25)

This again is no pure Dirac vector, but a sum of a

scalar giving the time coordinate and a Dirac bivec-

tor. To finish the translation process, we have to mul-

tiply the basic timelike Dirac unit γt from the left:

 γt R = γt ct – γt x γx γt – γt y γy γt – γt z γz γt

 = ct γt + x γx + y γy + z γz = r (26)

Now we have got two isomorphic objects: The Dirac

multivector R associated with the quaternion vector

r
r

 has to be multiplied with the timelike basic Dirac

unit γt to get the Dirac vector r.

We therefore can conclude, that the original quater-

nion vector geometrically behaves as bivector, that is:

as linear combination of oriented area elements. It’s

sort of a mathematical accident
1
 that this Dirac

bivector sometimes (e.g. in the case of special rela-

tivity) shows the expected Lorentz transformation

behaviour of a spacetime vector, which is discussed

in the next section.

1
 Freeman Dyson would call it a joke of nature, connected

with the strange effects the imaginary unit i can produce

[Dys09, p.213].

5. REFLECTIONS IN QUATERNION

ALGEBRA AND DIRAC ALGEBRA

A reflection at the spacetime unit vector

 n = nt γt + nx γx + ny γy + nz γz (27)

is given in Dirac algebra by

 rref = ± n r n (28)

while the positive sign is used when the reflection

vector n is a timelike vector n
2
 = 1 and the negative

sign is used when the reflection vector n is a space-

like vector n
2
 = – 1.

Let’s try to convert this back into quaternion algebra.

 γt rref = ± γt n r n

 = ± γt n r γt γt n (29)

with

 N = γt n = nt – nx γx γt – ny γy γt – nz γz γt

 R’ = r γt = ct + x γx γt + y γy γt + z γz γt (30)

Please compare the different signs of R’ and R in

equations (25) and (30). Converting back into Pauli

algebra (with one underlining) gives

 rref = ± n r’ n (31)

with

 n = nt – nx σx – ny σy – nz σz

 r’ = ct + x σx + y σy + z σz (32)

Substituting

 i σy σz = – σx

 i σz σx = – σy (33)

 i σx σy = – σz

changes equations (32) into

 n = nt 1 + i nx σy σz + i ny σz σx + i nz σx σy

 r’ = ct 1 – ix σy σz – iy σz σx – iz σx σy (34)

Now (31) can be translated back into quaternion al-

gebra:

ref r ' n r ' n= ±
r r r r

 (35)

with

 kji
vrvrv

 zyxt ininin1nn +++=

 i j k refr ' ct 1 ix iy iz= − − −
r r r rr

 (36)

To get rid of the minus signs in (30) we have to

change equation (35) into

ref r n r * n= ±
r r r r

 (37)

in a right-handed coordinate system. Thus it is

possible to express spacetime reflections in quater-

nion algebra, but it is of course not as elegant as in

spacetime algebra.

GraVisMa 2010 Communication Papers

- 125 -

Examples
To illustrate the possible different cases three exam-

ples are shown below. First a pure space reflection of

the spacetime vector

 i j k r ct 1 ix iy iz= + + +
r r r rr

or r = ct γt + x γx + y γy + z γz

at the x-axes with reflection vector

 i 1n i=
rr

 with
1 1n n * 1= −
r r

or n1 = γx with n1
2
 = – 1

gives the reflected vector

i i

1ref

r i r * i

 ct 1 ix i iy j iz k

= −

= − + − −

r rr r

r r r r

or r1ref = – γx (ct γt + x γx + y γy + z γz) γx

 = – ct γt + x γx – y γy – z γz

with all components exchanging the sign except the

x-coordinate.

Secondly, a pure space reflection of the spacetime

vector r
r

 or r at the diagonal line of the xy-plane with

reflection vector

 ()i j 2

1
n i i

2
= +

r rr with
2 2n n * 1= −
r r

or ()x y2

1
n

2
= γ + γ with n2

2
 = – 1

gives the reflected vector

 () ()i j i j

2ref

1
r i i r * i i

2

 ct 1 iy i ix j iz k

= − + +

= − + + −

r r r rr r

r r r r

or r2ref = – 1

2
(γx + γy) (ct γt + x γx + y γy + z γz) (γx+ γy)

 = – ct γt + y γx + x γy – z γz

with negative components of time- and the z-coordi-

nate and the components of the x- and y-directions

exchanged.

As third example the spacetime reflection of the

spacetime vector r
r

 or r at the time-axes with reflec-

tion vector

3n 1=

rr
 with

3 3n n * 1= +
r r

or n1 = γt with n3
2
 = + 1

is considered. Now the reflected vector

3ref

r 1 r * 1

 ct 1 ix i iy j iz k

=

= − − −

r rr r

r r r r

or r3ref = γt (ct γt + x γx + y γy + z γz) γt

 = ct γt – x γx – y γy – z γz

arises, and all components of space directions ex-

change the sign while the component of the time-co-

ordinate does not change.

Finally the spacetime reflection of the spacetime vec-

tor r
r

 or r at the timelike unit reflection vector

 ()i 4

1
n 5 1 3i

4
= ⋅ +

r rr
 with

4 4n n * 1= +
r r

or () t x4

1
n 5 3

4
= γ + γ with n4

2
 = + 1

gives the reflected vector

() ()i i

4ref

1
r 5 1 3i r * 5 1 3i

16

34ct 30x 30ct 34x
 1 i i iy j iz k

16 16

= ⋅ + ⋅ +

− −
= + − −

r rr rr r

r r r r

or r4ref =
1

16
(5 γt + 3 γx) (ct γt + x γx + y γy + z γz) (5 γt + 3 γx)

 =

 t x y z

34 ct 30 x 30 ct 34 x
y z

16 16

− −
γ + γ − γ − γ

 = (2,125 ct – 1,875 x) γt

 + (1,875 ct – 2,125 x) γx – y γy – z γz

which can be checked by squaring:

 2 2 2 2
4ref 4ref r r * r r * (ct) x y z= = − − −
r r r r

 r4ref
2
 = r

2
= ct

2
 – x

2
 – y

2
 – z

2

6. ROTATIONS IN QUATERNION AL-

GEBRA AND DIRAC ALGEBRA
A succession of two reflections gives always a ro-

tation, and every rotation can be decomposed into

two (or four or six or any other even number of) re-

flections.

Therefore a reflection of the reflected Dirac vector

rref at the spacetime unit vector

 m = mt γt + mx γx + my γy + mz γz (38)

is given in Dirac algebra by

 rrot = ± m rref m (39)

and leads to a spacetime rotation. As usual the po-

sitive sign is used when the reflection vector m is

a timelike vector m
2
 = 1 and the negative sign is

used when the reflection vector m is a spacelike vec-

tor m
2
 = – 1.

When both reflection vectors are of equal quality

(both spacelike or both timelike) the signs cancel

 rrot = ± m (± n r n) m

 = m n r n m (40)

Let’s try again to convert this back into quaternion al-

gebra.

 γt rrot = γt m n r n m

 = γt m n γt γt r m γt γt n (41)

This time we do not have to care about the signs of

the original vector R = γt r, but of the signs of the unit

rotation quaternions, as two successive applications

of equation (37) show:

GraVisMa 2010 Communication Papers

- 126 -

rot ref r m r * m= ±
r r r r

 m (n r * n) * m= ± ±
r r r r r

 (42)

 m n * r n * m=
r r r r r

Consistently we have to use equation (6), and the unit

rotation quaternions become

 q m n *=
r r r

and q n * m=
r r r
% (43)

in a right-handed coordinate system.

Examples
The differences and similarities between quaternionic

rotations and Dirac spacetime rotations will be

illustrated in the following. First we reflect the time-

like Point A (symbolised by the vector
Ar
r

 or rA,

which lies inside the future light cone of an observer

at the origin of the coordinate system) and the light-

like point B (symbolised by the vector
Br
r

 or rB, which

lies on the future light cone)

 iAr 5 1 4i= ⋅ +
r rr

 iBr 4 1 4i= ⋅ +
r rr

or rA = 5 γt + 4 γx

 rB = 4 γt + 4 γx

at the unit reflection vectors

 ()i
1

n 3 1 i
8

= ⋅ +
r rr

 m 1=
rr

or () t x

1
n 3

8
= γ + γ

 m = γt

with
 n n* m m* 1= = +
r r r r

 n
2
 = m

2
 = + 1

The reflected position vectors then are

 iArefr 3,25 1 1,25i= ⋅ −
r rr

 iBrefr 2 1 2i= ⋅ −
r rr

or rAref = 3,25 γt – 1,25 γx

 rBref = 2 γt – 2 γx

With ()i
1

q 3 1 i
8

= ⋅ −
r rr

 and

 ()i
1

q 3 1 i
8

= ⋅ −
r rr

%

the rotated Dirac position vectors become

 ()() ()i i iArot

1 1
r 3 1 i 5 1 4i 3 1 i

8 8
= ⋅ − ⋅ + ⋅ −

r r rr r rr

 ()()i i
1

11 1 7i 3 1 i
8

= ⋅ + ⋅ −
r rr r

 i3,25 1 1,25i= ⋅ +
r r

 ()() ()i i iBrot

1 1
r 3 1 i 4 1 4i 3 1 i

8 8
= ⋅ − ⋅ + ⋅ −

r r rr r rr

 ()()i i
1

8 1 8i 3 1 i
8

= ⋅ + ⋅ −
r rr r

 i2 1 2 i= ⋅ +
r r

Figure 1. Construction of a spacetime rotation of two points A and B by two successive spacetime

 reflections at the first (red) and second (green) reflection axes.

GraVisMa 2010 Communication Papers

- 127 -

or ()() ()x t t x x tArot

1 1
r 3 5 4 3

8 8
= − γ γ γ + γ + γ γ

 ()()t x x t

1
11 7 3

8
= γ + γ + γ γ

 = 3,25 γt + 1,25 γx

 ()() ()x t t x x tBrot

1 1
r 3 4 4 3

8 8
= − γ γ γ + γ + γ γ

 ()()t x x t

1
8 8 3

8
= γ + γ + γ γ

 = 2 γt + 2 γx

(see figure 1). The original and the transformed

points B always lie on the world line of light, as

lightlike vectors remain lightlike when reflected or

rotated.

Thus both mathematical concepts describe Lorentz

transformation appropriate and correct, and uncover

the geometrical meaning of this transformation.

7. METACONCEPTUAL AWARENESS

IN PHYSICS AND MATHEMATICS
Quaternions played a major role in the historical

development of mathematics and physics. When lec-

turing about this development Felix Klein empha-

sized the importance of Hamilton’s and Grassmann’s

ideas several times [Kle79]. Analyzing the heuristic

role of quaternions Anderson and Joshi thus conclu-

ded, that “unique features of quaternionic structures

have been woven closely into the development of

new physical theories” [And02, p. 15].

These intrinsic relationship was already discussed by

Grassmann [Gra77], who connected his theory of ex-

tensions with the theory of quaternions formulated

nearly at the same time by Hamilton. Quaternions and

geometric algebra give us two different mathematical

views on our world. Obviously this world outside us

is (as far as we know) unique, one and single, but we

do not have a unique and single way to describe this

world mathematically.

We posses lots of different mathematical languages

(or as Hestenes once said: “a Babel of mathematical

tongues” [Hes03, p. 106]). But we do not know

which mathematical language will be appropriate to

solve the physics problems of the future. We only

know which language today fits best to solve our con-

temporary problems. Therefore it is our task not only

to teach and explain geometric or spacetime algebra,

but to present and discuss the position geometric

algebra takes by exploring the relation to other and

different mathematical concepts. Let it never happen

again that a prominent scientist has to say with

respect to the relation between the Dirac equation and

geometry: “Had we been better educated in physics,

or had there been the kind of dialogue with physicists

that is now common, we would have got there much

sooner” [Ati08, p. 116].

For this reason we should pay attention to developing

meta-conceptual awareness when teaching physics

and mathematics or other fields of science. Our stu-

dents should be able to change mathematical and phy-

sical perspectives to look at problems from different

angles and to analyze and explain problems in

distinct ways.

As a research scientist it might be frustrating that

“much time (is) being taken up with mere translation

between the two modes of expression” [Hes71, p.

1013]. But as a teacher or lecturer of physics it is

necessary to push and to urge our students to think

through these translations. One of the most promising

ways to implement (that is to learn) knew knowledge

is to create cognitive conflicts between different per-

spectives to let the students find a solution of these

conflicts. We would be bad teachers of physics and

mathematics if we presented one and only one truth.

As a final remark I want to look back into the history

of mathematics and especially into the history of the

quaternionists who wanted to promote quaternion al-

gebra – and who failed. We can learn something

about this failure. Felix Klein and Arnold Sommer-

feld used the theory of quaternions in a convincing

and impressive way to explain the physics of the

gyroscope (see section 7 of chapter I in [Kle97]). At

the end of this chapter Klein and Sommerfeld wrote:

“...we want to bring forward also an advantage which

is as well attributed to the theory of quaternions and

vector analysis, namely the independence of their

operations and their basic units from the coordinate

system. However ... it would mean to misunderstand

the character of analytic geometry if we always and in

principle would not use coordinates explicitly when

performing calculations.” [Kle97, p.68].

Klein and Sommerfeld here describe the struggle bet-

ween supporters of coordinate free methods in qua-

ternion algebra and the supporters of a more frequent

use of coordinates. Their conclusion: “It is important

to think invariantly, not to calculate invariantly.”

In geometric algebra we are in a similar situation to-

day, when supporters of coordinate free methods

claim that essential calculation should be done

without coordinates. Is this really possible? Goldman

gives a clear answer: “Does the full geometric algebra

really lead to coordinate free methods for all of

Computer Graphics? Again in my experience the

answer is no” [Gol08, p. 656].

We should therefore show a meta-conceptual open-

ness and teach both strategies: working with and

working without coordinates. The invention of coor-

dinates was at least a decisive step in the conceptual

development of modern mathematics, as Freeman

GraVisMa 2010 Communication Papers

- 128 -

Dyson writes: “It means that the deepest concepts in

mathematics are those which link one world of ideas

with another. In the seventeenth century Descartes

linked the disparate worlds of algebra and geometry

with his concept of coordinates” [Dys09, p. 218]. In a

similar way geometric algebra works: It again links

the disparate worlds of algebra and geometry.

8. REFERENCES
[And02] Anderson, R. & Joshi, G.C.: Quaternions

and the Heuristic Role of Mathematical Structures

in Physics, arxiv:hep-ph/9208222v2 (4. Sept.

2002), http://arxiv.org/abs/hep-ph/9208222.

[Ati98] Atiyah, M.F.: The Dirac equation and geome-

try. Published in: Goddard, P. (Ed.): Paul Dirac –

The Man and His Work, pp. 108 - 124, Cam-

bridge University Press, Cambridge 1998.

[Bay04] Baylis, W.E. & Sobczyk, G.: Relativity in

Clifford’s Geometric Algebras of Space and

Spacetime, International Journal of Theoretical

Physics, No. 10, Vol. 43 (2004), pp. 2061 - 2079.

[Bla35] Blaton, J.: Quaternionen, Semivektoren und

Spinoren, Zeitschrift für Physik, No. 5/6, Vol. 95

(1935), pp. 337 - 354.

[Con47] Conway, A.W.: Applications of Quaternions

to Rotations in Hyperbolic Space of Four Dimen-

sions, Proceedings of the Royal Society of Lon-

don, Series A, No. 1025, Vol. 191 (1947), pp.

137 - 145.

[Dor03] Doran Ch. & Lasenby, A.: Geometric Al-

gebra for Physicists, Cambridge University Press,

Cambridge 2003.

[Dys09] Dyson, F.: Birds and Frogs, AMS Einstein

Lecture, Notices of the American Mathematical

Society, No. 2, Vol. 56 (2009), pp. 212 - 223.

[Fli20] Flint, H.T.: XLIII. Applications of quater-

nions to the theory of relativity, Philosophical

Magazine Series 6, No. 232, Vol. 39 (1920), pp.

434 - 449.

[Gol08] Goldman, R.: After the revolution: Geo-

metric algebra for Computer Scientists in the

twenty-first century, book review, Computer-

Aided Design, Vol. 40 (2008), pp. 655 - 656.

[Gra77] Grassmann, H.G.: Über den Ort der Hamil-

ton’schen Quaternionen in der Ausdehnungslehre,

Mathematische Annalen, Vol. 12 (1877), pp. 375

- 386.

[Hes71] Hestenes, D.: Vectors, Spinors, and Com-

plex Numbers in Classical and Quantum Physics,

American Journal of Physics, No. 9, Vol. 39

(1971), pp. 1013 - 1027.

[Hes03] Hestenes, D.: Reforming the Mathematical

Language of Physics, Oersted Medal Lecture,

American Journal of Physics, No. 2, Vol. 71
.

(2003), pp. 104 -121.

[Hor02] Horn, M.E.: Quaternionen in der Hochschul-

physik am Beispiel der Speziellen Relativitätsthe-

orie. Published in: Nordmeier, V. (Red.): Ta-

gungs-CD der DPG-Frühjahrstagung des Fachver-

bands Didaktik der Physik in Leipzig, Beitrag

26.24, LOB – Lehmanns Media, Berlin 2002. See

also: Quaternions in University-Level Physics

Considering Special Relativity, arxiv:physics/

0308017v1 (5. Aug. 2003),

http://arxiv.org/abs/physics/0308017.

[Hor07] Horn, M.E.: Quaternionen und Geometrische

Algebra. Published in: Nordmeier, V. & Oberlän-

der, A. (Eds.). Tagungs-CD der DPG-Frühjahrs-

tagung des Fachverbands Didaktik der Physik in

Kassel, Beitrag 28.2, LOB – Lehmanns Media,

Berlin 2006. See also: Quaternions and Geometric

Algebra, arxiv:physics/0709.2238v1 (14. Sept.

2007), http://arxiv.org/abs/0709.2238.

[Hor09] Horn, M.E.: Vom Raum zur Raumzeit. Pub-

lished in: Höttecke, D. (Ed.): Chemie- und Phy-

sikdidaktik für die Lehramtsausbildung, Beiträge

zur Jahrestagung der GDCP in Schwäbisch

Gmünd, Band 29, pp. 455 - 457, LIT-Verlag Dr.

W. Hopf, Berlin 2009.

[Kle97] Klein, F. & Sommerfeld, A.: Über die Theo-

rie des Kreisels, Heft I, B. G. Teubner Verlag,

Leipzig 1897.

[Kle79] Klein, F.: Vorlesungen über die Entwicklung

der Mathematik im 19. Jahrhundert. Part I pub-

lished as Vol. 24 and part II as Vol. 25 of

Courant, R. (Ed.): Die Grundlehren der Mathe-

matischen Wissenschaften in Einzeldarstellungen

mit besonderer Berücksichtigung der Anwen-

dungsgebiete, Julius Springer Verlag, Berlin 1926

and 1927. Reprint: Springer Verlag Berlin, Hei-

delberg, New York 1979.

[Lan19] Lanczos, C.: Die Funktionentheoretischen

Beziehungen der Maxwellschen Äthergleichun-

gen. Ein Beitrag zur Relativitäts- und Elektro-

nentheorie. Dissertation, Universität Budapest,

Verlagsbuchhandlung Josef Németh, Budapest

1919. See also: The Functional Theoretical

Relationships of the Homogenous Maxwell Equa-

tions, arxiv:physics/04080079v1 (17. Aug. 2004),

http://arxiv.org/abs/physics/0408079.

[Pau27] Pauli, W.: Zur Quantenmechanik des mag-

netischen Elektrons, Zeitschrift für Physik, No.

9/10, Vol. 43 (1927), pp. 601 - 623.

[Sil12] Silberstein, L.: LXXVI. Quaternionic form of

relativity, Philosophical Magazine Series 6, No.

137, Vol. 32 (1912), pp. 790 - 809.

[Sil14] Silberstein, L.: The Theory of Relativity,

Macmillan & Co., London 1914.

GraVisMa 2010 Communication Papers

- 129 -

GraVisMa 2010 Communication Papers

- 130 -

Impact Crater Detection on Mars Digital Elevation and Image
Model

Mert Degirmenci
Middle East Technical University,

Turkey
mert.degirmenci@ceng.metu.edu.tr

Shatlyk Ashyralyev
Middle East Technical University,

Turkey
shatlyk.ashyralyyev@ceng.metu.edu.tr

ABSTRACT

As outer space image acquisition techniques progress, larger amounts of planetary data sets become available. Impact crater statistics
about planets is an important resource as use of this information reveals geological history. Since manual detection of impact craters
requires substantial human resource, there is a compelling need to investigate automated crater detection algorithms. In this study,
we develop a novel framework to detect Martian impact craters by fusing data obtained from Mars Global Surveyor. In our proposed
method, extracted craters from Mars Digital Image Model (MDIM) are crosschecked by using Mars Digital Elevation Model (MDEM).
Multi population genetic algorithm (MPGA) has been devised to extract craters from scale invariant feature set found by SIFT algorithm.
In order to decrease the number of false positives, extracted from MDIM are validated by detected basins from MDEM. Experimental
results on NASA databases suggest high crater detection rates.

1 INTRODUCTION
Impact craters are formed by collision of two celestial bod-
ies. Planetary science utilizes the impact crater databases
to extract characteristic information about both colliding
bodies. Reliably extracted crater features enable geolo-
gists inspect hydrological processes, and climatic infor-
mation about the planet under consideration. Surface age
prediction also relies on size and frequency distributions
of craters. Quest for geological information about re-
cently scanned planets stimulates the need for impact crater
databases. Impact crater detectors are also utilized in space
exploration. Spacecrafts need to incorporate a crater de-
tector for visual positioning. In order to land on asteroids
autonomously, spacecrafts must calculate the locations of
the impact craters based on 3D model of the space and 2D
images obtained. Both usage area of a crater detector sys-
tem requires highly accurate results.

In order to create credible crater databases, a number of
scientists have manually examined the optical satellite im-
ages and gathered information about crater features. The
most comprehensive data set, known as Barlow catalog,
includes characteristic information for more than 40,000
craters on Mars [Bar88]. Even though visual inspection of
satellite images may reveal key information about impact
craters, this process eventually becomes infeasible upon ar-
rival of large volume sensor data. Recently acquired sensor
data have increased the number of research studies about
automatic impact crater detection.

Significant number of researchers has used optical
images to detect impact craters. These visibility based
methods have limitations with regard to illumination, sur-
face characteristics, and occlusion. Although most impact
craters have obvious circular features, impact angle and
geological deformations severely affect visibility of them.
Significant overlap between craters also degrades accuracy
of automatic crater detectors using optical sensor data
captured at frequently hit areas of the planets. To address
these challenges, we propose a data fusion approach for

impact crater detection. Our algorithm reduces the error
by fusing elevation data and optical data. In this section,
we address previously researched optical image-based and
elevation-based crater detection algorithms.

Existing body of research on crater detection algorithms
generally focus on optical images to produce scalable crater
databases. Most of the proposed frameworks incorporate
either unsupervised or supervised methods to identify fea-
tures and whereabouts of impact craters. Unsupervised
techniques focus on finding rims and merging them to lo-
cate the crater. Hough transform based methods are gen-
erally incorporated in this class of techniques. Supervised
learning methods, on the other hand, involve kernel-based
and neural network based learning methods for training.
Support Vector Machines are usually used as classifiers in
crater detection.

Since high level of accuracy is needed for a crater
database to be utilized by planetary scientists, researchers
have combined several crater detection algorithms in order
to produce more accurate results. Sawabe et al. have
used multiple boundary based approaches and merged the
results obtained [Saw06]. In the first approach they have
used images that are classified considering illumination.
When shady and illuminated pattern is recognized, they
fit a circle to the surrounding edges. Although abrupt
brightness changes may reveal a lot about the surface
under consideration, the presence of sensor data with
correct illumination is often an unrealistic assumption to
make. The second approach they have used tries to find
edge pixels of interest using a vectorized feature extractor
proposed by Sugiyama et al. [Sug97]. Then a roundness
measure is checked for identification of circles. Other
two approaches proposed by Sawabe et al. uses Hilditch’s
thinning algorithm and fuzzy Hough transform in addition
to previously discussed algorithms respectively.

All of the described approaches proposed by Sawabe
et al. up to now suffer from elliptic shape of impact
craters. Depending on geological deformations on the sur-

1

GraVisMa 2010 Communication Papers

- 131 -

Skala
Obdélník

face, there is a high possibility that craters form degraded
ellipses rather than circles on the surface. In fact, most
craters in the Barlow catalog can hardly be characterized
by circularity features [Bar88].

Machine learning approaches have also been applied in
order to detect and catalog impact craters. Wetzler et al.
have used various supervised learning algorithms, includ-
ing ensemble methods (bagging and AdaBoost with feed-
forward neural networks as base learners), support vector
machines (SVM), and continuously scalable template mod-
els (CSTM) to derive crater detectors from ground-truthed
images [Wet05]. They have noted that the SVM solu-
tion to the problem performs superior on crater detection
and localization compared to boundary-based approaches
such as Hough Transform [Wet05]. However, their imple-
mentation demands huge ground-truth data and computa-
tional resource considering that SVM models they found
involved approximately five thousand support vectors. In
order to overcome large computational demands, they have
proposed using blocked-FFT implementation of the SVM
decision function [Bur04].

A number of researchers have used combination of
supervised and unsupervised techniques to detect impact
craters. Kim et al. propose three staged crater detection
system [Kim05]. In the first stage, they eliminate noise
in the image by extracting region of interest. They also
consider edge direction, and illumination angle at this
stage. In the second stage of their algorithm, which they
call organization stage, primitive arcs are organized by
graph and conic section fitting. Candidate craters are
propagated to the last stage, where they are verified by
a fitness measure and a false crater classifier based on
artificial neural networks.

Honda et al. have also combined machine learning ap-
proaches with boundary based methods [Hon00]. In the
framework they have proposed, image is first binarized. To
find craters, circular object detection is then applied us-
ing a combination of Hough Transform and Genetic Algo-
rithm. At the last stage, they have utilized Self-Organizing
Maps to categorize candidate craters. The two frameworks
discussed above incorporate both supervised learning tech-
niques and boundary based analysis of optical satellite im-
agery.

Ellipse fitting algorithms are frequently used when re-
searchers model the crater to be detected as an ellipse.
Clustering techniques such as K-means are generally used
for partitioning the feature points into set of candidate
craters. Leroy et al. have employed the same idea to isolate
individual craters [Ler01]. After partitioning, they have fit
an ellipse on the boundary of the craters. Although bound-
ary based methods provide simple yet powerful crater de-
tectors, they noted that illumination angle and noisy sensor
data may obstruct detecting impact craters. In order to alle-
viate these problems, researchers have complicated the fo-
cusing process of crater detection by smoothing and apply-
ing morphological operations to optical images. Marchetti
et al. notes that smoothing image increases robustness to

noise significantly [Mar04]. However, the information con-
tained in optical data for overlapping craters may be lost
due to smoothed image.

Recently, NASA revealed sufficiently precise and com-
prehensive digital image (DIM), and elevation (DEM) data
on Mars. This advancement lead to more reliable crater ex-
tractors. Researchers have used raw DEM data to detect
impact craters. Bue et al. have discussed limitations of op-
tical image data and outlined an algorithm using solely dig-
ital elevation model [Bue07]. They utilized elevation of the
surface to detect basins. Idea of Bue’s study was to merge
high curvature edges and basins of elevation model to de-
tect crater rims. Located crater rims are passed through
a set of morphological operations to thin and close the
gaps. They applied Hough Transform to detect craters and
noted significant improvements over optical image based
crater detectors. Their findings are important to us since
this was the first study using DEM to detect impact craters.
Improvements can be promised over their implementation
by incorporating digital image data. Machine learning ap-
proaches can also be included to increase the accuracy of
their craters detector.

In this study, we address inherent challenges in crater de-
tection such as limitations of image acquisition techniques
and deformations of craters. We improve the accuracy of
existing crater detectors by fusing the results obtained from
height data and optical image data. Next section gives an
overview of the framework proposed.

2 OVERVIEW
Our framework can be decomposed into two modules.
These are ellipse detection and basin detection modules.
The two result set obtained are merged at the end to
increase the reliability of the algorithm. In this section,
algorithms involved in both components of the system
are described. Following sections include more detailed
discussion of the methods.

Optical image processing module first computes scale in-
variant feature transform of the image proposed by Lowe
[Low99]. Main reason we have used SIFT features is their
robustness to scale, orientation, and affine distortion. Scale
invariance is especially important considering high scale
variance between craters to be detected on Mars. These
features fed into a multi population genetic algorithm to
find ellipses. Detected ellipses are verified by results of
DEM processing module.

Elevation data processing module smoothes the height
map of the Mars surface. Smoothing the surface increases
the accuracy of the basin extraction process. The basins
are found using drainage network extraction algorithm pro-
posed by Freeman et al. [Fre92]. Sink sources of the height
map are generally craters to be detected. However, Martian
landscape involves non-crater basins as well. Thus, basin
detection module of the framework is generally not enough
to be used as a reliable crater extractor. This is the reason
we fuse the results obtained of basin and crater detection
modules. The flowchart of the system is given in Figure
(1).

2

GraVisMa 2010 Communication Papers

- 132 -

Skala
Obdélník

Figure 1: Overview of crater detector system

3 CRATER EXTRACTION FROM DIM

As described in the overview section of this document, we
employ scale invariant feature transform and multi popula-
tion genetic algorithm to find impact craters from optical
data. In this section, we will give a detailed description of
both algorithms involved.

3.1 Scale Invariant Feature Transform

Although the existing body of research on impact crater de-
tection focus on extracted edges, we have also implemented
SIFT algorithm which aims to reliably identify scale in-
variant features of an object proposed by Lowe [Low99].
Compared to the edges extracted, SIFT features are well
localized around the rims of the craters as seen in Figure
(2). The method that Lowe has proposed transforms image
into collection of feature vectors that are invariant to scal-
ing, rotation, and illumination changes. SIFT algorithm in-
volves four main stages, which are scale-space extrema de-
tection, keypoint localization, orientation assignment, and
keypoint descriptor. Keypoints are defined as the extrema
points of Difference of Gaussians (DoG) that occur at mul-
tiple scales. The reason of using DoG instead of gaussians
is to gain efficiency. The algorithm eliminates outliers by
discarding low-contrast keypoints and edge responses.

SIFT features have gained popularity in computer vision
domain due to its successful applications in feature match-
ing. Recently, SURF (Speeded Up Robust Features) , a
faster version of the SIFT algorithm has been proposed
which is based on Haar Wavelet responses [Bay08]. Al-
though SURF feature detector is faster than SIFT, a com-
parative study between SURF and SIFT reveals that SURF
features are not stable against rotation and illumination
changes [Jua09]. This is the main reason we have used
SIFT features in our study of a crater detector. High rota-
tion variation between craters and illumination changes are
possible due to the Mars surface, image acquisition equip-
ment used, and the camera parameters involved.

Figure 2: (A) Optical data obtained from Mars surface (B)
SIFT features highlighted (C) Edges extracted by canny
edge detector

3.2 Genetic Algorithm Variants for Ellipse
Detection

In our implementation of crater extractor from DIM, craters
are assumed to have elliptic shape. Since SIFT features
extracted from previous stage of our system are assumed to
be scale invariant, elliptic assumption of the feature vector
is reasonable.

Most methods to detect ellipses from images can be cate-
gorized into two major groups. These are Hough Transform
(HT) based methods, and stochastic algorithms.

HT based methods perform a mapping from image
space to parameter space. The optima’s of parameters
corresponds to instances of primitives. Although HT is
highly accurate and feasible to use for primitives with
small number of parameters, computational demands of
the method grows exponentially along with the param-
eter number [Yin99]. Since we need to detect ellipses
which have five arbitrary parameters, HT based methods
are infeasible to use because of large parameter space
involved.

Stochastic algorithms have also been applied for geo-
metric primitive extraction on 2D images since primitive
extraction has been shown to be an optimization problem
[Rot93]. Most popular stochastic algorithm used for prim-
itive extraction is genetic algorithm (GA). Inspired by evo-
lutionary biology genetic algorithm tries to find an approxi-
mate solution to optimization problems. Instead of exhaus-
tively searching parameter space as in the case of HT, GA
iteratively refines population to cluster solutions around the
global optima. Moreover, inherently parallel nature of GA
can be exploited on parallel computing architectures to pro-
duce scalable algorithms. A number of researchers have al-
ready used this idea to cope with growing datasets [Deg10].

Although GA based techniques have inherent strengths
over HT based methods, finding multiple instances of a ge-
ometric primitive can’t be directly mapped into problem
space of GA because it approximates a global maximum.
However, in our crater detection implementation, we want
to detect several locally maximum ellipses rather than find-
ing the globally optimal ellipse in the image. This is the
reason we have implemented a multi population genetic al-
gorithm that is able to find several locally optimal ellipses
in the given image.

3

GraVisMa 2010 Communication Papers

- 133 -

Skala
Obdélník

Figure 3: One iteration of Multi-Population Genetic Algo-
rithm

The classical genetic algorithm implementation may also
suffer from premature convergence. The term is used for
harmfully fast convergence of a population to a subopti-
mal solution. The two commonly used solutions to this
problem are fitness sharing and replacement of similar in-
dividuals. Both of the proposed modifications to genetic
algorithm maintains the diversification of the population in
order not to converge directly to a premature solution. The
former, also called Sharing Genetic Algorithm (SGA), is
proposed by Lutton et al. [Lut94]. SGA shares the fitness
of similar individuals to decrease clustering around a sin-
gle solution. The later, on the other hand, simply replaces
the similar individuals with randomly generated ones to in-
crease the diversity of the population. Although the re-
placement is necessary as the fittest individuals dominate
the population, replacing with random individuals degrades
the performance of the genetic algorithm since it may lead
the population to an already searched space. Thus, SGA
has inherent strengths over replacement of similar individ-
uals method. Note that, SGA can also be used for the local
optima search problem since it reduces the fitness values of
individuals clustered around single optima.

The multi-population genetic algorithm (MPGA) is an-
other variant of GA that can be used for multiple local
optima detection. A number of subpopulations are gener-
ated and evolved in order to find several optima’s. These
subpopulations can be thought as islands where individuals
can travel in between and create their own one. This adap-
tive clustering mechanism both concentrates the solutions
around optimal points and diversifies the population across
the search space. A research study conducted by Yao et al.
investigates the use of both MPGA and SGA over the el-
lipse detection problem [Yao05]. Results of their study re-
veals that MPGA outperforms SGA in terms of both accu-
racy and performance. Following section of this document,
describes the multi-population genetic algorithm used for
ellipse detection on SIFT keypoints.

3.3 MPGA for Ellipse Detection
In the ellipse detection context, multi-population genetic
algorithm evolves several populations aimed to represent

Figure 4: A chromosome that defines an ellipse over five
keypoints

ellipses from keypoints extracted. Figure (3) shows one it-
eration of MPGA where a number of populations evolve in
parallel. Communication between subpopulations are per-
formed through migration of individuals from one subpop-
ulation to another. Creation of a new population is also
possible when an individual does not exhibit an affinity
with any existing populations. As the number of epochs
increase, subpopulations can possibly replicate each other
which would decrease the performance. To prevent this
danger, our MPGA algorithm considers the merging the
similar subpopulations.

In the convergence case of a subpopulation, the keypoints
of detected ellipse is removed from the image, and the indi-
viduals are deported. Note that, as the number of subpop-
ulations decrease the number of individuals per population
will increase. Thus, search will accelerate as the number of
ellipses in the image decreases.

As seen in the Figure (3), MPGA can be characterized
by a set of operations on individuals; crossover, mutation,
fitness evaluation, and orientation. Orientation of an in-
dividual requires a set of operations for habitat selection,
which are merging, migration, and new subpopulation gen-
eration. This section describes all stages of MPGA in the
context of ellipse detection.

Individual Representation Individuals, also referred as
chromosomes, are candidate ellipse parameters. As seen in
Eq. (1), an ellipse can be represented with it’s five arbitrary
parameters.

p0x2 +2p1xy+ p2y2 +2p3x+2p4y+1 = 0 (1)

where (x,y) denotes the x and y coordinates of the feature
points, and p0..4 are parameters of the ellipse.

Given any five points (xi,yi) where i ∈ Z : 0≤ i≤ 4, pa-
rameters of an ellipse passing through them can be com-
puted by solving five linear equations given in Eq. (2).

4

GraVisMa 2010 Communication Papers

- 134 -

Skala
Obdélník


x2

0 2x0y0 y2
0 2x0 2y0

x2
1 2x1y1 y2

1 2x1 2y1
x2

2 2x2y2 y2
2 2x2 2y2

x2
3 2x3y3 y2

3 2x3 2y3
x2

4 2x4y4 y2
4 2x4 2y4




p0
p1
p2
p3
p4

=~0 (2)

Using this fact, the chromosome of an individual can
be composed of five keypoints. In the literature, there
are other individual representations for ellipse detection.
Mainzer represents an individual directly by five parame-
ters of the ellipse [Man02]. That is the parameters p0..4 are
encoded in the chromosomes of population. However, as
Yao et al. noted that this representation generates a larger
search space since the solutions may not even represent
an existing ellipse. In our implementation, on the other
hand, search is focussed on existing ellipses since chromo-
somes encode real keypoints extracted from optical images
of Mars. In our implementation minimal point representa-
tion have been used for chromosome encoding. Figure (4)
depicts an individual chromosome that is represented by
a dashed ellipse over five keypoints extracted. Blue stars
on the image shows the keypoints extracted by SIFT algo-
rithm.
Fitness Evaluation In order to evaluate how fit the in-
dividual is, genetic algorithm requires a fitness function
that returns a comparable value given a chromosome. El-
lipse detection algorithms that involve the GA have widely
match template around the ellipse represented by an indi-
vidual. Mainzer et al. suggests fitness function at Eq. (3)
that punishes edge pixels far from the ellipse [Man02] for
each pixel (x,y) on the candidate ellipse.

f1 = ∑
x,y

max
∀i, j

[E(x+ i,y+ j)− 1
c
(|i|+ | j|)] (3)

where E(x,y) =
{

1 if Image(x,y) is an edge pixel
0 Otherwise

Considering that this operation has to be performed
whenever a fitness of an individual has to be calculated, ef-
ficiency should be optimized. Distance map data structure
stores the closest distance to an edge for each pixel in the
original image. An approximation to a distance map can
be realized by a set of morphological operations.

The research studies that aim to extract ellipses from 2D
images rely on detected edges [Yao05]. However, imagery
data obtained from the surface of the Mars exhibits high
illumination variances and outlier edges. Instead of using
only edge responses for evaluating the fitness of an individ-
ual, the keypoints extracted by SIFT algorithm have also
been utilized. The distance map for SIFT features and the
edges have been computed using morphological dilation
with structuring image as 4x4 normal distribution. The fit-
ness is then calculated as given in Eq. (4) that matches an
ellipse around the set of feature points.

f2 = w1 f1 +w2 ∑
x,y

max
∀i, j

[S(x+ i,y+ j)− 1
c
(|i|+ | j|)]) (4)

Figure 5: Uniform crossover operation over two individuals
P1 and P2 which produces the offspring O1

where E(x,y) and f1 are as in Eq. (3), w1 and w2 are
weights determining the importance of edge response and
SIFT features respectively. The equation for S(x,y) is given
in Eq. (5).

S(x,y) =
{

1 if Image(x,y) a SIFT keypoint
0 Otherwise (5)

Merging of Subpopulations As subpopulations evolve,
converging ones may replicate in the population. In this
case, all subpopulations evolve through a one globally op-
timal crater. To prevent replication, close subpopulations
should be merged. Euclidean distance between cluster
means can be used as closeness measure of two subpop-
ulations. In literature, researchers have applied an empiri-
cal threshold over cluster distances to determine whether a
merging operation should occur or not [Yao05]. However,
scale variant distance measurements are not stable for small
number of subpopulations. In our implementation, Maha-
lanobis distance is measured to check the merging condi-
tion.

While merge operations are begin performed, half of the
fittest individuals are selected for a new subpopulation as
suggested by Yao et al. [Yao05]. However, this imple-
mentation of merging operation causes the population to
decrease. If a population undergo many merging opera-
tions, premature convergence problem may arise since the
size would not be adequate to find all optima’s. To prevent
this side effect, size of each subpopulation is increased to
compensate for the loss. The chromosomes of the intro-
duced individuals are randomly generated from the set of
keypoints.

Migration & Splitting On each evolution iteration of the
population, chromosomes select the subpopulation with the
least Mahalanobis distance. If a chromosome is not suffi-
ciently close to any subpopulation, it creates a new subpop-
ulation center of which is itself.

5

GraVisMa 2010 Communication Papers

- 135 -

Skala
Obdélník

Crossover Uniform crossover has been implemented
to produce offsprings. Since the individuals are repre-
sented by five feature points, the uniform crossover oper-
ation merely swaps the points of one parent with the other
to produce an offspring. The offspring bares the subset of
parents keypoints. Figure (5) shows the uniform crossover
operation over two chromosomes.
Mutation The mutation operation is defined as randomly
changing a gene of the chromosome and reassigning it to
a new value. The operation is required to lead search to-
wards uninhabitant areas. However changing one keypoint
randomly generally results in degraded ellipse if the indi-
vidual to be mutated is sufficiently fit. Therefore, mutation
operation has to be enhanced to change more than one key-
points of the chromosome. In our implementation, a ran-
dom number of keypoints have been replaced by mutated
ones.

4 BASIN EXTRACTION FROM DEM
When two celestial bodies collide, a basin is usually formed
at the larger colliding body. The abrupt height variation on
the surface of planets survive longer than the rims of the
basins which are degraded due to erosional processes. The
optical data obtained does not carry any information about
the height of the surface. Therefore, elevation data obtained
from Mars surface have been utilized to find the basin lo-
cations. Researchers have proposed several approaches to
find sink sources in elevation data. Most of the algorithms
developed can be classified as either hydrological or mor-
phological approach. The former approach uses the flood-
ing algorithm of a water to detect sink sources, while the
later recognize basins by their shape.

Since the impact craters on the Mars surface form to-
pographic basins, hydrological algorithms outperform on
basin location extraction. The survey of sink point extrac-
tors shows that the algorithm proposed by Callagnan et al.
is being used commonly [Kis04]. In Callagnan’s algorithm
a rain drop is assumed in each cell of the elevation model
with eight possible flowing directions [Cal84]. Due to pre-
determined flow direction for each cell, the algorithm is
also called "Deterministic 8" (D8). The cell that the rain
drop will flow into is determined by the slope of the eight
possible flow directions.

Although Callagnan’s algorithm provide simple and re-
alistic flow simulation, the method fails on planar surfaces
where surface runoffs are prevalent. To increase the relia-
bility of the method, Freeman proposed multiple flow di-
rection model that can find divergent flow drainage points
by favoring water flow to several adjacent cells of lower el-
evation [Fre92]. The amount of water distributed from a
higher elevation rain drop, di,is given in Eq. (6).

di =
max0,Sw

i
8

∑
j=1

max0,Sw
j

(6)

where Si is the slope of adjacent cells, and w is a constant
factor determining the divergence of the flow.

Figure 6: Sink source detection on Mars Digital Elevation
Model

The distribution of the water drop is proportional to the
slope of adjacent cells as Eq. (6) suggests. We have ap-
plied the multiple flow direction model to calculate the lo-
cations of the sink sources. Since the elevation data of
the Mars surface is highly vibratile, the DEM data is first
smoothed before the drainage networks are extracted. Fig-
ure (6) shows a rain drop with the flow directions on the
Mars digital elevation data. Once the flow of water is stabi-
lized, the resulting image of rain drop catchments is propa-
gated to the last stage of our algorithm where the results of
DEM and DIM data is fused.

5 MERGING RESULTS
The framework proposed have operated on two data set
with two different algorithms. The result set is composed
of the most fit ellipses extracted from DIM & DEM data
and the image of basin locations obtained from DEM data.
The figure (7) shows the set of ellipses extracted from op-
tical and elevation data. The complementary nature of the
results increases the robustness of the algorithm. Note that
a portion of the ellipses extracted do not correspond to the
craters. To decrease number of false positives, the basins
extracted should be used to verify the ellipses.

To finalize the decision about the existence of impact
craters, for each ellipse the ratio of the ellipse area and the
catchment area under the ellipse is calculated. This metric
is thresholded with fixed constant determined by our empir-
ical studies. Finally the fittest ellipses extracted from DEM
& DIM data are merged to compose candidate craters. To
eliminate duplicate ellipses, the overlapping area is com-
pared with the area of the bigger ellipse for each pair of
ellipses. If the duplication is detected, the result of DEM
data is output since ellipses obtained from DEM data have
shown higher accuracies.

6 EXPERIMENTS & RESULTS
The test site we have selected for our experiments contains
heavily cratered area that includes famous Herschel crater.
The digital elevation and optical data is obtained from web
map server (WMS) of NASA. Mars Digital Image Mosaic
(MDIM) and Mars Orbital Laser Altimeter (MOLA) down-
loaded from WMS have the approximate bounding box as
7.42 ◦,−18.42 ◦, 172.02 ◦,−7.58 ◦. The terrain chosen con-
tains large number of degraded craters as well as non-crater

6

GraVisMa 2010 Communication Papers

- 136 -

Skala
Obdélník

basins and other topographic structures. Another reason for
choosing this area is the significant overlap over Barlow
Catalog and the test sites previously chosen by researchers
[Bue07].

The data retrieved from WMS is partitioned into 113 im-
ages of size 720x360 and overlapping ratio 1/4. The perfor-
mance of the algorithm is measured by the metrics at Eq.
(7-9). These metrics are proposed by Shufelt [Shu99] and
have been used to measure the performance of crater detec-
tors by a number of researchers [Bar04], [Kim05], [Bue07].

Detection =
100T P

T P+FN
(7)

Branching =
FP
T P

(8)

Quality =
100T P

T P+FP+FN
(9)

In Eq. (7-9), TP, FP, and FN are abbreviations for True
Positives, False Positives, and False Negatives respectively.
The Detection metric measures the crater detection perfor-
mance. The Branching metric measures the delineation
performance. And Quality can be thought as measure of
overall performance of the algorithm.

The researchers who have proposed crater detection al-
gorithms have chosen different test sites. Some of them
have even chosen test sites that do not include degraded
craters [Kim05]. In order to test for reliability, we have se-
lected a challenging terrain that includes highly degraded
craters as in [Bue07]. The results are compared with
both manually detected Barlow crater database and auto-
matic crater detection algorithms proposed by researchers
[Kim05], [Bue07], [Bar04]. The table 6 shows their find-
ings. The D,B, and Q represents the metrics given in Eq.
(7-9). Nontrivial test sites includes terrains where heav-
ily degraded craters are common. The trivial test site used
by Kim et al. includes only well-formed craters since they
have noted that the algorithm is not capable of detecting the
degraded craters [Kim05].

Our test site has more than 1/3 overlap with nontrivial
test sites. The algorithm developed in this document had
detected 621 craters in 113 segments. The number of non
craters that were detected is 127. Thus, the Branching fac-
tor of our study is approximately 0.26. This is the lowest
branching factor in the literature of impact crater detectors
test on nontrivial test sites (see Table 6). Most false pos-
itives correspond to degraded rims of large impact craters
with diameter > 20 km. The second best performing algo-
rithm in terms of branching factor includes curvature pro-
file calculation, basin detection, and hough transformation
[Bue07]. Although Bue et al. have proposed a confirmation
algorithm to verify the candidate craters found by Hough
Transform, their verification strategy did not rely on sepa-
rate set of calculations as in our case.

The algorithm we have proposed failed to detect 182 im-
pact craters that are listed on Barlow Catalog. Most of the
craters that our algorithm has failed to detect shows sub-
stantial deformations due to erosional processes. The de-

D B Q Test Site Ref.
Bue 74% 0.29 61% Nontrivial [Bue07]
Barlow 75% 0.00 75% Nontrivial [Bar88]
Barata 64% 1.65 31% Nontrivial [Bar04]
Kim 88% 0.15 78% Trivial [Kim05]

Table 1: Detection, Branching, and Quality metrics for dif-
ferent crater-detection algorithms

tection rate is approximately 73% in our nontrivial test site.
The rate of detection accomplished by this research is close
to the best performing automatic crater detection algorithm
in the literature [Bue07] and to the human detection rate
[Bar88]. The overall quality metric of our algorithm is also
approximately equal to the Bue’s study with 61%.

The comparisons in this section are made between simi-
lar test sites. The study of Kim et al. has not been compared
to our study because of their simple test site selection. The
metrics of the algorithm proposed in this document sug-
gests higher quality when the test site is chosen not to in-
clude degraded craters.

7 CONCLUSION
This document describes an algorithm for Martian impact
crater detection on Mars digital image and elevation data.
Data fusion approach for the DEM and DIM is a contri-
bution that improved the reliability of existing crater de-
tectors. The use of Scale-Invariant Features and Multi-
Population Genetic Algorithm is also novel for the litera-
ture of the crater detectors. The experimental results sug-
gest a high detection rates close to the best performing al-
gorithm and the most comprehensive crater catalog pre-
pared manually. The improvements over the framework
proposed are possible since the fitness evaluation procedure
of MPGA can be complicated with other measures such as
curvature profiles and heuristics. The adaptation of MPGA
certainly introduces the flexibility that the current set of al-
gorithms proposed lack. The complexity of fitness function
can be traded with accuracy. It remains a future work for
the authors to experiment with different fitness functions
to optimize the performance of the algorithm. The aim of
this study is to introduce a novel framework that is extensi-
ble and reliable to the literature of Hough Transform based
algorithms.

REFERENCES
[Bar88] N. G. Barlow, Crater size-distributions and a re-

vised Martian relative chronology, Icarus, vol. 75, pp.
285-305, 1988.

[Kim05] J.R. Kim, J.P. Muller, S.V. Gasselt, J.G. Mor-
ley, G. Neukum, Automated Crater Detection, A New
Tool for Mars Cartography and Chronology, Pho-
togrammetric Engineering and Remote Sensing, vol.
71, No. 10, pp. 1205-1217, 2005.

[Ler01] B. Leroy, G. Medioni, E. Johnson, L. Matthies,
Crater detection for autonomous landing on asteroids,

7

GraVisMa 2010 Communication Papers

- 137 -

Skala
Obdélník

Figure 7: (A) The elllipses detected on Mars Digital Image Mosaic (B) The ellipses detected on Mars Orbital Laser
Altimeter, both acquisited on 120.42 ◦ West, −18.42 ◦ South, 172.00 ◦ East, −10.58 ◦ North.

Image and Vision Computing, vol. 19, pp. 787-792,
2001.

[Wet05] Wetzler, P. G., Honda, R., Enke, B., Merline, W.
J., Chapman, C. R., and Burl, M. C., Learning to
Detect Small Impact Craters, in Proc. of the Seventh
IEEE Workshops on Application of Computer Vision,
vol. 01, 2005.

[Saw06] Y. Sawabe, T. Matsunaga, S. Rokugawa, Au-
tomated detection and classification of lunar craters
using multiple approaches, Advances in Space Re-
search, Volume 37, Issue 1, The Moon and Near-Earth
Objects, pp. 21-27, 2006.

[Sug97] Sugiyama, T., Abe, K., 1997. Edge feature anal-
ysis by a vectorized feature extractor and in multiple
edge. IEIC, D-2, J80-D-2, 6, pp. 1379-1389, 1997.

[Hon00] R. Honda, R. Azuma, Crater Extraction and Clas-
sifcation System for Lunar Images, technical report at
Department of Mathematics, Kochi University, 2000.

[Bur04] M.C. Burl, P.G.Wetzler, Resource-constrained
Application of Support Vector Machines to Sensor
Data, Data Mining in Resource-Constrained Environ-
ments, 2004.

[Bue07] B. D. Bue, T. F. Stepinski Machine Detection
of Martian Impact Craters From Digital Topography
Data, IEEE Trans. Geosci. and Remote Sens., vol.45,
pp.265-274, 2007.

[Mar04] B. L. Marchetti, L. Bruzzone, L. Lizzi, P. G.
Marchetti, J. Earl, M. Milnes, Recognition And De-
tection Of Impact Craters From Eo Products, 2004.

[Low99] D. G. Lowe, Object Detection from local scale-
invariant features, Proceedings of the International
Conference on Computer Vision, pp. 1150-1157,
1999.

[Cal84] J. F. O’Callagnan, D. M. Mark, The extraction of
drainage networks from digital elevation data, Com-
put. Vis. Graph. Image Process., vol. 28, no. 3, pp.
328-344, Dec. 1984.

[Bay08] H. Bay, A. Ess, T. Tuytelaars, L. V. Gool, SURF:
Speeded Up Robust Features, Computer Vision and
Image Understanding (CVIU), Vol. 110, No. 3, pp.
346-359, 2008.

[Jua09] L. Juan, O. Gwun, A Comparison of SIFT, PCA-
SIFT and SURF, International Journal of Image Pro-
cessing (IJIP) Volume(3), Issue(4) pp 143-152, 2009.

[Yin99] P.Y. Yin, A new circle/ellipse detector using ge-
netic algorithms, Pattern Recognition Letters, Volume
20, Pages 731-740, Issue 7, 1999.

[Rot93] G. Roth and M. D. Levine, Extracting geometric
primitives, Comput. Vision. Graphics Image Process-
ing: Image Understanding, vol. 58, pp. 1-22, 1993.

[Lut94] E. Lutton, P. Martinez, A genetic algorithm for the
detection of 2D geometric primitives in images. Pro-
ceedings of the 12th international conference on pat-
tern recognition, pp. 913, 1994.

[Yao05] J. Yao, N. Kharma, P. Grogono, A multipopula-
tion genetic algorithm for robust and fast ellipse de-
tection , Pattern Analysis & Applications, vol. 8 pp.
149-162, 2005.

[Deg10] M.Degirmenci, Complex geometric primitive ex-
traction on graphics processing unit, journal of
WSCG, Winter School of Computer Graphics, Vol-
ume 18, No.1-3, pp. 129-134, 2010.

[Man02] T. Mainzer, Genetic algorithm for shape detec-
tion, Technical report no. DCSE/TR-2002 06, Univer-
sity of West Bohemia, 2002.

[Fre92] T.G. Freeman, Calculating catchment area with di-
vergent flow based on a regular grid, Computer and
Geoscience, pp.413-422, 1991.

[Kis04] R. Kiss, Determination of drainage network in
digital elevation models, utilities and limitations,
Journal of Hungarian Geomathematics, Volume 2, pp.
16-29,2004.

[Shu99] J. A. Shufelt, Performance evaluation and analy-
sis of monocular building extraction from aerial im-
agery, IEEE Trans. Pattern Anal. Mach. Intell., vol.
21, no. 4, pp. 311326, 1999.

[Bar04] T. Barata, E. Ivo Alves, J. Saraiva, and P. Pina,
Automatic recognition of impact craters on the sur-
face of mars, in Proc. ICIAR, Porto, Portugal, pp.
489496, 2004.

8

GraVisMa 2010 Communication Papers

- 138 -

Skala
Obdélník

Toward Objective Segmentation Evaluation

Štěpán Šrubař

Department of Computer Science, FEI, VŠB - Technical University of Ostrava,

17. listopadu 15, 708 33, Ostrava, Czech Republic

stepan.srubar@vsb.cz

ABSTRACT
Two different segmentations of the same image can be evaluated in many ways. One resulting number hardly

generalizes all differences in segmentations. Moreover, common methods can evaluate similar segmentations as

quite different. Proposed evaluation divides dissimilarity into granularity and border difference. Granularity

difference represents number of segments while border difference evaluates a rate of agreement in delineating of

objects in the image. Such approach evaluates segmentations more precisely and keeps natural meaning of both

resulting values.

Keywords
Segmentation evaluation, probabilistic Rand index.

1. INTRODUCTION
Images are segmented for detection of objects and

their separation. There is no best segmentation for an

image. Still, many people will segment the same

image similarly to each other, thus there exist some

common rules for segmentation. Evaluation of

segmentation can be divided into two main classes.

The first takes image and its corresponding

segmentation, the second takes only two different

segmentation of the same image. We will be

interested here in the second category only.

Segmentation evaluation methods are often based on

the number of pixels (or probability of pixels) that

were incorrectly classified or differs in these two

segmentations. Some methods computes distance of

mis-classified pixels or border pixels to the nearest

correct place. Number of segments for evaluation was

also proposed. We can define evaluation using some

feature of the image or segments, namely size of

segments or its eccentricity. Mentioned methods were

closely described and compared in [Fer06a, Jia05a,

Zha96a].

The newest inventions were made in the first class of

evaluation methods. It was shown recently in

[Unn07a] that probabilistic Rand index (PRI)

outperforms some other methods from the same class.

That is the reason why I take PRI for comparison

with proposed method.

Three images (see fig. 1) and their segmentations was

used for testing and comparison. Figures 2 and 3

show segmentations of two different images. PRI of

segmentations in figure 3 is 0.54 and PRI of the first

segmentations in figure 2 and 3 is 0.607. The higher

number, the higher correspondence. Evidently PRI is

not suitable for segmentations where the same object

is segmented into different number of segments.

Many other methods suffers the same problem.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

Figure 1: Images 100075, 100098 and 103041 from Berkeley segmentation database [Mar01a].

GraVisMa 2010 Poster Papers

- 139 -

2. SEGMENTATION DIFFERENCE
We cannot say, objectively, what the correct number

of segments in segmentation should be. On the other

hand the borders of the segments are created

according to some rules which correspond to the

borders of objects. Therefore, segmentation

evaluation should measure the precision of borders

and suppress the number of segments. Still, the

number of the segments should be expressed by

another number.

For simplicity, first segmenter can detect only main

objects while the second segmenter can separate

these objects into smaller ones (see figures 2 and 3).

Still, the borders of main objects should correspond

in both segmentations. First task is to group segments

from the second segmentation to create equivalent

representation of objects from the first segmentation.

Such grouping expresses granularity difference.

Having coarse second segmentation with the same

number of segments as in the first segmentation,

difference of borders can be then evaluated.

Segmentation difference is then expressed as two

numbers. Border difference corresponds to

inaccuracy of borders of objects, while granularity

difference expresses difference in resolution of

objects.

Granularity Difference
We can assume that bigger segments are better

noticeable, thus they should have higher weight than

smaller segments. Taking logarithm of normalized

weighted sum of sizes of segments, we get following

formula of granularity:

g i =−log
∑ j

∣s ij∣
2

∑
j
∣s ij∣

2
,

where |sij| is the size of j-th segment

of the image i. Logarithm converted

unnatural geometric progression into

more suitable arithmetic

progression. This formula can be

also used for arbitrary shaped part of

an image, which will be used later.

Result of g(i) is between zero and plus infinity. In

numerator, the sum of sizes of segments is multiplied

by their weights which are the sizes of the segments,

thus the use of square. It is normalized by sum of

weights (sizes of segments) and number of pixels of

image. Both values are also identical which is

represented by a square.

Say, we have one segment in the first segmentation

representing some object. In the second

segmentation, the same object is represented by more

than one segment (see left bear in figure 2). We will

call these segments in the second segmentation as

joint segment. Such correspondence on an object in

image will be called binding one to many segments or

equivalently binding one segment to one joint

segment. Another allowed bindings are one to one

(trivial case of one to many), null to many and null to

one (trivial of previous). For clearness see figure 4.

Trivial cases will not be explicitly mentioned

hereafter. Many to many binding is forbidden

because it could lead to zero border difference for

totaly different segmentations.

Figure 2: Two segmentations of the image 100075. Third segmentation is partial result of processing of second

segmentation.

Figure 3: Two segmentations of the image 100098.

Figure 4: An example of binding in two images. Null

to one is on the left, one to many binding is in the

middle.

0

GraVisMa 2010 Poster Papers

- 140 -

Pseudocode of searching of bindings for two images

follows:

I ← find all intersections of segments

B ← null to many binding for each image

while I not empty

i ← remove the biggest intersection from I

if both segments from i unprocessed then

B ← create new binding from i

else if one segment from i unprocessed

if putting unprocessed segment into binding of

processed segment will not create many to

many binding then

put unprocessed segment into that binding

else

put unprocessed segment into

corresponding null to many binding

mark segments from i as processed

Now we have all segments in one to many or null to

many bindings. We can compute granularity

difference and border difference. First, we need

intersection in bindings to be able of computing

granularity:

b
k
=s

1k
∩s

2k
,

where s1k and s2k are joint segments that are bound.

For null to many binding we make intersection of

segments with whole image.

Suppose joint segment as an irregular shaped

segmented image. Granularity of binding with that

joint segment is defined as granularity of such

segmented image. Resulting granularity difference is

weighted sum of granularity of intersections:

gd  s1, s2=
∑

k
∣bk∣⋅g bk 

∑
k
∣bk∣

,

where |bk| is number of pixels of binding k and g(bk)

is its granularity.

Time complexity, according to pseudocode and

formulas, is O(n) where n is number of pixels of the

image.

Border Difference
Second value representing segmentation difference

evaluates some type of precision of borders. For this

purpose, we union segments in each joint segment to

get one to one bindings only (see the union of a bear

in the figure 2). Both null to many bindings are

omitted in evaluation of border distance.

Each binding has now two corresponding segments.

Border distance is based on sum of all pixels from

one segment to the nearest pixels of the other

segment. Proposed pseudonormalized border distance

can be computed using following formula:

where bi is binding, s1i is a segment from the

segmentation s1 and from the binding bi, d(x,s) is a

distance of pixel x to the nearest point of a segment s.

I propose euclid distances due to radial symmetry. w

and h represents width and height of the image

respectively.

The outer sum is pseudonormalized. Special case,

that was chosen for pseudonormalization, consists of

two segments in both segmentations as seen in figure

6. One segment takes left third while the second

segment takes the rest. The second segmentation is

horizontally flipped case of the first segmentation.

Border difference of such segmentation pair is
1

9 w·h
2

(see the number 9 in previous fomula). Function max

is used because similar case is created by rotation by

90° and we take the worse of these two cases. Such

segmentation pair is not the worst case, thus we call it

bd  s1, s2=
9⋅∑

bi
[∑

x∈s 1i

d  x , s2i∑x∈s 2i

d  x , s1i]

w⋅h⋅max w ,h
,

Figure 5: PRI and Border difference between 100098-1116 segmentation and 16 others. 1-6 are segmentations of

image 100075, 7-10 are segmentations of image 100098 and 11-16 are segmentations of image 103041. PRI

represents rate of correspondence, BD the rate of difference.

Figure 6: Segmentations for pseudonormalization of

BD.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0,2

0,4

0,6

PRI

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0,0001

0,0010

0,0100

0,1000

1,0000

BD

GraVisMa 2010 Poster Papers

- 141 -

pseudonormalization. On the other hand, typical

values are not higher than pseudonormalization value.

Time complexity of border difference is O(mn),

where n is number of pixels and m is number of

segments from both segmentations. Typically, the

number of segments is much smaller than the number

of pixels, thus the expected time complexity is O(n).

Running time of evaluation of granularity and border

differences are in milliseconds on segmentations like

in figures 2 and 3. Reference PRI method has time

complexity O(n2) and runs tens of seconds on these

segmentations to be computed precisely. For shorter

computation time, PRI must use randomization

algorithm Monte Carlo to estimate the result.

3. COMPARISON
I chose manually segmented images (see fig. 1) and

all its segmentations. Proposed border difference

(BD) is compared to probabilistic rand index (PRI)

[Unn07a] in the figure 5. Images indexed as 7-10

should maximaly differ from others. Differences by

BD are much greater than PRI and without any error

(see index 2). Moreover, BD has to be represented in

logarithmic scale.

Figure 7 shows robustness of proposed method.

Similarity difference is measured for three chosen

reference segmentations and the rest of the test set.

All segmentations corresponding to their references

are split from the other results by red line. The red

line is diagonal, thus we need both granularity and

border distance to make correct separation. Single

value is evidently insufficient.

4. CONCLUSION
Two segmentations cannot be easily compared using

a single number. Different number of segments does

not necessarily mean that segmentations are from

different images as the PRI could present. In fact, this

can be caused by different granularity only. Thus, as

was shown, granularity should be evaluated

separately from precision of borders of segments.

Such separation of properties in evaluation of

segmentations leads to more robust results.

5. REFERENCES

[Fer06a] Fernando C. Monteiro and Aurlio C.

Campilho. Performance Evaluation of Image

Segmentation. ICIAR 2006, LNCS 4141, p. 248–

259, 2006

[Jia05a] Xiaoyi Jiang, CyrilMarti, Christophe Irniger,

and Horst Bunke. Distance Measures for Image

Segmentation Evaluation. EURASIP Journal on

Applied Signal Processing, vol. 2006, pp. 1–10,

July 2005.

[Mar01a] D. Martin, C. Fowlkes, D. Tal, and J.

Malik. A database of human segmented natural

images and its application to evaluating

segmentation algorithms and measuring

ecological statistics. Proceedings of 8th IEEE

International Conference on Computer Vision

(ICCV ’01), vol. 2, pp. 416–423, Vancouver, BC,

Canada, July 2001.

[Unn07a] Ranjith Unnikrishnan, Caroline Pantofaru,

and Martial Hebert. Toward Objective Evaluation

of Image Segmentation Algorithms. IEEE

Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, no. 6, June 2007.

[Zha96a] Y. J. Zhang. A survey on evaluation

methods for image segmentation. Pattern

Recognition, vol. 29, pp. 1335-1346, 1996.

Figure 7: Similarity difference between three selected reference segmentations and segmentations of images

100075, 100098 and 103041. Horizontal axis represents border difference (in logarithmic scale) and vertical axis

represents granularity difference. Red line separates points representing pairs of segmentations that belong to the

same image. Points representing pairs from different images are on the right side of the red line.

0.0001 0.0010 0.0100 0.1000 1.0000

0

0.3

0.6

0.9

1.2

1.5

1.8

100075-1104 to 100075

100075-1104 to 100098

100075-1104 to 103041

100098-1116 to 100075

100098-1116 to 100098

100098-1116 to 103041

103041-1105 to 100075

103041-1105 to 100098

103041-1105 to 103041

GraVisMa 2010 Poster Papers

- 142 -

Knowledge representation using graph grammar rewriting
system

Jiří Zuzaňák
Computer Graphics and Multimedia

Brno University of Technology
612 66, Brno, Czech Republic

izuzanak@fit.vutbr.cz

Pavel Zemčík
Computer Graphics and Multimedia

Brno University of Technology
612 66, Brno, Czech Republic

zemcik@fit.vutbr.cz

ABSTRACT
Graph rewriting systems are applicable to vast majority of problems that are being solved in computer science.
From problems concerning program optimization, software verification, description, and parsing of structured
information to graph programming languages and layout algorithms. Graph rewriting systems are often represented
as sets of rules describing transformations on graphs. The graph rewriting rule encapsulates complete information
about applicable graph modification. In context of the described graph rewriting system, rules represent atomic
modification of graph. A novel approach to graph rewriting and criteria for rule application enabling development
of exhaustive graph rewrite system are introduced. The presented approach is derived from the well known double
pushout approach (DPO). This paper concentrates on discussion of knowledge formalization representation for
modeling concepts and on application of these concepts using the proposed programmed graph rewriting system.

Keywords
Graph rewriting, Knowledge representation, Graph grammars, Image processing, Computer vision

1 INTRODUCTION
Most of the computing techniques can be simulated by
graph rule based modifications performed on models.
Systems from Chomsky hierarchy of grammars based
on string transformations are used for modelling of var-
ious languages; similarly, graph rewrite systems (GRS)
based on graph transformations can be used to trans-
form models based on graphs.

This way, the proper set of graph transformations
(graph rewriting rules) can be used to describe seman-
tics of the simulated process. Such process can be e.g.
program optimization, software verification, parsing of
complex structured information, layout algorithms, or
modification of complex networks. Traffic networks,
simulation of chemical reactions, construction of arti-
ficial neural networks, etc. represents example of net-
works which can be modeled and transformed by graph
rewriting systems. Follows few examples (described in
more details) of application of graph rewriting systems.

In [11] traffic, networks are modelled by graph
rewriting system. Result of graph rewriting process

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

is Time Transition Petri Net (TTPN). Generated Petri
Nets can be directly used for simulation of particular
traffic situations. The graph grammars in this work
define semantics of a given start model as all the
reachable models that results from the application of
rules.

Graph transformations are used also for simulation
of chemical reactions. In [15] reactions are modelled
by set of edge relabeling graph transformations. Re-
action is based on transformation of substrate chemical
graph to a product chemical graph. Transformation of
is performed by breaking existing bonds and creating
new bonds between molecule atoms. Atoms of chem-
ical molecule are represented by vertices, while bonds
between atoms are represented by graph edges.

Graph rewriting systems can be also exploited for
rewriting of specialized patterns such are terms ([6,
2, 3]) and already mentioned strings. The theory of
term graph rewriting studies the issue of representing
finite terms as directed, acyclic graphs, and of model-
ing term rewriting by graph rewriting. Main advantage
of this approach is sharing of common subterms explic-
itly, avoiding to copy subterm when applying rewrite
rule with more than one occurrence of a variable in its
right-hand side.

Graph rewriting is also used for performing basic
computations (atomic steps) in graph programming
(GP) languages [14]. GP languages are based on
modification of input graphs, and related transforma-
tion of vertex and edge labels. Transformations are

GraVisMa 2010 Poster Papers

- 143 -

determined by set of rewriting rules, where rules are
part of graph algorithm. Resulted graph programming
language is suitable for solving graph problems at a
high level of abstraction, freeing programmers from
handling low-level data structures.

Graph rewriting systems can be used as computa-
tional model for more general class of languages than
just GP languages. Functional and logical program-
ming languages for example. Whilst implementation of
functional languages by graph rewriting is simple and
intuitive, the implementation of logic programming lan-
guages is less direct and thus is more limited in practice.
In [13] is proposed approach applying graph rewriting
system as computational model for logic programming
language. The achieved results are demonstrated on im-
plementation of Prolog, and more novel logic program-
ming language PLL.

In this paper, description of a novel approach for
graph rewriting and transformation based on pro-
grammed graph rewriting system is presented. The
graph rewriting system is designed mainly for parsing
and interpreting of knowledge retrieved from image or
video by various image processing and computer vision
algorithms. However, presented graph rewriting system
is designed in generally for use in any system which
can benefit from graph transformations. The presented
system and algorithms are designed especially for
efficiency of execution.

This paper is organized as follows. In Section 2, basic
definitions and notations are presented. Section 3 con-
tains description of graph rewrite system basics (graph
rewriting rules, left-side matching and rule application).
Section 4 briefly describes proposed graph rewriting
system. Implementation of described graph rewriting
system is discussed in Section 5. Finally in Section 6
the discussion of the results and proposed ideas for fu-
ture work concludes the paper.

2 BASIC DEFINITIONS
In this section, definitions and notations further re-
quired for description of graph rewriting system will be
introduced. Basic concepts of graph representation and
graph properties and also relations among graphs will
be described in details.

Basic Definitions
For graph rewriting system and graphs itself to be us-
able, it is important to introduce a possibility to evalu-
ate vertices and edges of graph by labels. Let labels be
set of arbitrary objects of same class. Also, for further
definitions, basic concepts of deterministic finite state
machine will be needed.

Definition 1 (Labels) Let L be a set of values, the la-
bels. The relation equal ⊆ L×L determines equality of
elements ofL. We will denote (x,y) ∈ equal by x=equal y

σtG ◦σ−1
sG

v1 v2 v3 v4

v1 0 1 1 1
v2 0 0 0 1
v3 0 0 0 1
v4 0 0 1 0

Figure 1: Example of directed multigraph

Relation equal should be relation of equivalence (re-
flexive, symmetric and transitive).

Definition 2 (Deterministic finite state machine)
The deterministic finite state machine (DFSM) is
quintuple M = (Σ,S , s0, δ,F), where Σ is input alphabet,
S is non-empty set of states, s0 ∈ S is machine initial
state, δ : S × Σ → S is deterministic state transition
function, and F ⊆ S is set of final states.

Graph Representation
Most important structure in graph rewriting systems is
the graph itself. From now on, reference to a graph
will refer to directed graph with multi-edges and loops
enabled. (Directed multigraph with loops)

Definition 3 (Directed multigraph) A directed multi-
graph G is tuple G = (V,E,σs,σt,µv,µe), where V is set
of vertices, E is set of edges, σs : E→V, andσt : E→V
are functions mapping edges to theirs source and target
vertices, and µv : V →L, and µe : E→L are functions
mapping vertices and edges to set of labels L

For text simplification we will write G = (VG,EG, . . .)
for graph G = (VG,EG,σsG ,σtG ,µvG ,µeG).

Example 1 Follows example of simple directed
multigraph G = (VG,EG,σsG ,σtG ,µvG ,µeG), where
VG = {v1, . . . ,v4}, EG = {e1, . . . ,e7}, σsG = {(e1,v1),
(e2,v1), (e3,v1), (e4,v2), (e5,v2), (e6,v3), (e7,v4)}, and
σtG = {(e1,v2), (e2,v3), (e3, v4), (e4,v4), (e5,v4), (e6,v4),
(e7,v3)}, and µvG = µeG = ∅. Example of graph is
displayed in Fig. 1.

Denotation 1 Several functions are implicitly associ-
ated with graph G

We say that edge e is incident to σs(e) and σt(e), and
if σs(e) , σt(e) then vertices σs(e) and σt(e) are adja-
cent.

Set of all edges incident to vertex v is defined by func-
tion inc(v) = {e | v = σs(e)∨ v = σt(e)}; similarly, set of
all vertices adjacent to vertex v is defined by function
ad j(v) = {u | (u = σs(e)∧ v = σt(e))∨ (u = σt(e)∧ v =
σs(e))}

The function in : V → N determines the number of
incoming incident edges of a vertex: in(v) = |{e | v =
σt(e)}|. Similarly, the function out determines the num-
ber of outgoing incident edges: out(v)= |{e | v=σs(e)}|.
A vertex with in(v) = 0 is called root. A vertex with
out(v) = 0 is called sink

GraVisMa 2010 Poster Papers

- 144 -

Figure 2: Graphs G and H and morphism f : G→ H

The set of all graphs over set of labels L is denoted
as GL

Several relations among graphs are defined. From ba-
sic graph unions and intersections to subgraph relation
and graph isomorphisms, that are essential for graph
rewriting systems.

Definition 4 (Graph union and intersection) A
graph I = G ∪H is called union of graphs G and H,
if I = (VI ,EI , . . .), where VI = VG ∪VH , EI = EG ∪ EH ,
σsI = σsG ∪σsH , σtI = σtG ∪σtH , µvI = µvG ∪µvH , and
µeI = µeG ∪ µeH . Graph intersection I = G ∩ H, and
graph difference I =G \H are defined similarly

Definition 5 (Subgraph) A graph H = (VH ,EH , . . .) is
subgraph of graph G, if EH ⊆ EG, VH = {v | e ∈ EH∧(v=
σsG (e)∨ v = σtG (e))}∪ (Varb ⊆ VG), σsH = σsG ∩ (EH ×
VH), σtH = σtG ∩ (EH ×VH), µvH = µvG ∩ (VH ×L), and
µeH = µeG ∩ (EH ×L), where Varb is arbitrary subset of
VG. Subgraph is denoted by H ⊆G

Definition 6 (Graph morphism and isomorphism)
A graph morphism f : G → H between two graphs
G and H consists of two functions fv : VG → VH and
fe : EG → EH that preserve labels and attachment
to vertices, that is, µvH ◦ fv = µvG , µeH ◦ fe = µeG ,
µvH ◦σsH ◦ fe = µvG ◦σsG , and µvH ◦σtH ◦ fe = µvG ◦σtG

Functions illustrating connections of vertices and
edges of graphs G and H, and morphism between them
f : G→ H are depicted in Fig. 2.

The graph morphism f is injective (surjective) if fv
and fe are. If f is both injective and surjective, then
it is an isomorphism. In this case graphs G and H are
isomorphic, which is denoted by G � H

Definition 7 (Subgraph isomorphism) A subgraph
isomorphism f from graph H to graph G is graph
isomorphism f : H → S , where S ⊆ G. Denoted by
H � (S ⊆G), or f : H→ (S ⊆G)

3 GRAPH REWRITING
Basic building block of graph rewriting system is
graph rewriting rule, describing one possible modi-
fication (transformation) of the target host graph. In

vast majority of literature ([11, 15, 14]) graph rule
is represented by its left-hand side, right-hand side,
and set of connections. Left-hand side of such rule
can be represented by node, edge, or graph, from
which rewriting system get its name: node-, edge-,
graph-replacement systems. Right-hand side of rule is
in most cases represented by graph. The connections
describe relation between left-hand and right-hand side
of rule. In many cases, connections also describe how
to compute (find) labels of vertices and edges newly
inserted into the host graph.

This paper is restricted to graph-rewriting systems,
thus node and edge-rewriting systems are not consid-
ered. Most common approach for graph transformation
is Double Pushout Approach (DPO) ([4, 7, 8]) which
has rewriting rules of form:

r : L←l K→r R (1)

where L is left-hand side, K is interface graph, R is
right-hand side, and l and r are morphisms. K repre-
sents interface that is common for L and R. Transforma-
tion of graph G to graph H by rule r describe diagram
in Equation 2.

L ←l K →r R
↓ m ↓ d ↓ m∗

G ←l∗ D →r∗ H
(2)

In order to apply rule to graph G the match m should
be found between L and G. In next step are from G
deleted all elements L \K, thus producing graph D. Fi-
nally to produce graph H elements from R\K are added
to graph D.

Definition 8 (Reducible expression) Reducible ex-
pression (redex) represents subgraph of host graph, to
which is left side of rule mapped.

Approach to graph rewriting presented in this paper is
inspired by the DPO approach. But in contrary to DPO,
the proposed approach works as follows: the first step
of a rule rewrite, once a redex has been located, is to
glue into the host graph new structure (represented by
right-side); then change the shape of the graph by redi-
recting edges. Finally redundant structure (the garbage)
is removed.

Beside the connections in existing implementations,
also negative application conditions (NAC), are used,
that are left-hand side context information restricting
rule from application. This technique adds dependency
on contextual information to process of left-hand side
matching. Such extension of this process boosts expres-
sive power of graph rewriting system.

In the presented approach left-hand side of rule is
represented by general graph. This graph should be di-
rected multigraph with loops, and must be weakly con-
nected (in graph exist non oriented path from any ver-
tex to each other vertex). Above mentioned constraint

GraVisMa 2010 Poster Papers

- 145 -

Figure 3: Example of simple graph rewriting rule

is requirement of algorithm for subgraph isomorphism
search.

Definition 9 (Graph rewrite rule) The quadruplet r =
(L,R,Eex, join) is graph rewrite rule, which consist of
left-hand side L ∈ GL, right-hand side R ∈ GL, set of
excluded edges Eex ⊆ EL, and function join : VL→ VR

The set of excluded edges Eex determines edges that
must not be present in host graph in order to rule be ap-
plicable (NAC). Function join defines connection (in-
terface) of graph rule in host graph. Example of simple
graph rewriting rule is depicted on Fig. 3, where func-
tion join is expressed by dashed arcs, and Eex = ∅.

Definition 10 (rule matching) The graph rewriting
rule r = (L,R,Eex, join) is applicable to host graph H
if:

1. graph isomorphism fr : Lw→ (S L ⊆H) exists, where
Lw = (VL,EL \Eex,σsL ,σtL ,µvL ,µeL).

2. the following holds for every ul ∈ VL and v ∈ VH: v =
frv (ul)∧ (inLw(ul) < inH(v)∨outLw (ul) < outH(v))⇒
ur ∈ VR∧ (ul,ur) ∈ join

3. the following holds for every eex ∈ Eex and
e ∈ EH: σsH (e) , frv (σsL (eex)) ∨ σtH (e) ,
frv (σtL (eex))∨µeH (e) ,equal µeL (eex)

Graph Lw is constructed by removing edges of set
Eex from graph L. Graph isomorphism fr is called oc-
currence, and graph S L = (VS L ,ES L , . . .) is called redex
(reducible expression). Statement 2 assures that all ver-
tices of graph L that are not in join relation with some
vertex in graph R have the same output and input de-
gree as their image in graph H. Statement 3 assures
that in graph H, edges that can be interpreted as images
of edges from Eex are not present.

Definition 11 (Graph rule match) The Graph rule
match is a triplet m = (r,H, fr), where r is matched
graph rewriting rule, H is host graph, and fr is
matching morphism, which meet all conditions from
Definition 10

Evaluation function determines labels of new ele-
ments (vertices, edges) in host graph. This function is
evaluated for every element e ∈ VR ∩ ER of right-side
graph R. Every of these elements has associated one of
evaluation heuristics.

Definition 12 (Evaluation function) The method for
determining labels of new elements of host graph is
encapsulated in evaluation function eval : (e,m)→ L,
where e ∈ VR∪ER, and m is graph rule match

Rule application

Host graph H is transformed into graph I by rule r in
following steps:

1. Construct graph I1 = (VI1 ,EH ,σsH ,σtH ,µvI1
,µeH),

where

• VI1 = VH ∪VR

– let fnv : VR → VI1 is injective function map-
ping right-hand side vertices to new vertices
in host graph

• µvI1
= µvH ∪ {(v, l) | vr ∈ VR ∧ v = fnv (vr) ∧ l =

eval(vr,m)}

Vertices from right-side of rule are inserted to host
graph. Labels of vertices are evaluated, and function
mapping original right-side vertices to new vertices
of host graph is constructed.

2. Construct graph I2 = (VI1 ,EI2 ,σsI2
,σtI2
,µvI1
,µeI2

),
where

• EI2 = EH ∪ER

– let fne : ER → EI2 is injective function map-
ping right-hand side edges to new edges in
host graph

• σxI2
= σxH ∪ {(e,v) | er ∈ ER ∧ e = fne (er)∧ v =

fnv (σxR (e))}
• µeI2

= µeH ∪ {(e, l) | er ∈ ER ∧ e = fne (er) ∧ l =
eval(er,m)}

for x ∈ {s, t}, (hence σxG stands for both σsG and
σtG). Edges of right-side of rule are inserted to host
graph (edges are defined on already inserted ver-
tices). Labels of edges are evaluated, and function
mapping edges of right-side to new edges of host
graph is constructed. Graph I2 is depicted at Fig.
4.b.

3. Construct graph I3 = (VI1 ,EI2 ,σsI3
,σtI3
,µvI1
,µeI2

),
where

• σxI3
= (σxI2

∪ {(e, fnv (v)) | (u,v) ∈ join ∧ e =
σ−1

xH
(frv (u))}) \ {(e, frv (u)) | (u,v) ∈ join ∧ e =

σ−1
xH

(frv (u))}

for x ∈ {s, t}. Edges connecting join vertices of left-
side of graph rewrite rule are redirected to join ver-
tices of right-side of graph rewrite rule. Resulting
graph I3 is depicted at Fig. 4.c., where redirected
edges are displayed as dashed arcs.

GraVisMa 2010 Poster Papers

- 146 -

Figure 4: Illustration of host graph rewrite, driven by
rule from Fig. 3

4. Construct graph I4 = (VI1 ,EI4 ,σsI4
,σtI4
,µvI1
,µeI4

),
where

• EI4 = EI2 \ {e | el ∈ ELw ∧ e = fre (el)}
• σxI4

= σxI3
\ {(e,v) | el ∈ ELw ∧ e = fre (el)∧ v =

σxH (e)}
• µeI4

= µeI2
\ {(e, l) | el ∈ ELw ∧ e = fre (el) ∧ l =

µeH (e)}

for x ∈ {s, t}. Edges of rule left-side including their
labels and mappings to source and target vertices are
removed from host graph.

5. Construct graph I = (VI ,EI ,σsI ,σtI ,µvI ,µeI), where

• VI = VI1 \ {v | vl ∈ VL∧ v = frv (vr)}
• µvI = µvI4

\{(v, l) | vl ∈VL∧v= frv (vr)∧ l= µvH (v)}
• EI = EI4 , σsI = σsI4

, σtI = σtI4
, µeI = µeI4

Finally in last step vertices of rule left-side are re-
moved from host graph. Graph I (after removing
left-side vertices and edges) is depicted at Fig. 4.d.

Description of application of rule is tightly connected
to implementation. Vertices and edges of right-hand
side are inserted to host graph before any left-hand side
vertices or edges are removed, so labels of new vertices
and edges can be determined. Rewrite of host graph by
rule from Fig. 3 is inllustrated in Fig. 4.

4 GRAPH REWRITE SYSTEM
The literature concerning graph rewriting reports on
various methods of organizing a collection of graph
rewriting rules. These can be unordered, ordered,

or event-driven. Choice of rule organization system
largely affects the number of rewrite rule applications
that must be tested during graph rewriting system
execution. Parsing by graph grammar normally (with-
out any rule organisation system) requires frequent
testing of inapplicable rules. In contrast, an ordered
graph rewriting system can directly transform an input
graph into required output graph. Event-driven graph
rewriting systems are highly time-efficient, applied
rules are used only as direct response to external action.

Unordered Graph-rewriting System

A set of graph rewriting rules. Rewrites the host graph
by nondeterministically chosen rules until no further
rule apply.

Graph Grammar

A set of graph-rewrite productions. A starting host
graph. A designation of labels as terminal or nontermi-
nal. The starting graph is transformed by graph-rewrite
productions until terminal graph is obtained. The set of
terminal graphs that can be generated by this process is
called language of the grammar (generative use). Pars-
ing given graph: find sequence of rewrite productions
that derive given graph from start graph (recognition
use).

Ordered graph rewriting system

A set of graph rewriting rules. A control specifica-
tion (complete or partial ordering of rule-application).
Rewrite the given host graph (choosing nondetermin-
istically among applicable rules according to control
specification) until a final state in control specification
is reached.

Event-driven Graph-rewriting System

A set of graph-rewrite rules. A externally-arising se-
quence of events. Rewrite the initial host graph: rewrite
rules are executed in response to events.

Presented approach is restricted to first three of intro-
duced categories of graph rewriting (respective graph
grammar) systems. It is possible to extend presented
rewriting system by event-driven execution of graph
rewriting rules, but it was not introduced so far. Def-
initions of graph rewriting systems follows.

Definition 13 (Graph rewrite system) The graph
rewrite system (GRS), is represented by set of graph
rewriting rules. In short it can be denoted just by R.

Definition 14 (Graph grammar) The graph grammar
(GG) is triple XG = (P,Gs,Lt), where P is set of graph
rewriting productions, Gs ∈ GL is starting host graph,
and Lt ⊆ L is set of terminal labels.

GraVisMa 2010 Poster Papers

- 147 -

Rules of graph rewrite system X are applied to host
graph in nondeterministic order. This can result (for
non confluent graph rewrite systems) in nondetermin-
istic results. Based on this fact need arise to introduce
ordering for rule applications of graph rewriting sys-
tem.

Definition 15 (GRS with priorities) The GRS with
priorities is pair Xp = (R, p), where R is set of graph
rewriting rules, and p : R → N is function assigning
priority number to each rule. This GRS represent
simple version of ordered graph rewriting system.

Definition 16 (GRS driven by DFSM) The GRS
driven by DFSM is defined as pairXM = (R,Mr), where
R is set of graph rewriting rules, and Mr = (R,S , s0, δ,∅)
is deterministic finite state machine. A string accepted
by Mr defines string of the used graph rewriting rules.
The set of applicable rules is in actual state s given as
Rs = {r | (s,r)→ sx ∈ δ}. GRS driven by DFSM stops
when Rs = ∅, it works while any applicable rules exist.
As in previous case this GRS presents ordered graph
rewriting system.

According to categorization of graph rewriting sys-
tems no explicit stopping conditions are introduced.
The rules of graph rewrite system are applied while at
least one matching of applicable graph rule exists.

5 GRAPH REWRITING IMPLEMEN-
TATION

In this section the implementation of approach which
was theoretically described in above text is described.
Implementation of the proposed approach corresponds
to the introduced theory.

Graph Representation
The graph is represented by a dynamic structure that
can be arbitrarily modified with no impact on perfor-
mance. Graphs represented by proposed structure can
be updated and modified using elementary steps con-
sisting of edge and vertex removal and insertion.

In short, graph is represented by set of vertices and
set of edges between these vertices. Each edge is de-
scribed by two (source and target) indexes to the set
of vertices and each vertex contains an array indexing
all its incident edges (for faster computations). Each
of graph elements (vertices, edges) has associated la-
bel which represents its evaluation. Described structure
enables for simple execution of sophisticated graph al-
gorithms, such as detection of spanning tree, testing bi-
partite graph, testing completeness, counting of graph
components, search for shortest path, and other graph
processing algorithms.

Vertex and Edge Evaluation

The possibility to evaluate vertices and edges of graph
by labels is provided by dynamically linked libraries
defining operations over labels, such as comparison,
copying, serialization, de-serialization etc. These li-
braries are created by graph rewrite system user, thus
enabling use of arbitrary type of labels of vertices and
edges of graph. For some conventional data types (in-
tegers, strings, etc.), default set of functions is defined.

Graph Isomorphism Matching

From the definition of graph rewriting system, it can be
seen that left-sides of graph rules are known a priory to
their matching in host graph. This fact is exploited in
system for detection of subgraph isomorphisms. Graph
parsing automata is created representing subgraph iso-
morphism detector for left-side of each rule of graph
rewriting system. Such automata is optimized for detec-
tion of common patterns in rules left-sides and exploits
this knowledge in order to boost isomorphism detection
speed.

The states of graph automata describes partial map-
ping of vertices and edges (spanning subtree) to a hypo-
thetical host graph. The transitions between these states
are described using edges, their properties, and by prop-
erties of target vertices (evaluation, in-out degree, di-
rections, etc.). each of prototype subgraphs (left-sides
of rules) has at least one final node, and by reaching
of this node, the vertex mapping between this subgraph
and host graph is decided.

Detection of subgraph and graph isomorphisms con-
sists of two fundamental steps:

The first step is search for vertex permutations (map-
pings) of subgraph vertices to host graph vertices, thus
describing set of functions Fvd. For which holds Fv ⊆
Fvd, where Fv is set of functions describing proper sub-
graph vertex mappings. Detection of set of vertex map-
ping functions Fvd is accomplished by search for a sub-
graph spanning tree.

The second step of subgraph (graph) isomorphism
detection consist of search for edge permutations Fe.
For each vertex mapping function fv ∈ Fvd, possible
permutations of edges are searched. Every found edge
mapping function fe is added to set Fe; if fv < Fv then fv
is inserted into set Fv, and the record fe→ fv is inserted
into the injective function π.

Result of this procedure is triple (Fv,Fe,π), where Fv
is set of vertex mapping functions, Fe is set of edge
mapping functions, and π : Fe → Fv is function asso-
ciating edge mapping function to vertex mapping func-
tion.

After detection of isomorphism of subgraph Lw in
host graph H, context conditions represented by set of
excluded edges Eex are verified.

GraVisMa 2010 Poster Papers

- 148 -

Graph Rewriting System
Graph rewriting system itself is represented as set of
graph rewriting rules. To set of graph rules are as-
sociated priorities or DFSM. Each GRS is described
by one input text file. GRS file refers to rules repre-
sented in form of text file in graph format .dot, used
by graph visualising library graphviz. Important part
of graph rewriting system is represented by dynamic li-
brary, which defines vertices and edges evaluation func-
tions.

6 CONCLUSION
In this paper, an approach for graph rewriting system
implementation was proposed and also its real imple-
mentation was discussed. Graph rewriting system was
designed for use in graph grammars, which are cre-
ated for applications concerning parsing and describing
of knowledge retrieved from image or video. In both
forms of grammar use, either as generating tool, or for
parsing of retrieved graph.

The advantage of proposed graph rewriting system
is its ability to work with general directed multigraphs
with loops. These graphs are represented by dynamic
structure, which is not designed specifically for pro-
posed task, but is designed more generally to enable
to perform any tasks on them. No restrictions are intro-
duced on vertex and edge labels, and their evaluation in
process of rules applications. Proposed GRS was im-
plemented in language C/C++ and its implementation
respects its theoretical design.

Future work concerning graph rewriting system im-
plementation will concentrate on further optimisation
of graph rewriting algorithm and also optimisation of
graph matching algorithm. The plan is to introduce cat-
egories of rules, determined by their analysis; insert, re-
move, and alter for example, and optimise rewrite tech-
nique (algorithm) separately for each of them. Parallel
application of rules, based on analysis of redex over-
lays. In context of subgraph isomorphism search: iso-
morphism search based on incremental actualization of
set of detected isomorphisms.

Further work will also concern examination of graph
rewriting system properties. Graph rewriting system
termination, Church-Rosser property, confluence, and
from them resulting convergence should be discussed
and evaluated.

A survey of possible applications of designed and
implemented graph rewriting system, other than
description or representation of image knowledge is
also planned. Applications that can be possibly imple-
mented and tested in context of graph rewriting system
are for example (as was mentioned in Introduction):
simulation of traffic networks, chemical reactions,
automatic construction of artificial neural networks,
etc.

ACKNOWLEDGEMENTS
This work is supported by the European Commission under
contract FP7-215453 - WeKnowIt.

This work was (also) supported by the project "Security
Oriented Research in Information Technology" by Ministry
of Eduction, Youth and Sports of Czech Republic no.
MSM0021630528.

REFERENCES
[1] A study of two graph rewriting formalisms: Interaction nets and

MONSTR, February 20 1998.

[2] Zena M. Ariola and Jan Willem Klop. Equational term graph
rewriting. Fundam. Inf., 26(3-4):207–240, 1996.

[3] R. Banach. Transitive term graph rewriting, April 30 1996.

[4] R. Banach. The contractum in algebraic graph rewriting,
April 30 1998.

[5] Dorothea Blostein, Hoda Fahmy, and Ann Grbavec. Issues in
the practical use of graph rewriting, December 18 1996.

[6] A. Corradini. A 2-categorical presentation of term graph rewrit-
ing, July 20 1997.

[7] Hartmut Ehrig. Introduction to the algebraic theory of graph
grammars (a survey). In Graph-Grammars and Their Applica-
tion to Computer Science and Biology, pages 1–69, 1978.

[8] Hartmut Ehrig. Tutorial introduction to the algebraic approach
of graph grammars. In Proceedings of the 3rd International
Workshop on Graph-Grammars and Their Application to Com-
puter Science, pages 3–14, London, UK, 1987. Springer-Verlag.

[9] Hartmut Ehrig, Annegret Habel, Hans-Jörg Kreowski, and
Francesco Parisi-Presicce. From graph grammars to high level
replacement systems. In Proceedings of the 4th International
Workshop on Graph-Grammars and Their Application to Com-
puter Science, pages 269–291, London, UK, 1991. Springer-
Verlag.

[10] P. Foggia, C. Sansone, and M. Vento. A database of graphs
for isomorphism and sub-graph isomorphism benchmarking. In
CoRR, pages 176–187, 2001.

[11] Pieter J. Mosterman Juan de Lara, Hans Vangheluwe. Mod-
elling and analysis of traffic networks based on graph transfor-
mation.

[12] Christoph Klauck. Graph grammar based object recognition for
image retrieval. In ACCV ’95: Invited Session Papers from the
Second Asian Conference on Computer Vision, pages 561–569,
London, UK, 1996. Springer-Verlag.

[13] Peter M and Peter M C Brien. Implementing logic program-
ming languages by graph rewriting, April 22 1999.

[14] Detlef Plump. The graph programming language gp. In CAI
’09: Proceedings of the 3rd International Conference on Al-
gebraic Informatics, pages 99–122, Berlin, Heidelberg, 2009.
Springer-Verlag.

[15] Francesc Rosselló and Gabriel Valiente. Chemical graphs,
chemical reaction graphs, and chemical graph transformation.

[16] Medha Shukla Sarkar, Dorothea Blostein, and James R. Cordy.
GXL - A graph transformation language with scoping and graph
parameters, September 12 1998.

[17] Vladimiro Sassone and Pawel Sobocinski. Coinductive reason-
ing for contextual graph-rewriting, February 02 2004.

[18] A. Schfürr. Programmed graph replacement systems. pages
479–546, 1997.

[19] Sjaak Smetsers. Term graph rewriting and strong sequentiality,
November 06 1992.

GraVisMa 2010 Poster Papers

- 149 -

GraVisMa 2010 Poster Papers

- 150 -

Graph Drawing in Lightweight Software:

Conception and Implementation

Vitaly Zabiniako

Riga Technical University, Institute of Applied
Computer Systems,

1/3 Meza street, Latvia,
LV-1048, Riga.

Vitalijs.Zabinako@rtu.lv

Pavel Rusakov

Riga Technical University, Institute of Applied
Computer Systems,

1/3 Meza street, Latvia,
LV-1048, Riga.

Pavels.Rusakovs@cs.rtu.lv

ABSTRACT
This work describes basic ideas of lightweight graph visualization system developed in Riga Technical

University. Comparison of according existing freeware and shareware solutions is being made. Overall proposed

software architecture at high abstraction level is presented along with details of implementation of its

mechanisms. This work includes aspects of optimization of force-based graph layout algorithm; description of

useful visualization techniques (such as projective shadows, visual data clustering that might be useful in design

and analysis routines, etc.). Described ideas were implemented and verified by visualization of large graphs in

original lightweight software 3DIIVE. Conclusions about achieved results are also presented.

Keywords
Graph, visualization, architecture, algorithm, clustering.

1. INTRODUCTION
The concept of information visualization plays

important role in modern IT industry, as it allows

representing data according to the current needs of

end-user and information processing tasks. There is

a demand for these tools in such domains as data

mining and analysis, education process, etc.

Multiple visualization solutions already exist, each

with its own functionality and implementation

specifics. Some of these tend to handle wide range

of input data types and visualization tasks (which

comes at the cost of complexity and usually – bulky

architecture), while others are more of ad-hoc type

solutions for specific purposes (and, as a result,

non-usable outside originally intended visualization

domain). The authors of this paper argue that there

is a need for more agile solutions that should be

based on achievements of modern computer

graphics and object-oriented approach. These will

provide appropriate aid for users in science,

industry and business. Proposed architecture must

ensure a set of primary features (i.e. ability to store

and represent topology and associated metadata of a

graph using appropriate description formats, layout

algorithms and visualization techniques for better

comprehension).

2. OVERVIEW OF EXISTING

GRAPH DRAWING SOLUTIONS
Nowadays one can find wide range of tools that

provide aid in graph drawing. Considering that it is

impossible to summarize features of all these tools

and versions, authors decided to analyze few

distinctive representatives from both freeware and

commercial products (summary of main aspects of

such tools are presented in Table 1). Additionally,

authors choose a set of criteria that is

Table 1. Comparison of graph drawing solutions

Criteria

Solution
Data format Space

Graphics

library
Platform

Additional

tools

Graphviz DOT (plain text-based) 2D Native Windows / Linux / Mac OS –

Wilmascope 3D Native XML-based, GML 3D Java 3D Windows +

aiSee GDL 2D Native Windows / Linux / Mac OS –

Tulip Native, GML, DOT 3D Native Windows / Linux +

yFiles Native, GraphML, GML 2D Native Windows / Linux / Mac OS +

Walrus Native 3D Java3D Windows / Linux / Mac OS –

Tom Sawyer Native 2D Native Windows / Linux / Mac OS +

VGJ GML 2D Native Windows / Linux –

3DIIVE Native XML-based 3D OpenGL Windows +

GraVisMa 2010 Poster Papers

- 151 -

based on aforementioned primary features, support

of additional analysis tools and implementation

capabilities and allows comparing these solutions in

order to get general vision of functionality.

3. OVERALL SOFTWARE

ARCHITECTURE AND INDIVIDUAL

FRAMEWORK COMPONENTS
Last row of Table 1 contains information about

original lightweight graph visualization software

system that is being developed in Riga Technical

University for academic purposes as a part of

doctoral thesis research. This system will be

referred as “3DIIVE” (Three–Dimensional

Interactive Information Visualization Environment)

further in this text. This system was initially

intended as utility program for demonstrating basic

concepts in graph drawing area (focusing on

drawing in three dimensions). As it can be

perceived from the table, 3DIIVE is an agile

solution that might be used both for general

visualization of information encoded in form of

graphs and more specific data-oriented applications

in MS Windows platform. High abstraction level of

proposed software framework is presented in Fig.1.

Fig.1. Architecture of 3DIIVE system

Our approach is based on the assumption that there

must be clear separation in functionality of layout

algorithms and visualization techniques – in this

case these will be able to perform independently,

making implementation of other algorithms /

techniques much easier. Another assumption is that

the structure of proposed framework must conform

to the object-oriented approach, because graph itself

can be conveniently interpreted as a set of

topological and other associated properties that can

be altered by appropriate methods.

Considering aforesaid, the main parts of this system

are as follows: XML parser (interpretation of the

input XML document with a description of the

graph, and extraction of necessary information

about topology of the graph and its elements),

module of interactive visualization (the main part of

the system that performs visualization by triggering

necessary layout algorithms and visual techniques

from repositories and relies on navigation, selection

and modification mechanisms), repository of layout

algorithms (a set of available layout algorithms for

visualization of graphs), repository of visualization

techniques (a set of techniques for improvement of

comprehension) and XML assembler (acts similar to

XML parser with only difference – opposite

information processing flow).

The graph within a system is presented as a separate

object with multiple attributes and methods.

Information about topology of the graph from the

parser module is converted into the adjacency

matrix. The rest of the data is loaded into multiple

arrays with references to associated elements.

4. IMPLEMENTATION OF LAYOUT

ALGORITHMS AND

VISUALIZATION TECHNIQUES

4.1 Layout algorithms
Current implementation relies on well-known force-

based layout algorithm proposed by Peter Eades

[Ead84]. The repository holds both its original and

custom versions with optimizations done by

authors. It is founded on combination of force-

based and orthogonal layout properties and includes

additional improvements.

For example, during the search of equilibrium state,

in case if a value of average kinetic system energy

achieves local minimum, it takes an additional time

to retrieve from this, that’s why authors make a step

with random offset from current position, bypassing

“slow” iterative recovering upon detection of local

minimum. Another aspect is that the equilibrium

state is being formed with unpredictable offset in

space. In our system the model of graph is placed

near the origin of a coordinate system.

Authors evaluated performance of both original

(“FB”) and modified (“MOD”) algorithms with a

set of time measurements from the first iteration and

to the moment, when an equilibrium state was

reached. Probability distribution is shown in Fig.2.

Fig.2. Probability distribution graph

GraVisMa 2010 Poster Papers

- 152 -

Statistical processing allows concluding that the

modified algorithm performs about to 15% faster

while showing more stable distribution of time

required for the execution. For detailed description

of improved algorithm and according experiments

refer to [Zab08].

4.2 Visualization techniques
Repository of visualization techniques holds a set of

tools for improvement of information

comprehension. It includes both common useful

techniques, such as transparency (in case if certain

part of the graph is chosen for further analysis,

transparency helps to abstract from the other data

by visually “weakening” it while still allowing to

perceive the whole graph structure), magnification

(interactive scaling up visuals that is implemented

via image post-processing and allows to see more

details by increasing resolution of these), etc. For

more detailed description refer to [Zab09].

Fig.3. “Projective shadows” and “Visual

clustering”

In 3DIIVE there are few custom visual techniques

implemented by authors. One of such techniques is

“Projective shadows” (Fig.3, part A). The idea is to

draw the three-dimensional data model in iterative

steps. The first step captures the model from the

current position of the virtual camera like in

previously mentioned techniques. During next steps

camera is placed so that it faces model orthogonally

– directly from the top, front, left etc. Each

rendering result is placed into separate texture.

When all steps are complete, textures are placed on

corresponding faces of the rectangular

parallelepiped (or cube). The parallelepiped is

drawn in the scene so that three-dimensional data

model is situated at its centre. In this case each

texture represents a projection or essentially a

“shadow” of original data structure.

As the result, user perceives not only the graph

itself, but he can also evaluate and choose one two-

dimensional instance which suits for outputting it in

a plane surface (for example – for printing the graph

on a paper). Two-dimensional instances are updated

each frame and modifications that user performs

with the spatial graph are reflected in all projections

in real-time which makes this technique particularly

useful.

In order to support this technique, graphical

framework must provide access for rendering to

texture which can be applied to the scene later.

OpenGL framework (this API has been chosen due

to its simple yet effective state machine model

[Zab06]) allows to implement projective shadows

with the code as follows:

Projective shadowing allows to get more detailed

comprehension about data structure – when

perceiving spatial model from particular point of

view it is sometimes hard enough to judge how

complex the graph topology in individual

dimensions is. Multiple projections allow to get rid

of this problem. This concept is similar to

orthographic projection views in CAD (Computer-

Aided Design) systems. The difference is that in this

case shadows allow to explore topological

relationships of multiple elements rather than purely

geometrical properties of single object. It is also

suitable for tasks where the result of visualization

must be presented or printed out as planar image.

Another custom implemented technique is in

relation with graph data clustering task (Fig.3, part

B). In general, clustering is required in case if data

units must be evaluated in terms of its similarity or

semantic closeness [Wri04]. Two common

examples of such analysis are optimization of

storing data in memory (in the field of database

technology classic implementation of “Many-to-

Many” relationship between two entities via

auxiliary table results in data storage in different

memory regions, so unwanted additional fetching of

memory pages would be required) and deriving

hidden patterns in large loosely structured data sets

(detecting of dense semantic relationships among

entities of knowledge domain may influence

management strategy and even trigger development

of new business rules).

Data clustering opportunity in 3DIIVE is based on

secondary effect of force-based approach: the final

layout tends to group densely interconnected nodes

close to each other, while separating loosely

connected groups in different space regions. A

space partitioning mechanism is required to get the

desired results (separate sets containing unique data

(A)

/*1*/ ... //set matrix for camera
/*2*/ ... //draw object
/*3*/ for (x=1; x<=DimNum; x++)
/*4*/ {
/*5*/ ... //set matrix for dimension
/*6*/ ... //draw object
/*7*/ glCopyTexImage2D(GL_TEXTURE_2D,
 0,GL_RGBA,0,0,512,512,0);
/*8*/ }
/*9*/ //draw cube with textured faces

(B)

GraVisMa 2010 Poster Papers

- 153 -

elements). The implemented model of space

partitioning is based on octree that produces

recursive division of cube model as shown in Fig.4.

Fig.4. Recursive space partitioning model

Finally, the last implemented mechanism that is

needed for accomplishment of clustering is regions

merging – the natural way to bring multiple close

nodes into corresponding cluster. Definition of a

cluster with a set of neighbor regions is recursively

transitive by its nature – region R, its neighbors

{R’}, neighbors of neighbors {R’’), …, etc. belong

to the same class. Authors propose the pseudo-code

for the algorithm for assigning unique cluster

identifications for an ordered set of regions:

The first procedure assign_cluster_id initiates

sequential processing of regions by calling

subroutine process_region. When non-empty and

un-marked region has been found, it becomes either

a core of new cluster or a part of already existing

one – depending on the state of surrounding

regions. Then all its neighbors are recursively

revisited as in Fig.5 (sequence of regions is marked

with red numbers and resulting clusters are marked

with blue).

Fig.5. Example of partitioning sequence

5. USAGE EXAMPLES
Screenshots of different 3DIIVE functioning modes

while visualizing complex network that consists of

few hundred nodes are presented in Fig.6, (part A –

selection step, B – usage of magnification, C –

usage of transparency, D – clustering step).

Fig.6. Screenshots of 3DIIVE workflow

6. CONCLUSION
Our implementation – 3DIIVE software system,

allows visualization, analysis, editing of general

graphs and provides a set of useful techniques for

better information comprehension.

Current version holds both well-known existing

graph drawing solutions and those proposed by the

authors. The functional content of each module is

gradually expanded during author’s researches in

the domain of graph visualization.

Considering its clustering capabilities this system

can be used not only as a system for visualization

and analysis but also as a tool for optimization, e.g.

for refining relational model of database structure.

7. REFERENCES
[Ead84] P. Eades. A heuristic for graph drawing,

Congresses Numerantium, vol. 42, pp. 149-160

(1984).

[Wri04] M. Kaufmann, D. Wagner “Drawing

Graphs: Methods and Models”, Springer, 312 p.

(2001).

[Zab06] V. Zabiniako, P. Rusakov. Comparative

Analysis of Visualization Aspects in Technologies

Direct3D and OpenGL. Scientific Proceedings of

Riga Technical University, Computer Science,

series 5, vol. 26, pp 209-221 (2006).

[Zab08] V. Zabiniako, P. Rusakov. Development

and Implementation of Partial Hybrid Algorithm for

Graphs Visualization, Scientific Proceedings of

Riga Technical University, Computer Science, ser.

5, vol. 34, pp. 192 – 203 (2008).

[Zab09] V. Zabiniako, P. Rusakov “Supporting

Visual Techniques for Graphs Data Analysis in

Three-Dimensional Space”. The 50th Scientific

Conference of Riga Technical University, Computer

Science, Applied Computer Systems, October,

Riga, Latvia (2009).

(A)

proc assign_cluster_id

 for each region r process_region(r);

end

proc process_region(r)

 if r = Ø or r has id then return;

 if r has neighbors with id then

 assign same id to r;

 else

 assign new id to r;

 end

 for each neighbor n process_region(n);

end

(C) (D)

(B)

GraVisMa 2010 Poster Papers

- 154 -

Clifford Algebra and GIS Spatial Analysis Algorithms

– the Case Study of Geographical Network and

Voronoi Analysis

Zhaoyuan Yu

Key Laboratory of VGE
Nanjing Normal University

No.1 Wenyuan Road
 210046,Nanjing,Jiangsu,China

yuzhaoyuan@163.com

Linwang Yuan

Key Laboratory of VGE
Nanjing Normal University

No.1 Wenyuan Road
210046,Nanjing,Jiangsu,China

yuanlinwang@njnu.edu.cn

Wen Luo

Key Laboratory of VGE
Nanjing Normal University

No.1 Wenyuan Road
210046,Nanjing,Jiangsu,China

luow1987@163.com

ABSTRACT
Introducing Clifford Algebra as the mathematical foundation, we proposed a unified multi-dimensional GIS data

model, constructed by linking data objects of different dimensions within the multivector structure of Clifford

algebra. Then, algorithms for geographical network analysis (such as shortest path, minimum unicom and

maximum flow analysis) and high-dimensional voronoi diagram were constructed. We use both simulation and

real world data to test the usability and performance of our algorithms. The result gives very positive prospect of

implement GIS analysis algorithms under Clifford Algebra framework. In that way, traditional GIS analyses

algorithms can be extended not only accommodate various dimensions but also get beneficial on performance.

Keywords
Clifford Algebra, GIS, Multi-Dimensional, Algorithm.

1. INTRODUCTION
Clifford algebra, which brings scalar and vector

algebra into a unified framework and is widely used

in various fields, brings us powerful tools to express

multi-dimensional objects, extending classical

geometric analysis and inherit and transplant existing

analysis methods under unified framework. In this

article, we introduce Clifford Algebra in GIS, and

propose a unified multi-dimensional data model and

several practical GIS analysis algorithms, which aim

to evaluate the usability and efficacy of introducing

Clifford algebra into multi-dimensional GIS spatial

analysis. We also discussed their tests on both real

world geographical and simulated data.

2. DATA MODEL
“ Support data models for a complete range of

geographic phenomena” and “support a wide range of

types of geographic simulation” have already been

identified as two of the 10 “grand challenges” for GIS

[Lon05]. GIS data models should be developed for

modeling complex geographic phenomena, whereas

current GIS systems show limitations in representing

real geographic phenomena [Yua09]. Some

traditional GIS data models, separate objects of

different dimensions and processing them separately,

which increases the complexity of modeling and

expressing real world data and splits and blurs the

spatio-temporal semantics. Other models, like the

event-based [Peu95] or the object-oriented data

models [Wac94], also suffer dimensionality problems

and compatibility with existing GIS data. Recently

developed data models extend some of the above-

mentioned aspects, but still meet a lot of difficulties

in seamlessly integrating GIS data of different

dimensions [Liu08].

We attempt to unify the multi-dimensional GIS data

by associating the objects of different dimensions.

The unified data model can be universally described

as (x,y,z,a), where “a” means attributes that should be

include in analysis process (Figure1). We can

reorganize multidimensional GIS data by the

combination of different dimensions, from two

dimensions (x-a, y-a, z-a, etc.), three dimensions (x-

y-a, x-z-a) to four dimensions (x-y-z-a). In order to

analyze the characteristics, relationships and relative

processes with Clifford algebra, we need to transform

the geographical space into Clifford space. At last,

based on the multi-dimensionality of the blades, we

can construct corresponding data classes for the

description of data objects with different dimensions

with in a single multivector data structure, which can

be further analyzed with various geometric operators.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

GraVisMa 2010 Poster Papers

- 155 -

Figure 1. The structure of unfiled spatial-temporal data model

3. GEO-NETWORK ANALYSIS
Network analysis remains one of the most significant

and persistent research and application areas in GIS.

Many network analyses are among the most difficult

issues to solve in terms of their combinatorial

complexity [Cur07]. Some early researches on graph

theory have proved that Clifford algebra can express

the dynamic evolution of a directional and

unidirectional finite graph, and can greatly reduce the

computational complexity (e.g. [Sch10]). The

geometric characteristics (direction, distance,

topology and adjacent relationships) can be easily

modeled by coding the nodes and routes with Clifford

elements. We propose Geographical Network

Analysis algorithms that can automatically construct

the shortest path, minimum unicom and maximum

flow from raw geographic networks without complex

preprocessing. The flow chart of each algorithm was

shown in Figure2. The above algorithms are

implemented in C++ as a module of Unified

Temporal-Spatial Analysis System based on Clifford

algebra (CAUSTA) [Yua10].

We use China High-way data to test the correctness

of our algorithms. The road network test result was

shown in Figure3, comparing them with output of

traditional GIS network analysis suggests the output

of our algorithms and traditional GIS network

algorithms are the same, which suggest our

algorithms are correct. The spatial and temporal

efficiency of our algorithms are computed using

random network with different nodes and paths.

Taken shortest path for example, the numbers of

nodes varied from 1,000 to 10,000, and each network

was repeated 10 times with random start and end

nodes. Avoiding the use of the adjacent matrix

simplifies the design and extension of the algorithm,

so that our algorithm has much less memory usage,

and can be extended for large scale network analysis

(Table1). We also have two experiment with 50,000

and 100,000 nodes networks to test our algorithm

capability of large scale data. Even with this large

numbers of nodes, the 10 times means of time and

memory usage are only 59.153s/851.172s and

12333Kb/27471Kb . 33Kb/27471Kb .

N.

Nodes
N.

Paths

Dijkstra

Time

Mean(s)

Our

Time

Mean(s)

Our

Time

Stdev(s)

1000 2866 0.049 0.043 0.003

3000 5890 0.533 0.123 0.005

5000 10428 1.506 0.345 0.023

8000 15414 3.964 0.671 0.045

10000 30244 6.652 2.298 0.117

Table 1. Test Networks statistics and time

performance compared with Dijkstra algorithm

GraVisMa 2010 Poster Papers

- 156 -

times_1++

Begin

i<edge?

j<edge of start?

k<edge?

i++

get grade of clifford product of two edges

e[k].start > start[j].end

End

grade=2?

get grade of clifford product of two edges

Update the path and length of path

next.size = 0?

Set start equal to next

YES

YES

YES

NO

NO

NO

NO

j++

YES

k++

NO

YES

NO

Begin

i<edge?

j<subtee?

End

i=0?

Combine the edge and subtree

case=grade(edge)+grade

(subtree)-grade(result)

case

times_2=0?

save the current edge into tree

0

1

2

times_0++

times_2++

break

break

break

YES

YES

YES

NO

NO

times_0=j?

the current edge forms a

new tree

YES times_1=1?

save current edge into

corresponding subtree

NO

YES

NO

YES

NO

YES

YES

YES

NO

YES

NO

NO

NO

initialize the tree and subtree

NO

Begin

i<edge?

j<edge of start?

k<edge?

i++

Get the current edge's saving index

e[k].start > start[j].end

End

grade=2?

get grade of clifford product of two edges

Update the max flow and save point k to next

Set start equal to next

YES

YES

YES

NO

NO

NO

j++

YES

YES

NO

Initialize the max flow path and label

flow>the exist?

Find the Maxinum flow froms to k

next.size = 0?

Save the lastest flow and construct the

residual network

YES

NO

YES

(a) Shortest Path Algorithm (b) Minimum Unicom Algorithm (c) Maximum Flow Algorithm

times_1=2?

combine the two subtree

linked by current edge

NO

NO

k++

YES

Figure 2. Flow Chart of Network Analysis Algorithms

Figure 3. Network Analysis of China Highway Road Network

4. HIGH-DIM VORONOI DIAGRAM
Delaunay triangulation and Voronoi diagram can be

applied in many data organization and analysis tasks

(e.g. [Sam06]). Most of their implementations are

typically for 2-d objects. For higher dimensional data,

performance efficiency, flexibility, and extendibility

of data structures are more complex. Several higher

dimensional Voronoi analysis algorithms have been

proposed under Clifford Algebra framework (e.g,

[Zon07], [Dor07]). However, existing algorithms are

not very perfectly suited for GIS data. Here, we use

[Zon07]’s programming framework but define data

structures of our own except using CGAL, which may

provide more extensibility for GIS spatial data. The

test of our algorithm can be seen in figure 4. See

[Yua10] for details of the algorithms characters.

GraVisMa 2010 Poster Papers

- 157 -

Figure 4. Voronoi Diagram based on Clifford algebra (Adapted from [Yua10])

5. CONCLUSIONS
In this article, we introduced Clifford algebra into

multi-dimensional GIS spatial analysis. We proposed

a unified data model that can represent multi-

dimensional GIS data as standalone data objects in

multivector form. Two kinds of GIS analysis

algorithms: the geographical network analysis

algorithm and the high dimensional Voronoi diagram

were then proposed. Test on different kinds of

geographical data suggest both the correctness and

performance of our algorithms. All of the above

suggest Clifford algebra can be seen as a new,

powerful tool for multidimensional GIS analysis.

6. ACKKNOWLEDGMENTS
Thanks for support by the National High Technology

R&D Program of China (Grant no. 2009AA12Z205)

and Key Project of National Natural Science

Foundation of China (Grant no. 40730527).

7. REFERENCES
[Lon05] Longley P A, et al. Geographic Information

Systemsand Science (Second edn). John Wiley

and Sons, 2005

[Yua09] Yuan M. Knowledge discovery of

geographic dynamics in spatiotemporal data. In

Miller H J and Han J (eds) Geographic Data

Mining and Knowledge Discovery, Second edn.

Taylor and Francis, pp. 347–366, 2009

[Peu95] Peuquet, D. J. and Duan, N. An Event-based

Spatio-Temporal Data Model (ESTDM) for

temporal analysis of geographical data. Int J

Geogr Inf Sci. vol. 9, pp 7–24, 1995

[Wac94] Wachowicz, M. and Healey, R.G. Towards

Temporality in GIS. Taylor and Francis, 1994

[Liu08] Liu, Y., et al. Towards a general field model

and its order in GIS. Int J Geogr Inf Sci. vol. 22,

pp. 623–643, 2008

[Cur07] Curtin, K.M. Network analysis in geographic

information science: Review, assessment, and

projections. CaGIS. vol. 34, pp. 103–111, 2007

[Sch10] Schott, R. and Staples, G.S. Reductions in

computational complexity using Clifford algebras.

Adv. Appl. Clifford Algebr. vol. 20, pp. 121–140,

2010

[Yua10] Yuan, L.W., et al. CAUSTA: Clifford

Algebra-based Unified Spatio-Temporal Analysis.

Transactions in GIS. vol.14, pp. 59–83, 2010

[Sam06] Samet, H. Foundations of Multidimensional

and Metric Data Structures. Morgan Kaufmann,

2006

[Zon07] Zonnenberg, C. Conformal Geometric

Algebra Package. Thesis of Utrecht University:

http://www.cs.uu.nl/groups/MG/gallery/CGAP/in

dex.html

[Dor07] Dorst, L., Fontijne, D., and Mann, S.

Geometric Algebra for Computer Science: An

Object-Oriented Approach to Geometry. Morgan

Kaufmann, 2007

GraVisMa 2010 Poster Papers

- 158 -

Linking 2D data to a 3D Architectural model

F. Gaitto Pereira
Di/ Uminho

Campus de Gualtar, 4704-553 Braga
Citar/ UCP

Rua Diogo Botelho 1327, 4169 - 005 Porto
Portugal

fgaitto@porto.ucp.pt

ABSTRACT
In this paper we describe a method for identifying on a 3d geometry of a building, the analyses from the
rendered image. The goal of this process is to link two different data types, development of a 2D analysis and
link the result to the 3D model on an architectural domain.

Keywords
Modeling, Object Retrieval, Clustering

1. INTRODUCTION
The common process for producing a 2d image is
made from pushing 3D data to the frame buffer. By
doing this, the camera defined for the render will be
selective and the visible data will be processed.

If on one hand, the problem of acquiring visible data
is solved, on the other hand, there is no tracking of
any kind of data visible or hidden on the image.
Since the goal of the render is to get the image of the
model, the process works one way and forward.

Performing analyses on a 3D data of an architectural
model is a task that depends on the construction of
the 3D model, since there are many different methods
of modeling the same object, there would be a need
for different analyses approaches for each model.
Nevertheless, the resulting image of the model will
be the same, therefore, our process focuses on the
render and links the analyses of the image to the
original 3D data.

2. RELATED WORK IN 3D
ARCHITECTURAL DOMAIN
Attribute retrieval in architectural domain is a rather
unexplored field, though, depending on the goal of
the work, some methods for analysis of 3D and 2D
data, can be found.

Linking data from 2D or 3D is used on several papers
with different goals.

A process for geometry construction is proposed by
[MZW*06], that consists in rebuilding geometry
according to an image analyses. The retrieval of
windows of a building is performed by the detection
of the frequency related to the window alignment on
the image. A 3D model of the building is produced
according to the retrieved 2d shapes.

One study describing shapes in the Architectural
domain was developed [WBK08] using groups of
horizontal slices of the model. These images are used
to identify cells that represent rooms of an apartment
or a house. The evaluation of cells of the image
results in a connectivity graph.

In the Virtual Reality field, [DF08] developed a
process to detect tracks for agents in 3D worlds.
Horizontal 2D image slices are produced and floor
information is fed to agents to move in the 3D model.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2010 Poster Papers

- 159 -

Linking data can be of great use and has a wide
application on several fields. In our process linking
data is performed to feed back information from 2D
analyses into the 3d model.

3D Geometry has qualities compared to other
multimedia files. In [VKF*06], is presented a
synthesis of methods for analyzing geometry and the
advantages of this type of data.

Detecting characteristics on a 3D architectural model
like in other models, goes beyond its morphology,
since they have arbitrary topologies [VKF*06].
Therefore, standard methods for shape retrieval and
analyses of 3D building models aren’t efficient and
methods related to architecture grammar are needed.
Building an architecture grammar is possible from
the analyses of the render and returning the meaning
to the model. Linking back to 3D data will increase
the value of the 3d architectural model in any field of
work.

3. OVER VIEW
The method starts with an OBJ file format model. Its
geometry is triangulated as a standard procedure for
ease of conversion from any kind of format.
Triangulated OBJ models are generally used for its
versatility in accessing geometry description.
However, this file format has a generic data structure
dedicated to all kind of 3D models, therefore, the
lack of meaning or semantic orientated structure,
makes it similar to a polygon soup.

From the OBJ loaded model, several polygon lists
and respective renders are created.

The method is developed from an original list of
polygons and by refining this list into others, based
on the analyses of the new rendered image.

Each time a new list is refined, its sent to the frame
buffer. This is made in several stages until one image
with architectural features is obtained.

The link is possible by performing any analyses on
the final image and tracking to the respective
polygon through the image with color tags.

A particular pixel position in one image has different
meaning on another image but relates to the same
polygon.

Figure 1. Setup workflow

4. POLYGON TAGGING
In the beginning of this stage, we need to produce an
image with visible polygons from the CamList.
Before the render process, each polygon is tagged
with an exclusive ID color per vertex, according o
each polygon identifier.

Since the tagging process uses sequential integers
from the face ID to correspond the same RGB
integer, color similarity currently prevented an
adequate identification of the face, therefore in the
tracking stage, to prevent color mismatch on
sequential RGB colors, each ID color is multiplied by
10. This procedure ensures a good contrast by
breaking the sequential color chain and later, the
colors identified are easily reverted to the true
polygon ID.

A 32-bit integer is used. All polygons will be sent to
the frame buffer with their respective identifier
referred previously. Each polygon is projected
according to length distance, this way, the polygons
close to the camera will be the last to be sent to the
buffer and will not became hidden by others.

The Polygon Tagging stage, results on an image with
all triangle faces colored but without any visual
meaning.

A tracing algorithm identifies each colors in the
image allowing to select the correspondent polygons
from the CamList. A new list, TagList, is created for
all visible triangles of the first image.

This image produced from the TagList is the key
image of the linking process, since it will be used
two ways: forward to the cluster production and
backwards to track the polygon faces.

This process of color tagging, establishes the link
between the two worlds, the 2D image and the 3D
geometry.

The TagList will be reconstructed according to depth
clusters and another image is produced. This
procedure will be presented further on.

Figure 2. Buffer image of tagged triangles (for better
identification purposes, colours are simulated)

GraVisMa 2010 Poster Papers

- 160 -

5. CLUSTER CREATION
The Cluster creation is performed by grouping
triangles of a certain type. The goal is to achieve an
image with architectural meaning based on the image
produced by the TagList using the only information
of the vertex of the OBJ file.

A polygon face is offered on the image through the
render, but the depth information has no graphical
presentation on the image. Our process, is meant to
include this information by the form of a gray scale
color.

All triangles with the same depth information are
grouped under a new list and render image. From the
TagList a new list is made by placing in order of
proximity all triangles.

This new list, clusterList, that produces the
clusterImage, gathers groups of coplanar triangles
according to their depth value and colors each set of
polygon face in grey scale according to de group they
belong.

Since modeling sometimes is not an accurate task, a
small tolerance allows to include on the same cluster,
faces that have vertex out of a particular depth.

The inquiry is made by checking the distance from
the reference camera plane, up to each vertex on the
TagList.

Figure 3. Image of Clustered triangles (for better
identification purposes, colours are simulated)

This process revealed more efficient than others
usual processes [KT03], since the groups of triangles
are made from pre selected geometry and using the
exclusively information from the image.

The coloring of the faces is destined not only to
differentiate depth levels but to represent the distance
between each plane.

Other processes of depth identification based on
ZBuffer, are used in studies were the need for depth
precision is not crucial.

A precise gray value correspondent to de distance,
allows to perform analysis on an image with 3D
information.

This paper, is meant to establish a process for linking
data therefore, no analysis procedure is presented.

6. LINKING DATA
The clean cluster image allows performing many
types of image analyses and retrieving architectural
features is simplified.

Acquiring areas of interest can be tracked back to the
model by matching the pixels to the same ones on the
TagImage.

Starting on a pixel or group of pixels on the cluster
image (pixels selected or resultant from any type of
analysis), the position is checked on the previous
image, the TagImage, in the same pixel position. This
inquiry informs the RGB color of the pixel and after
cutting back the increment used on the TagImage
building, it lets us know the true polygon ID.

Figure 4. Pixel on Clustered Image

Figure 5. Pixel on TagImage

7. CONCLUSION AND FUTURE
WORK
This paper presents a simple and practical method for
linking 2D to 3D data.

The colors from the referenced pixel or the area of
interest, point directly to the polygons of the model.
Clustering polygons on the model, allows
restructuring the 3D architectural model.

From the experimental results we can draw the
conclusion that this method is reliable and useful for
a wide range of analyses on 3D architectural models.

The current application developed on C#, besides
using OBJ files, isn’t meant for performance.

GraVisMa 2010 Poster Papers

- 161 -

However heavy loaded models are simplified at the
start due to visibility selection.

Models of buildings usually are modeled from the
outside for exterior render, however, they can also
contain interior geometry either to represent inside
divisions or simply to represent the thickness of the
exterior wall.

This process allows to have a selective approach by
filtering the exterior geometry independent from the
modeling of the building.

Therefore, complete models with inside and outside
geometry and about 250000 polygons where easily
loaded and rendered.

Nevertheless, smaller polygon models can have the
same performance as bigger ones, since only the
visible geometry is processed.

In future work this method is to be extended to
retrieval of architectonic attributes and restructuring
of the 3D model, such as geometry coloring of
elements

8. ACKNOWLEDGMENTS
Our thanks António Ramires Fernandes, UCP
CITAR, António oliveira, Diogo Ferreira, for their
guidance, advice and support.

9. REFERENCES
[MZW*06] Pascal Mueller, Gang Zeng, Peter Wonka
and Luc Van Gool ”Image-based Procedural
Modeling of Facades” Proceedings of ACM
SIGGRAPH 2007 / ACM Transactions on Graphics

 [WBK08] R. Wessel, I. Blümel, R. Klein, The
Room Connectivity Graph: Shape Retrieval in the
Architectural Domain. In WSCG 2008

[DF08] L. Deusdado, O. Belo, A. Fernandes.
Pedestrian behavioral simulation in real 3D
environments, The 11th International Conference on
Computer Graphics and Artificial Intelligence,
Athens (GREECE), May 30-31, 2008.

[VKF*06] Golovinskiy, Vladimir G. Kim, Thomas
Funkhouser, Shape-based Recognition of 3D Point
Clouds in Urban Environments, International
Conference on Computer Vision(ICCV)September
2009

[KT03] S. Katz, A. Tal, Hierarchical Mesh
Decomposition Using Fuzzy Cluster and Cuts, ACM
2003

Figure 6. architectural model including interior
geometry

Figure 7. TagImage of East elevation

Figure 8. ClusterImage of East elevation

GraVisMa 2010 Poster Papers

- 162 -

A Note on Geometric Algebra and Neural Networks

*Kanta TACHIBANA MinhTuan PHAM
kanta@cc.kogakuin.ac.jp minhtuan@cmplx.cse.nagoya-u.ac.jp

Tomohiro YOSHIKAWA Takeshi FURUHASHI
{yoshikawa furuhashi}@cse.nagoya-u.ac.jp

Abstract: This note first explains Clifford’s geometric algebra (GA) as a generalization of complex and
quaternion algebras. Second, this note describes GA neurons as a natural extension of complex neurons.
In any dimension the GA neuron takes a vector input and returns another vector output. The GA
neurons are applicable to optimization of Space Folding Model for effective pattern recognition. Next,
points with precision are considered using conformal geometric algebra and it is shown that addition of
conformal vectors works well for precision update. The GA neuron and its use of vectors with precision
(or belief) could be useful for datasets with different levels of precision/detail/belief of any dimension.
The conformal vector could be also useful to set a prior distribution of geometric versors.

1 Introduction

Let T (L) be the tensor space of the linear vector space L.
Grassmann’s exterior algebra E(L) regards all elements
of T (L) which contain tensor products of any x ∈ L with
x itself as the zero element of T (L). The exterior product
or wedge product maps an ordered pair E(L) × E(L) to
E(L). The exterior product is bilinear and x∧x becomes
0 for any x in L. Because 0 = (x + y) ∧ (x + y) =
x ∧ x + x ∧ y + y ∧ x + y ∧ y where x and y are both
elements of L, the exterior product is anti-commutative
x ∧ y = −y ∧ x.

Clifford’s geometric algebra G(L) is the exterior al-
gebra of a linear space L equipped with a measure
x ·x = |x|2. G(L) has a bilinear and associative product,
that maps an ordered pair G(L)×G(L) to G(L), which is
called geometric product or Clifford product. For x, y ∈
L, the geometric product (simply written by juxtaposi-
tion of the elements) is defined as xy = x·y+x∧y. Exam-
ple: Let us think about the two-dimensional Euclidean
space R2. The geometric products of its orthonormal ba-
sis vectors {e1, e2} are e1e1 = e1 · e1 = e2e2 = e2 · e2 = 1
and e1e2 = e1∧e2 = −e2∧e1 = −e2e1. Because of the as-
sociativity we have (e1e2)

2 = −e2e1e1e2 = −e2e2 = −1.
We therefore denote the unit bivector as i = e1e2, then
i2 = −1. The set of real linear combinations of {1, i} is
the even grade subalgebra of G(R2), which is isomorphic
to the set of complex numbers C.

The authors have naturally extended the complex-
valued neuron, all of whose input, weight, bias and out-
put are in C [1, 2]. The proposed neuron uses the so-
called Clifford group = {s ∈ G(L) | φ(s, x) ∈ L ∀x ∈ L},
where φ is a function constructed with geometric prod-
ucts, with weight in G(L), and with input, output and
bias in L [3]. This note discusses the relationship of
the GA neuron with complex and quaternion neurons
[4]. This note also considers points with precision using
conformal geometric algebra.

2 Complex Neuron

The complex neuron in general sums input stimuli
weighted by weights plus bias all of which are complex

numbers. For simplicity, assume the neuron has an input:

uC = wCxC + bC,

where uC, wC, xC, bC ∈ C. A two-dimensional vector
(x1, x2) can be represented as a complex number. Its
first and second components are the real and the imag-
inary coefficients respectively: xC = x1 + x2i ∈ C. On
the other hand, a natural representation of a vector is
x = x1e1 +x2e2. Using geometric algebra G(R2), we can
link it to the complex number representation as xC =
x1(e1e1)+x2(e1e2) = e1(x1e1 +x2e2) = e1x. The square
root of wC = ρ(cos θ + i sin θ), ρ ∈ [0,∞), θ ∈ [0, 2π) is
also a complex number w′

C =
√

wC =
√

ρ(cos θ
2 + i sin θ

2).
And complex numbers are commutative, i.e. w′

C(e1x) =
(e1x)w′

C. Then, the complex neuron becomes:

(e1u) = w′
Cw′

C(e1x) + (e1b)

= w′
C(e1x)w′

C + (e1b).

Multiply e1 from the left:

e1e1u = e1w
′
Ce1xw′

C + e1e1b.

Looking at the underlined part, and let w′
C = α + βi,

w′
Ce1 = (α + βi)e1 = αe1 + βe1e2e1

= e1(α − βi) = e1w′
C,

where w′
C is the complex conjugation. Then, the complex

neuron is represented as:

e1e1u = e1e1w′
Cxw′

C + e1e1b

u = w′
Cxw′

C + b. (1)

This u is the result of rotating x by the angle θ, scaling
by factor ρ, and translation by vector b.

3 Geometric Algebra Neuron

The geometric algebra neuron is a natural extension
of the complex neuron. Let the Clifford group Σ =

GraVisMa 2010 Poster Papers

- 163 -

{s ∈ G(L) | φ(s, x) ∈ L ∀x ∈ L}, whose element trans-
forms a vector to another vector. For k = 0, 1, . . . , n, the
set of versors, i.e. multiplications of k linearly indepen-
dent vectors {Mk = v1v2 . . . vk ∈ G(L) | v1, . . . , vk ∈ L}
is a subset of Σ with φ(Mk, x) = MkxMk. The authors
have proposed a geometric algebra neuron:

u =

n∑
k=0

φ(Mk, x) + b

and found optimal learning rates based on the Hessian
matrix. Note that the complex neuron of eq. (1) only
represents φ(M2, x) part. In the case of n = 2, φ(M0, x)
is scalar multiplication, φ(M1, x) is a reflection, and
φ(M2, x) is a rotation. These three transformations are
mixed. The mixing weights are adjusted with the norm
|Mk|2. In the case of n = 3, φ(M2, x) is isomorphic to
the quaternion product which gives rotation and scaling
in three-dimensional space.

As the GA neuron learns reflection and rotation of vec-
tors and multivectors in any dimension, a network con-
structed with GA neurons can be applicable to optimiza-
tion of Space Folding Model (SFM) [5]. In the network
for SFM, a GA neuron is assigned for each Space Folding
Vector (SFV) and the feature space is folded to minimize
the error function by training {Mk}s.

4 Conformal GA and Update of Preci-
sion

Introducing new two basis vectors e⃗+ and e⃗− to G(Rn) =
G(n), we have conformal geometric algebra G(n + 1, 1).
The new vectors have positive and negative signature,
i.e. e⃗ 2

+ = −e⃗ 2
− = 1. And further new basis vectors are

constructed in the e⃗+ ∧ e⃗− plane:{
n⃗∞ = e⃗+ + e⃗−
n⃗o = 1

2 (e⃗− − e⃗+) .

Because n⃗2
∞ = n⃗2

o = 0, they are also called null basis
vectors. Using these null basis vectors, n-dimensional
hypersphere with center at x⃗ ∈ Rn and radius ρ ∈ R is
represented as

X = µx⃗ +
µ

2

(
x⃗2 − ρ2

)
n⃗∞ + µn⃗o,

where µ is any nonzero real number.
We regard ρ2 of the conformal vector as precision, say

ρ2 = β = σ−2, where σ represents a standard deviation.
In this interpretation, addition of two conformal vectors
means:

X + Y = x⃗ + y⃗ +
1

2

(
x⃗2 − βx + y⃗2 − βy

)
n⃗∞ + 2n⃗o

∝ x⃗ + y⃗

2
+

1

2

(
x⃗2 + y⃗2

2
− βx + βy

2

)
n⃗∞ + n⃗o

= m⃗ +
1

2

(
m⃗2 − β

)
n⃗∞ + n⃗o,

where m⃗ = (x⃗ + y⃗) /2, i.e. the midpoint, and β =
(βx + βy) /2−

{
(x⃗ − m⃗)2 + (y⃗ − m⃗)2

}
/2. The new preci-

sion β is interpreted as average precision minus variance.
This can be generalized to weighted points. Let µx ∈ R

be the weight.

X = µxx⃗ +
µx

2

(
x⃗2 − βx

)
n⃗∞ + µxn⃗o.

The addition of weighted points is:

X + Y = µxx⃗ + µy y⃗ +
µx(x⃗2 − βx) + µy(y⃗2 − βy)

2
n⃗∞

+ (µx + µy)n⃗o

= µm⃗ +
µ

2

(
m⃗2 − β

)
n⃗∞ + µn⃗o,

where µ = µx + µy is the new weight and

m⃗ =
µxx⃗ + µy y⃗

µ

β =
µxβx + µyβy

µ
− µx(x⃗ − m⃗)2 + µy(y⃗ − m⃗)2

µ

m⃗ is the internally dividing point (center of mass) and
the new precision β is interpreted as weighted average
precision minus weighted variance.

This fact of good update of precision can be useful in
the following cases.

1. Each training/test sample has a different level of
precision β (or belief).

2. Massive samples must be learnt and coarse graining
is effective. Here, a lot of samples are learnt at once
as a hypersphere sample.

3. Precision (or belief) characterises a prior distribu-
tion of a dataset and neuron parameters.

5 Conclusion

This note described the GA neuron as a natural extension
of the complex neuron. In any dimension the GA neuron
inputs a vector and outputs another vector. Next, points
with precision were considered using conformal geomet-
ric algebra. And we showed that the addition of confor-
mal vectors works well to update precision. We want to
note the possibility of combining GA neuron with confor-
mal representation of precision in the analysis/learning
of datasets with various levels of details and in the coarse
graining of huge datasets. Bayesian updates of weights
could also be represented by conformal vectors.

acknowledgment

The authors thank Dr. Eckhard Hitzer for his sugges-
tions.

References

[1] S. Buchholz, K. Tachibana, E. Hitzer, Optimal
Learning Rates for Clifford Neurons, in J. Marques
de Sa et al. (Eds.): Proceedings of ICANN 2007,
Part I, LNCS 4668, Springer-Verlag Berlin 2007, pp.
864–873.

[2] S. Buchholz, E. Hitzer, K. Tachibana, Coordinate
independent update formulas for versor Clifford neu-
rons, SCIS and ISIS 2008, Nagoya, September 2008.

[3] P. Lounesto, Clifford Algebras and Spinors, Cam-
bridge University Press, 2001

[4] T. Nitta (ed.), Complex-Valued Neural Networks:
Utilizing High-Dimensional Parameters, Informa-
tion Science Publishing, 2009.

GraVisMa 2010 Poster Papers

- 164 -

[5] M. T. Pham, T. Yoshikawa, T. Furuhashi, Pattern
Recognition Based on Space Folding Model, Proc.
Applied Geometric Algebras in Computer Science
and Engineering (AGACSE2010), June 2010.

GraVisMa 2010 Poster Papers

- 165 -

GraVisMa 2010 Poster Papers

- 166 -

	!_Proceedings_Full.pdf
	D13-full.pdf
	D71-full.pdf
	D79-full.pdf
	D83-full.pdf
	E03-full.pdf
	E05-full.pdf
	E23-full.pdf
	E29-full.pdf
	E43-full.pdf
	E73-full.pdf
	F07-full.pdf

	!_Proceedings-Short.pdf
	D67-full.pdf
	1. INTRODUCTION
	2. GABOR FILTER
	3. SIMILARITY MEASURING
	4. RESULTS
	5. Conclusions
	ACKNOWLEDGMENTS
	REFERENCES

	E17-full.pdf
	E19-full.pdf
	E41-full.pdf
	E47-full.pdf
	1. INTRODUCTION
	2. DATA VISUALIZATION
	3. SOAP BUBBLES METAPHOR
	4. NEBULA METAPHOR
	5. RELATED WORK
	6. CONCLUSIONS
	7. ACKNOWLEDGMENTS
	8. REFERENCES

	E53-full.pdf
	E59-full.pdf
	!_EMPTY.pdf

	!_Proceedings_Poster.pdf
	D73-full.pdf
	D89-full.pdf
	E31-full.pdf
	F23-full.pdf
	F37-full.pdf
	1. INTRODUCTION
	2. RELATED WORK IN 3D ARCHITECTURAL DOMAIN
	3. OVER VIEW
	4. POLYGON TAGGING
	5. CLUSTER CREATION
	6. LINKING DATA
	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	F43-full.pdf
	F37-full.pdf
	1. INTRODUCTION
	2. RELATED WORK IN 3D ARCHITECTURAL DOMAIN
	3. OVER VIEW
	4. POLYGON TAGGING
	5. CLUSTER CREATION
	6. LINKING DATA
	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

