
 Vaclav Skala – Union Agency

International Workshop on

Computer Graphics, Computer Vision and Mathematics

in co-operation with

EUROGRAPHICS

GraVisMa 2009

Workshop Proceedings

Edited by

Vaclav Skala, University of West Bohemia, Czech Republic
Dietmar Hildenbrand, Technical University Darmstadt, Germany

GraVisMa 2009 Proceedings

Editor-in-Chief: Vaclav Skala
c/o University of West Bohemia, Univerzitni 8
CZ 306 14 Plzen
Czech Republic
skala@kiv.zcu.cz

Managing Editor: Vaclav Skala

Published and printed by:
Vaclav Skala – Union Agency
Na Mazinách 9
CZ 322 00 Plzen
Czech Republic

Hardcopy: ISBN 978-80-86943-90-9

Foreword

The 1st international workshop on Computer Graphics, Computer Vision and
Mathematics was held at the University of West Bohemia in Plzen (Pilsen), Czech
Republic on September 2-4, 2009. Informal atmosphere of the GraVisMa 2009 workshop
stimulated scientific discussions between researchers and practitioners that will hopefully
lead to further research international collaborations and common project proposals as
well.

GraVisMa workshops are a unique forum of researchers, practitioners, developers and
academia experts to discuss new approaches and methods in Computer Graphics,
Computer Vision, Scientific Computation, Scientific, Medical and Information Visualization
(and relevant fields) with application of the latest developments in Mathematics and
Physics and vice versa.

Goals of the GraVisMa workshops are to bring theory of the Projective Geometry,

Geometric Algebra and Conformal Geometry to practice especially in the fields related to
Computer Graphics and Vision, Scientific Computation and Visualization.

GraVisMa workshops brings new impulses to related fields of computer science,

especially in development of new approaches and algorithms and will stimulate research
activities between mathematicians and computer science experts.

GraVisMa workshop proceedings contain full papers and communication papers

presented at the workshop that were commented, reviewed by participants and external
reviewers. The papers accepted for publication were significantly improved after the
workshop due to those discussions and comments.

GraVisMa 2009 attendees

There were 64 papers submitted, for publication in the proceedings 15 FULL (23%) and
9 Communication (14%) papers were accepted. We had also keynotes:
• Eckhard M. S. Hitzer: Fourier and Wavelet Transformations in Geometric Algebra,

Fukui University, Japan
• Werner Benger et al: Using Geometric Algebra for Navigation in Riemannian and

Hard Disc Space, Louisiana State University, USA
• Anthony Lasenby et al: Rigid Body Motion and Conformal Geometric Algebra,

Cambridge University, U.K.
• Leo Dorst: Conformal Geometric Algebra by Extended Vahlen Matrices, University of

Amsterdam, The Netherlands

The Co-Chairs would like to thanks to all who:
• contributed to this workshop, especially to all commented and / or reviewed papers,
• helped this workshop to be held and to people that helped during the workshop

itself.

It is on a reader to evaluate how the GraVisMa goals and intentions have been fulfilled by
the GraVisMa 2009 workshop.

Co-Chairs

Vaclav Skala

University of West Bohemia
Czech Republic

Dietmar Hildenbrand
Technical University Darmstadt

Germany

List of people who commented / reviewed presentations and papers
Abualkishik,A. (Malaysia)
Aiad,A. (Egypt)
Amjoun,R. (Germany)
Anton,F. (Denmark)
Basdogan,D. (Turkey)
Benger,W. (United States)
Bocek,J. (Czech Republic)
Carpentieri,B. (Italy)
Cibura,C. (Netherlands)
Cui,Y. (Germany)
Deul,C. (Germany)
Dorst,L. (Netherlands)
Drahoš,P. (Slovakia)
Fassold,H. (Austria)
Fleischmann,O. (Germany)
Fudos,I. (Greece)
Hasegawa,M. (Japan)
Hildenbrand,D. (Germany)
Hitzer,E. (Japan)
Inselberg,A. (Israel)
Jinesh,V. (India)
Kapec,P. (Slovakia)
Kooijman,A. (Netherlands)
Kurasova,O. (Lithuania)

Lacko,J. (Slovakia)
Lasenby,A. (United Kingdom)
Lasenby,J. (United Kingdom)
Lee,S. (Germany)
Malpica,J. (Spain)
Marcinkevicius,V. (Lithuania)
Margensten,M. (France)
Mashtalir,S. (Ukraine)
Medvedev,V. (Lithuania)
Mullineux,G. (United Kingdom)
Ryad,C. (Italy)
Sabov,A. (Germany)
Seeman,M. (Czech Republic)
Schwinn,C. (Germany)
Skala,V. (Czech Republic)
Tachibana,K. (Japan)
Torrens,F. (Spain)
Tytkowski,K. (Poland)
Vanek,J. (Czech Republic)
Warszawski,K. (Poland)
Wörsdörfer,F. (Germany)
Zemcik,P. (Czech Republic)
Zhao,L. (China)

Contents
Plenary Papers Page

Hildenbrand,D.: Geometric Algebra Computers

1

Simpson,L., Mullineux,G.: Exponentials and Motions in Geometric Algebra

9

Cui,Y., Hildenbrand,D.: Pose estimation based on Geometric Algebra 17

Kooijman,A., Vergeest,J.: A GPU Supported Approach to the Partial Registration of
3D Scan Data

25

Deul,C., Burger,M., Hildenbrand,D., Koch,A.: Raytracing Point Clouds using
Geometric Algebra

32

Fassold,H., Rosner,J., Schallauer,P., Bailer,W.: Realtime KLT feature point tracking
for High Definition video

40

Urban,J., Vaněk,J.: Preprocessing of microscopy images via Shannon's entropy

48

Tytkowski,K.T.: The BPT Algorithm (Brianchon-Point-Triangle) - Detecting Conical
Curves in Raster Graphics

52

Cibura,C., Dorst,L.: From Exact Correspondence Data to Conformal Transformations
in Closed Form Using Vahlen Matrices

58

Dorst,L.: Determining an Versor in n-D Geometric Algebra from the Known
Transformation of n Vectors

66

Dorst,L.: Conformal Geometric Algebra by Extended Vahlen Matrices

72

Benger,W., Hamilton,A., Folk,M., Koziol,Q., Su,S., Schnetter,E., Ritter,M., Ritter,G.:
Using Geometric Algebra for Navigation in Riemannian and Hard Disc Space

80

Candy,L., Lasenby,J.: Inertial Navigation using Geometric Algebra

93

Hitzer,E.: Fourier and Wavelet Transformations in Geometric Algebra

94

Hasegawa,M.: A Study of 3-D Surface Registration Using Distance Map and 3-D
Radon Transform

102

Communication papers

Schwinn,C., Görlitz,A., Hildenbrand,D.: Geometric Algebra Computing on the CUDA
Platform

111

Protopsaltou,A., Fudos,I.: Creating Editable 3D CAD Models from Point Cloud Slices

118

Bocek,J., Kolcun, A.: Shading of Bézier patches

126

Tachibana,K.: Object Tracking by Geometric Algebra-valued Particle Filter

130

Zemcik,P., Hanak,I.: Numerical Method for Accelerated Point Light Source Optical
Field Calculation

131

Zemcik,P., Pribyl,B., Herout,P.: Precise Image Resampling Algorithm

135

Lacko,J., Maričák,M.: Context based controlled Virtual Tours using Viewpoint
Entropy for Virtual Environments [C17]

139

Seeman,M., Zemcik,P.: Histogram smoothing for bilateral filter

145

Kapec,P.: Hypergraph-based software visualization 149

Geometric Algebra Computers

Dietmar Hildenbrand
TU Darmstadt, Germany

dhilden@gris.informatik.tu-
darmstadt.de

ABSTRACT

Geometric algebra covers a lot of other mathematical systems like vector algebra, complex numbers, Plücker coordinates,
quaternions etc. and it is geometrically intuitive to work with. Furthermore there is a lot of potential for optimization and
parallelization.
In this paper, we investigate computers suitable for geometric algebra algorithms. While these geometric algebra computers
are working in parallel, the algorithms can be described on a high level without thinking about how to parallelize them. In this
context two recent developments are important. On one hand, there is a recent development of geometric algebra to an easy
handling of engineering applications, especially in computer graphics, computer vision and robotics. On the other hand, there
is a recent development of computer platforms from single processors to parallel computing platforms which are able to handle
the high dimensional multivectors of geometric algebra in a better way.
We present our geometric algebra compilation approach for current and future hardware platforms like reconfigurable hardware,
multi-core architectures as well as modern GPGPUs.

Keywords: Geometric algebra, GPGPU, multi-core-architecture, Verilog, OpenCL, CUDA, OpenMP, Ct, Larrabee.

1 INTRODUCTION
The foundation of geometric algebra was laid in 1844
and 1862 by Hermann Grassmann [8] whose 200th
birthday we were celebrating in 2009 [25]. His work
was continued by the English mathematician W. K.
Clifford in 1878 [2]. Due to the early death of Clifford,
the vector analysis of Gibbs and Heaviside dominated
most of the 20th century, and not the geometric algebra.
Geometric algebra has found its way into many areas of
science, since David Hestenes treated the subject in the
’60s [9]. In particular, his aim was to find a unified
language for mathematics, and he went about to show
the advantages that could be gained by using geomet-
ric algebra in many areas of physics and geometry [12],
[10], [13] culminating in the development of the con-
formal geometric algebra [11]. Many other researchers
followed and showed that applying geometric algebra
in their field of research can be advantageous, e.g. in
engineering areas like computer graphics, computer vi-
sion and robotics. Please find a survey on geometric
algebra algorithms in [26].

During the past decades, especially from 1986 until
2002, processor performance doubled every 18 months.
Currently, this improvement law is no longer valid be-
cause of technical limitations. Now, we can recognize a
shift to parallel systems and most likely these systems
will dominate the future. Thanks to multi-core architec-
tures or powerful graphics boards for instance based on
the CUDA technology from NVIDIA or on the future
Larrabee technology of INTEL, one can expect impres-
sive results using the powerful language of geometric
algebra.

There is already a very advanced pure software so-
lution called Gaigen (see [4] and [5]) as well as some

pure hardware solutions geometric algebra algorithms
(see for instance [24], [21] and [7] and a survey in [17]).

We propose to combine the advantages of both soft-
ware and hardware solutions. We use a two-stage com-
pilation approach for geometric algebra algorithms. In
a first step we optimize geometric algebra algorithms
with the help of symbolic computing. This kind of op-
timization results in very basic algorithms leading to
highly efficient software implementations. These al-
gorithms, foster a high degree of parallelization which
are then used for hardware optimizations in a second
step. As examples for geometric algebra computing we
present

• a FPGA(field programmable gate array) implemen-
tation of an inverse kinematics algorithm.

• examples on how to implement geometric algebra
algorithms on multi-core architectures. Since all
of the coefficients of high dimensional multivectors
can be computed in parallel, geometric algebra com-
puting benefits a lot from highly parallel structures.

• a OpenCL/CUDA implementation for arbitrary ge-
ometric products using 2n-dimensional multivectors
of n-dimensional geometric algebras.

2 GEOMETRIC ALGEBRA COMPUT-
ING APPROACH

Geometric algebra offers some very interesting proper-
ties like

• it is geometrically intuitive to work with

• it is easy to handle geometric objects like spheres,
circles, planes etc. as well as geometric operations
like rotations, reflections etc.

GraVisMa 2009

1

• geometric algebra algorithms are very compact

• it covers a lot of other mathematical systems like
vector algebra, complex numbers, Plücker coordi-
nates, quaternions etc.

How can we combine these properties with highly
performant implementations? Multivectors of a n-
dimensional geometric algebra are 2n-dimensional.
At first glance, this seems to be computationally
very expensive. But, there is a lot of potential for
optimization and parallelization of multivectors:

• the possibility of precomputing geometric algebra
expressions

– determine which of the coefficients are needed
for the resulting multivector

– symbolic simplification of the remaining coeffi-
cient computations

• Since all of the remaining coefficients can be com-
puted in parallel, geometric algebra computations
benefit a lot from parallel structures.

This is why we propose to separate geometric algebra
computing in two layers

• geometric algebra (GA) compilation layer

• platform layer

At the GA compilation layer geometric algebra opera-
tions like geometric product, outer product, inner prod-
uct, dual and reverse on multivectors are handled. This
is compiled in a second step to the platform layer. On
this layer only basic arithmetic operations on multivec-
tors with a high potential for efficient computations on
parallel platforms are available.

Figure 1: Geometric algebra computing architecture.
Algorithms are compiled to an intermediate represen-
tation for the compilation to different computing plat-
forms.

Our geometric algebra computing architecture is pre-
sented in Figure 1. Algorithms (described by the geo-
metric algebra programming language CLUCalc [23])
are compiled to an intermediate representation using a

Maple based or a table based approach (see sections
3.1 and 3.2). Based on this representation implemen-
tations for different sequential and parallel platforms
can be derived. See some examples for geometric al-
gebra computer platforms based on FPGA- Multicore-
and OpenCL/CUDA-architecture in sections 4.1 to 4.5.

3 GEOMETRIC ALGEBRA COMPILA-
TION

In order to achieve highly efficient implementations,
geometric algebra algorithms have to be optimized first.
We use two different compilation approaches. The
Maple based compilation needs the commercial Maple
package and is restricted to geometric algebras with di-
mension <= 9. The table based compilation is able to
handle higher dimensional algebras but it is currently
not as powerful as the Maple based compilation.

3.1 Maple Based Compilation
The Maple based compilation uses the powerful sym-
bolic computation feature of Maple [20]. Since all of
the results of geometric algebra operations on multivec-
tors are again multivectors we symbolically compute
and simplify the resulting multivectors in order to deter-
mine which of the coefficients are actually needed and
what is the most simple expression for each coefficient
(in the Maple sense).

There is already a first implementation of a compiler
for geometric algebra algorithms called Gaalop (Geo-
metric algebra algorithms optimizer) working with this
approach. Please find some information in [17]. You
are able to download Gaalop from [16].

3.2 Table Based Compilation
The table based compilation approach uses precom-
puted multiplication tables inspired by the code gen-
erator Gaigen [6] from the university of Amsterdam.
While Gaigen needs explicit specialization of multivec-
tors this is done automatically in our approach (see the
example below).
Multiplication tables In order to compute geometric
algebra algorithms, the rules for the computation of the
products of multivectors have to be known. These prod-
ucts of specific geometric algebras can be summarized
(and precomputed) in multiplication tables describing
the product of different blades of the algebra. You can
find some examples of multiplication tables in the ap-
pendix. Table 1, for instance, describes the geometric
product of the 8 = 23 blades of the 3D Euclidean geo-
metric algebra. Based on this information the geomet-
ric product of two multivectors, each defined as a linear
combination of all the blades mv = ∑mviEi can be eas-
ily derived as described in the caption of Table 1.

The same procedure can be used for other products.
Table 2, for instance, describes the outer product of the

GraVisMa 2009

2

mv1 mv2 mv3 mv4 mv5 mv6 mv7 mv8
E1 E2 E3 E4 E5 E6 E7 E8
1 e1 e2 e3 e12 e23 e13 e123

3D Euclidean geometric algebra. Note that a lot of en-
tries are zero corresponding to the outer product of two
identical blades.
Example Let us compile the following CLUCalc script
step by step:

a=a1*e1+a2*e2+a3*e3;
b=b1*e1+b2*e2+b3*e3;
?c=a*b;
d=a+c;
?f=a^d;

It computes the geometric product of two 3D vectors,
adds two multivectors and computes the outer product
of two multivectors.

The first two lines are used for the definition as well
as for an automatic specialization of the two multivec-
tors a

1 2 3 4 5 6 7 8
a1 a2 a3

and b

1 2 3 4 5 6 7 8
b1 b2 b3

For both, only the entries 2, 3 and 4 are needed since
they correspond to the three basis vectors e1,e2,e3 (see
Table 1).

The question mark in the third line of the CLUCalc
script indicates an explicit evaluation of this line, the
geometric product of the two multivectors a and b. Ta-
ble 3 shows the corresponding multiplication table for
this product. It is derived from the Table 1 with empty
rows and columns for multivector entries not needed
for a and b. The resulting multivector c needs only the
coefficients for the blades E1,E5,E6,E7 (see Table 3).

c[1]=a1*b1+a2*b2+a3*b3;
c[5]=a1*b2-a2*b1;
c[6]=a2*b3-a3*b2;
c[7]=a1*b3-a3*b1;

Each coefficient c[k] can be computed by summing up
the products ±ai ∗ b j based on the Ek table entries, for
instance c1 = a1 ∗b1 +a2 ∗b2 +a3 ∗b3.

1 2 3 4 5 6 7 8
c[1] a1 a2 a3 c[5] c[6] c[7]

In the fourth line of the CLUCalc script, two multi-
vectors are added resulting in the following multivector
d:

The evaluation of the outer product of a with this just
computed multivector d leads to

f[2]=a1*c[1];
f[3]=a2*c[1];
f[4]=a3*c[1];
f[5]=a1*a2-a2*a1;
f[6]=a2*a3-a3*a2;
f[7]=a1*a3-a3*a1;
f[8]=-a2*c[7]+a3*c[5]+a1*c[6];

For this computation you can use the multiplication ta-
ble 2. Associating the rows with the multivector a and
the columns with d we are able to set the rows 1, 5, 6,
7, 8 as well as the column 8 to zero. We recognize that
the remaining entries are for the coefficients 2, 3, 4, 5,
6, 7 and 8, E2 for instance in the second row and the
first column associated with the product a1 ∗ c[1].

Note that the multivector entries 5, 6 and 7 lead to
zero entries. This can be either recognized at compile
time or at runtime. In both cases the resulting multivec-
tor f has the following form:

1 2 3 4 5 6 7 8
f [2] f [3] f [4] f [8]

4 GEOMETRIC ALGEBRA COMPUT-
ERS

Here, computers suitable for geometric algebra algo-
rithms, are called geometric algebra computers (GA
computers).

Figure 2: The mathematical development to geometric
algebra and the computer development to parallel com-
puting platforms leading to GA computers

GraVisMa 2009

3

There are mainly two recent developments leading to
GA computers (see Figure 2):

• the development of mathematics from Grassmann´s
exterior algebra to Clifford´s algebra to the geomet-
ric algebra of David Hestenes and especially the 5D
conformal model leading to a lot of applications for
instance in computer graphics, computer vision and
robotics.

• the recent development of computer platforms for
the mass market from single processors to parallel
computing platforms which are able to handle the
high dimensional multivectors of geometric algebra
in a better way.

Figure 3 shows one example of an architecure able to
compute the coefficients of a multivector in parallel.

Figure 3: Computing architecture with a number of par-
allel processors, each consisting of local program mem-
ory. All the processors are able to communicate via
global shared memory.

With the compilation approaches described in
sections 3.1 and 3.2, geometric algebra algorithms
are compiled into a description suitable for parallel
computer platforms. In a next compilation step, the
different platforms require different descriptions for
their specific architecture. As follows, we describe
solutions for a reconfigurable hardware implementation
using Verilog, multi-core architectures using OpenMP
and Ct as well as a GPGPU implementation using
OpenCL/CUDA.

4.1 FPGA/Verilog implementation of a
geometric algebra algorithm

There are general FPGA (field programmable gate ar-
rays) implementations for geometric products ([24] and
[7]). Our approach differs from these general solu-
tions as we compile geometric algebra algorithms first
into simplified algorithms that can be handled easily by
FPGA´s. This is why we are not so much restricted in
the length of the expressions to compute as well as in
the dimension of the algebra.

Our FPGA implementations are always application
specific. As one proof-of-concept for our approach we

Figure 4: Pipeline schedule for the coefficient pex of
a multivector. All the computations according to equa-
tion (1) of all the pipeline stages can be done in parallel.

implemented an inverse kinematics algorithm. First, we
used our Maple based compilation approach (see sec-
tion 3.1) and the software implementation of the op-
timized algorithm became three times faster than the
conventional solution [14]. The FPGA implementation
of the optimized algorithm used the Verilog program-
ming language. See Figure 4 for the data flow and the
pipeline schedule of the computation of the following
part of the algorithm (one coefficient of one multivec-
tor)

pex = (PPj(PP34−PP35)+PPk(PP25−PP24 (1)

+tmpsqrt(PP15−PP14))/ein f _PP.

This implementation became about 300 times faster
[15] (3 times by software optimization and 100 times
by additional hardware optimization). The main advan-
tage of this kind of implementation on reconfigurable
hardware is that we are able to realize parallelism in
two dimensions

• compute all the coefficients of one (or more) multi-
vectors in parallel

• use the pipeline structure (computations in all
pipeline stages at the same time).

4.2 OpenMP
OpenMP can be used in order to parallelize GA algo-
rithms. The programming language C can be extended
with OpenMP directives for an incremental approach to
parallelizing code. For details on OpenMP, please refer
to [1].

OpenMP supports task parallel computations. The
data of all the different threads is shared by default.
This is why the coefficients of multivectors can be com-
puted in parallel (as well as independent multivectors).
Using OpenMP for C, our above mentioned example
looks as follows

#pragma omp parallel {

GraVisMa 2009

4

#pragma omp sections {
#pragma omp section
c[1]=a1*b1+a2*b2+a3*b3;
#pragma omp section
c[5]=a1*b2-a2*b1;
#pragma omp section
c[6]=a2*b3-a3*b2;
#pragma omp section
c[7]=a1*b3-a3*b1;

}/*End of sections block */

#pragma omp sections
{
#pragma omp section
f[2]=a1*c1;
#pragma omp section
f[3]=a2*c[1];
#pragma omp section
f[4]=a3*c[1];
#pragma omp section
f[5]=a1*a2-a2*a1;
#pragma omp section
f[6]=a2*a3-a3*a2;
#pragma omp section
f[7]=a1*a3-a3*a1;
#pragma omp section
f[8]=-a2*c[7]+a3*c[5]+a1*c[6];

}/*End of sections block */

} /*End of parallel region */

Each of the two multivectors c and f have to be com-
puted sequentially because f needs the result of c for its
computation (while all of their coefficients can be com-
puted in parallel). In case of no dependance of the com-
putations, multivectors can also be computed in paral-
lel.

4.3 Ct
Intel researchers are developing Ct, or C/C++ for
Throughput Computing [18] in order to support their
new multi-core platform (code name Larrabee).

Ct offers parallelism on so-called indexed vectors
suitable for sparse multivectors. The fist step of our
example of section 3 generates a multivector which can
be described as the following indexed vector

c= [(1 -> a1*b1+a2*b2+a3*b3),
(5 -> a1*b2-a2*b1),
(6 -> a2*b3-a3*b2),
(7 -> a1*b3-a3*b1),
(_ -> 0)
]

Note that the underscore denotes a default value for
empty coefficients.

All operators on indexed vectors are implicitly par-
allel. This is why the addition of multivectors of our
example

d=a+c;

can be done very easily in Ct.

4.4 ATI stream
The ATI stream technology combines multiple thread
computing with parallel computing within the threads.
The following sample code computes the geometric
product of the above example with the help of float4
vectors. The 4 computations for the coefficients x,y,z,w
are computed in parallel.

kernel void MV (float4 a<>,
float4 b<>,
out float4 c<>){

float4 result;
result.x=a.x*b.x+a.y*b.y+a.z*b.z;
result.y=a.x*b2-a2*b.x;
result.z=a.y*b.z-a.z*b.y;
result.w=a.x*b.z-a.z*b.x;
c=result;

}

Please find an investigation about a ray tracing applica-
tion using this technology in [3].

4.5 OpenCL/CUDA implementation of
arbitrary geometric products

Figure 5: The result of a product of two multivectors
a, b is again a multivector. Each of its coefficients is a
sum of (signed or unsigned) products of coefficients of
a and b.

OpenCL [19] is an open standard for parallel pro-
gramming of heterogeneous systems. It is inspired by
Nvidia´s CUDA technology [22]. Both, are supporting

GraVisMa 2009

5

multiple threads which are able to run the same code
with different data on many parallel processors.

The result of products of a n-dimensional geometric
algebra are always 2n-dimensional multivectors. Each
of the 2n coefficients can be computed as a sum of
(signed or unsigned) products of coefficients of the mul-
tivectors to be multiplied (as indicated in Figure 5). We
distribute this computation to 2n threads, each comput-
ing one coefficient.

Figure 6: Pseudo code for the computation of one coef-
ficient of a geometric product.

Figure 6 describes the specific kernel code for
one thread, each computing one coefficient of the
2n-dimensional multivector.

Please find some details on this application in [27].

5 RESULTS
Our geometric algebra computing approach is able to
generate implementations for different sequential and
parallel platforms (see Figure 3). While some of the
described implementations are still work in progress,
we already have results for implementations in C, for a
FPGA and for CUDA.

Our first test case was the inverse kinematics of the
arm of a virtual character in a virtual reality applica-
tion. Naively implemented on a sequential processor
platform, the first geometric algebra algorithm was ini-
tially slower than the conventional one. However, with
our Maple based optimization approach the software
implementation became three times faster [14] than the
conventional solution. The hardware implementation
on a FPGA (as described in section 4.1) became even
300 times faster [15].

The results of our CUDA implementation of arbitrary
geometric products can be found in [27].

Recently we investigated the runtime performance of
a robotics grasping algorithm described in geometric al-
gebra [28]. It turned out that the implementation on
a sequential processor was 14 times faster and on the
CUDA platform 44 times faster than the solution with
conventional mathematics.

6 CONCLUSION AND FUTURE
WORK

We presented the currently most suitable geometric al-
gebra computing platforms. For the adaptation of the

algorithms to the different platforms we presented our
compilation approach. While the Maple based compi-
lation approach is able to handle algebras up to a di-
mension of 9, the table based approach is restricted by
the memory needed for the size of the multiplication
tables. These tables are exponentially increasing with
the dimension of the algebra. In this context, investi-
gations for lower amounts of memory are needed, for
instance the implementation on a multiplicative basis
as described in [5].

Currently, the presented parallel computing platforms
can be seen as approximations to perfect GA comput-
ers. As a long-term vision, we hope that this research
will lead to computing platforms optimally supporting
GA computers in the future.

ACKNOWLEDGEMENTS
This work was supported by the DFG (Deutsche
Forschungsgemeinschaft) project HI 1440/1-1.

GraVisMa 2009

6

A MULTIPLICATION TABLES

Table 1: Multiplication table describing the geometric product of two multivectors a = ∑aiEi and b = ∑biEi for the
3D euclidean GA. Each entry describes the geometric product of two basis blades Ei and E j expressed in terms of
the basis blades Ek. Each coefficient ck of the product c = ab can be computed by summing up the products±ai∗b j
based on the Ek table entries, for instance c1 = a1∗b1 +a2∗b2 +a3∗b3 +a4∗b4−a5∗b5−a6∗b6−a7∗b7−a8∗b8
for the E1 table entries b E1 E2 E3 E4 E5 E6 E7 E8

a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 E1 E2 E3 E4 E5 E6 E7 E8
E2 e1 E2 E1 E5 E7 E3 E8 E4 E6
E3 e2 E3 -E5 E1 E6 -E2 E4 -E8 -E7
E4 e3 E4 -E7 -E6 E1 E8 -E3 -E2 E5
E5 e12 E5 -E3 E2 E8 -E1 E7 -E6 -E4
E6 e23 E6 E8 -E4 E3 -E7 -E1 E5 -E2
E7 e13 E7 -E4 -E8 E2 E6 -E5 -E1 E3
E8 e123 E8 E6 -E7 E5 -E4 -E2 E3 -E1

Table 2: Multiplication table describing the outer product of two general multivectors a = ∑aiEi and b = ∑biEi
for the 3D euclidean GA. b E1 E2 E3 E4 E5 E6 E7 E8

a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 E1 E2 E3 E4 E5 E6 E7 E8
E2 e1 E2 0 E5 E7 0 E8 0 0
E3 e2 E3 -E5 0 E6 0 0 -E8 0
E4 e3 E4 -E7 -E6 0 E8 0 0 0
E5 e12 E5 0 0 E8 0 0 0 0
E6 e23 E6 E8 0 0 0 0 E5 0
E7 e13 E7 0 -E8 0 0 0 0 0
E8 e123 E8 0 0 0 0 0 0 0

Table 3: Multiplication table describing the geometric product of two vectors a = a1e1 + a2e2 + a3e3 and b =
b1e1 +b2e2 +b3e3 for the 3D euclidean GA. Note that all the rows and columns for basis blades not needed for the
vectors are set to 0. b b1 b2 b3

E1 E2 E3 E4 E5 E6 E7 E8
a 1 e1 e2 e3 e12 e23 e13 e123

E1 1 0 0 0 0 0 0 0 0
a1 E2 e1 0 E1 E5 E7 0 0 0 0
a2 E3 e2 0 -E5 E1 E6 0 0 0 0
a3 E4 e3 0 -E7 -E6 E1 0 0 0 0

E5 e12 0 0 0 0 0 0 0 0
E6 e23 0 0 0 0 0 0 0 0
E7 e13 0 0 0 0 0 0 0 0
E8 e123 0 0 0 0 0 0 0 0

GraVisMa 2009

7

REFERENCES
[1] Barbara Chapman, Gabriele Jost, and Ruud van der Pas. Using

OpenMP : portable shared memory parallel programming. The
MIT Press, 2008.

[2] William Kingdon Clifford. Applications of Grassmann’s Exten-
sive Algebra, volume 1 of American Journal of Mathematics,
pages 350–358. The Johns Hopkins University Press, 1878.

[3] Crispin Deul, Michael Burger, Dietmar Hildenbrand, and An-
dreas Koch. Raytracing point clouds using geometric algebra.
In submitted to the proceedings of the GraVisMa workshop,
Plzen, 2010.

[4] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Al-
gebra for Computer Science, An Object-Oriented Approach to
Geometry. Morgan Kaufman, 2007.

[5] Daniel Fontijne. Efficient Implementation of Geometric Alge-
bra. PhD thesis, University of Amsterdam, 2007.

[6] Daniel Fontijne, Tim Bouma, and Leo Dorst. Gaigen 2:
A geometric algebra implementation generator. Available
at http://staff.science.uva.nl/~fontijne/
gaigen2.html, 2007.

[7] Antonio Gentile, Salvatore Segreto, Filippo Sorbello, Giorgio
Vassallo, Salvatore Vitabile, and Vincenzo Vullo. Cliffosor, an
innovative fpga-based architecture for geometric algebra. In
ERSA 2005, pages 211–217, 2005.

[8] Hermann Grassmann. Die Ausdehnungslehre. Verlag von Th.
Chr. Fr. Enslin, Berlin, 1862.

[9] David Hestenes. Space-Time Algebra (Documents on Modern
Physics). Gordon and Breach, 1966.

[10] David Hestenes. New Foundations for Classical Mechanics.
Dordrecht, 1986.

[11] David Hestenes. Old wine in new bottles : A new algebraic
framework for computational geometry. In Eduardo Bayro-
Corrochano and Garret Sobczyk, editors, Geometric Alge-
bra with Applications in Science and Engineering. Birkhäuser,
2001.

[12] David Hestenes and Garret Sobczyk. Clifford Algebra to Ge-
ometric Calculus: A Unified Language for Mathematics and
Physics. Dordrecht, 1984.

[13] David Hestenes and Renatus Ziegler. Projective Geometry with
Clifford Algebra. Acta Applicandae Mathematicae, 23:25–63,
1991.

[14] Dietmar Hildenbrand, Daniel Fontijne, Yusheng Wang, Marc
Alexa, and Leo Dorst. Competitive runtime performance for
inverse kinematics algorithms using conformal geometric alge-
bra. In Eurographics conference Vienna, 2006.

[15] Dietmar Hildenbrand, Holger Lange, Florian Stock, and An-
dreas Koch. Efficient inverse kinematics algorithm based on
conformal geometric algebra using reconfigurable hardware. In
GRAPP conference Madeira, 2008.

[16] Dietmar Hildenbrand and Joachim Pitt. The Gaalop home page.
Available at http://www.gaalop.de, 2008.

[17] Dietmar Hildenbrand, Joachim Pitt, and Andreas Koch. Gaalop
- high performance parallel computing based on conformal ge-
ometric algebra. In Eduardo Bayro-Corrochano and Gerik
Scheuermann, editors, Geometric Algebra Computing for En-
gineering and Computer Science. Springer, 2009.

[18] Intel. Ct: C for throughput computing home page. Available
at http://techresearch.intel.com/articles/Tera-Scale/1514.htm,
2009.

[19] Khronos-Group. The OpenCL home page. Available at http:
//www.khronos.org/opencl/, 2009.

[20] The homepage of maple. Available at
http://www.maplesoft.com/products/maple, 2009. 615 Kumpf
Drive, Waterloo, Ontario, Canada N2V 1K8.

[21] Biswajit Mishra and Peter Wilson. Hardware implementation of

a geometric algebra processor core. In Proceedings of IMACS
International Conference on Applications of Computer Algebra
(in press), Nara, Japan, 2005.

[22] NVIDIA. The CUDA home page. Available at
http://www.nvidia.com/object/cuda_home.html, 2009.

[23] Christian Perwass. The CLU home page. Available at
http://www.clucalc.info, 2005.

[24] Christian Perwass, Christian Gebken, and Gerald Sommer. Im-
plementation of a clifford algebra co-processor design on a field
programmable gate array. In Rafal Ablamowicz, editor, CLIF-
FORD ALGEBRAS: Application to Mathematics, Physics, and
Engineering, Progress in Mathematical Physics, pages 561–
575. 6th Int. Conf. on Clifford Algebras and Applications,
Cookeville, TN, Birkhäuser, Boston, 2003.

[25] Hans-Joachim Petsche. The Grassmann Bicentennial
Conference home page. Available at http://www.uni-
potsdam.de/u/philosophie/grassmann/Papers.htm, 2009.

[26] Alyn Rockwood and Dietmar Hildenbrand. Engineering graph-
ics in geometric algebra. In Eduardo Bayro-Corrochano and
Gerik Scheuermann, editors, Geometric Algebra Computing for
Engineering and Computer Science. Springer, 2009.

[27] Christian Schwinn, A Goerlitz, and Dietmar Hildenbrand. Ge-
ometric algebra computing on the cuda platform. In submitted
to the proceedings of the GraVisMa workshop, Plzen, 2010.

[28] Florian Wörsdörfer, Bayro-Corrochano Eduardo Stock, Flo-
rian, and Dietmar Hildenbrand. Optimization and performance
of a robotics grasping algorithm described in geometric alge-
bra. In Iberoamerican Congress on Pattern Recognition 2009,
Guadalajara, Mexico, 2009.

GraVisMa 2009

8

Exponentials and Motions in Geometric Algebra

Leon Simpson

Department of Mechanical Engineering
University of Bath

Bath BA2 7AY
United Kingdom

l.c.simpson@bath.ac.uk

Glen Mullineux

Department of Mechanical Engineering
University of Bath

Bath BA2 7AY
United Kingdom

g.mullineux@bath.ac.uk

ABSTRACT
The use of geometric algebra to define and manipulate rigid-body motions is investigated. An algebra
with four basis elements of grade 1 is used in which the square of one of these elements is regarded as
being infinite. This gives a representation of projective space and allows rotations and translations to be
defined exactly. By smoothly interpolating between such transforms, smooth motions can be created using
techniques such as spherical linear interpolation (Slerp). This requires the ability to handle the exponential
function within the algebra. A closed form expression for the exponential is derived in the general case
when the square of the special basis element is any real number. Taking this to be infinite allows smooth
motions to be created and some examples are presented.

Keywords
Geometric algebra, exponential function, smooth motion, interpolation, Slerp.

1. INTRODUCTION

The ideas of geometric (Clifford) algebras have
been known since the 1800’s. However they fell
into disuse and interest was only regained in the
last ten years or so [1]. Now they are used in many
areas including quantum physics [2] and computer
vision [3]. One particular application area is that of
creating smooth motions such as those required for
the kinematics of robotic and mechanism systems
[4]. For this, geometric algebra can be regarded as
a technique related to the use of quaternions and
dual quaternions [5, 6].

There is interest in the use of geometric algebra to
represent rigid-body transforms (translations and
rotations) in the same form. One approach is to do
this using the ideas of conformal geometric alge-
bra [7]. An alternative approach is to work with
a “conventional” formulation of a geometric alge-
bra and arrange that the square of one of the basis
vectors is treated as being infinite [8, 9].

Permission to make digital or hard copies of all
or part of this work for personal or classroom use
is granted without fee provided that copies are
not made or distributed for profit or commercial
advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or
a fee.

This is done by treating infinity (symbolically) as
the reciprocal of a small real scalarε that is al-
lowed to become vanishing small.

An overview of the algebraG4 constructed in this
way is given in section 2. For the purposes of this
paper, the notation used involves a real numberλ
whereλ2 = ε−1 and consequentlyλ is regarded
as being infinite. The approach allows the algebra
to form a model of projective geometry and allows
exact representations to be obtained for both rota-
tions and translations (section 3).

One of the reasons why quaternions, in particu-
lar, are now used regularly for rotations in com-
puter graphics is the ability to interpolate using
them in equal steps [10]. This has given rise to the
construction known as theSlerpwhich effectively
makes use of the exponential function. Exponen-
tials can also be used to similar effect in conformal
geometric algebra [11] and with matrix represen-
tation of transforms [12].

Quaternions naturally represent rotations, but, in
their basic form, they cannot cope with transla-
tions. However, the geometric algebraG4 (which
contains the quaternions) can deal with both types
of transforms [9]. The aim of this paper is there-
fore to investigate the evaluation of the exponential
of even-grade elements inG4. This can be done in
several ways. One is to use the power series defi-
nition of the exponential function and directly sub-
stitute the appropriate even-grade element. The ex-

GraVisMa 2009

9

pression can be simplified by ignoring terms which
involve powers ofε which are two or higher as
these are small. Another way is to make use of
Chasles’s theorem. This says that every rigid-body
transform can be expressed as the product of a ro-
tation and a translation that commute. The expo-
nentiation of these individual terms is straightfor-
ward and the commutivity allows the product of
individual exponentials to be formed to give the
exponential of the original transform.

The interest is in an approach which does not rely
on the fact that the parameterλ is infinite. Use is
made of a representation of the algebra in terms
of matrices over the quaternions; this is discussed
in section 4. This gives an expression, derived in
section 5, for the exponential which is closed in the
sense that it does not require explicit use of power
series. It is also applicable for any value ofλ. This
parameter can subsequently be allowed to pass to
infinity in order to make use of the transforms that
have been constructed.

Finally, in section 6, use is made of the exponential
function (in the case whenλ is infinite) to obtain
smooth motions between prescribed poses (posi-
tions) and some examples are given. These are
simple examples of the sorts of motions required
in a variety of application areas including: robotics
[3], mechanism simulation [4, 5], human move-
ment [11], and general three dimensional geometry
[8, 13].

2. GEOMETRIC ALGEBRA G4

The geometric algebraG4 is constructed as fol-
lows. Start with a four-dimensional vector space
defined over the real numbersR whose basis vec-
tors (the underlying basis) are denoted bye0, e1,
e2, e3. This is extended to a vector space of di-
mension 16, whose basis elements are denoted by
eσ whereσ is a subset of{0, 1, 2, 3}.

A multiplication between basis elements is now
available by using the idea that ifσ =
{a, b, . . . , d}, theneaeb . . . ed = eσ. So, for ex-
ample

e1e2 = e12 and e1e2e3 = e123

The multiplication is not commutative since the
underlying basis vectors are defined to anti-
commute. For example,

e12 = e1e2 = −e2e1 = −e21

To simplify more complicated products, it is nec-
essary to specify what is the square of each origi-
nal basis element. These are taken as real numbers

and it follows that all basis elements also square to
real numbers. The usual practice is to define the
squarese2

i to be0 or ±1. However, here the fol-
lowing squares are used.

e2
0 = ε−1 e2

1 = e2
2 = e2

3 = 1

whereε is a positive real number. As discussed
later, there is interest in the case whenε ap-
proaches zero. For convenience, the positive real
numberλ is defined so thatλ2 = ε−1. When the
limit is taken,λ tends to infinity.

Given these squares, more general products of the
basis elements can be simplified as the following
example shows.

e0e012e13 = e0e0e1e2e1e3

= −e0e0e1e1e2e3

= −ε−1e23

= −λ2e23

The basis elementeφ, whereφ is the empty set,
acts as the real number 1 and is identified with it.
The basis elemente0123 anti-commutes with all the
original basis vectors. It is here denoted byω.

The general element ofG4 is a linear combination
of the basis elements

x =
∑

σ

Cσeσ (1)

and addition and multiplication extend as with any
other space.

Thegradeof a basis elementeσ is the size of the
subsetσ. If the only basis elements involved (with
non-zero coefficients) in a general elementx have
the same grade, then this is taken as the grade of
the elementx. Such elements are also referred to
asbladesor i-blades, wherei is the grade in ques-
tion.

Elements of grade 1 are calledvectors, those of
grade 2 arebivectors, and those of grade 3 are
trivectors. The basis elementω is called the
pseudo-scalar, and scalar multiples ofω are the
only elements of grade 4 in the algebra.

If λ is taken as zero (rather than being large), so
that e2

0 = 0, thenG4 provides a representation
of projective space with vectors corresponding to
planes, bivectors to lines, and trivectors to points
[13]. Conversely, whenλ2 = ε−1 where ε is
(vanishingly) small, the algebra gives an alterna-
tive representation in which vectors correspond to
points, bivectors to lines, and trivectors to planes
[8].

GraVisMa 2009

10

To be able to deal with the algebraG4 computation-
ally, it is necessary to be able to handle theε quan-
tity. This has been achieved by means of a suite of
procedures written in C++. Effectively, these treat
the scalars not simply as real numbers but as real
polynomials inε in which both positive and neg-
ative powers are allowed to appear. A C++ class
allows such polynomials to be created and handles
arithmetical operations involving them.

These procedures allow geometric calculations to
be be performed. When the results are required
for display purposes, these (usually) involve points
and the result of the appropriate evaluation takes
the form

α(e0 + Xe1 + Y e2 + Ze3) + O(ε)

whereα is a non-zero scalar. At this stage, the
terms involvingε are ignored which is equivalent
to lettingε tend to zero, and the result then repre-
sents the cartesian point(X, Y, Z).

3. TRANSFORMS

Thereverseof a basis elementeσ is obtained by re-
versing the order of the subsetσ. The results is ei-
ther the original element or the negative of it. The
reverse of an element is here denoted by a dagger
(†) as in the following examples.

e†12 = e21 = −e12

e†123 = e321 = −e123

e†0123 = e3210 = e0123

SupposeS is an element ofG4. It defines a map

x 7→ S†xS

on the general elementx ∈ G4.

Consider the case in whichS has even grade. If
x is a vector inG4, then its image also has odd
grade and is equal to its own reverse; hence it is
also a vector. So the map sends points in the cor-
responding projective space to other points. It can
be verified that this map represents a rigid-body
transform.

Furthermore, takingλ2 = ε−1 with ε (vanish-
ingly) small, any combination of rotations and
translations can be created as a map in this way
[9]. For example, taking

S = cos(θ) + B sin(θ) (2)

whereB is a unit bivector, the map represents a
rotation through an angle2θ about an axis deter-
mined by the lineBe123. And when

S = 1 + εe0v (3)

wherev is a vector not involvinge0, the map cre-
ates a translation through2v. This can be checked
as follows. If u = Xe1 + Y e2 + Ze3 so that
x = e0 + u represents the typical point in pro-
jective space, then

S†xS = (1 − εe0v)(e0 + u)(1 + εe0v)
= (1 − εvv − εuv − εvu)e0

+ u + 2v − εvuv

→ e0 + u + 2v

where the limit is taken asε tends to zero.

The even-grade element(α+ εβω) acts on vectors
to produce the identity transform. This is because,
if u = Xe1 + Y e2 + Ze3 then

(α + εβω)(e0 + u)(α + εβω) = α2(e0 + u)

in the limit asε tends to zero. The real factorα2

does not affect the point represented in the projec-
tive space.

If S is a general even-grade element, thenS†S =
SS† and this is an element of the formp + εqω
wherep and q are scalars. Then the even-grade
element

S∗ =
1√
p

[
1 − εqω

2p

]
S

is equivalent toS in the sense that it creates the
same transform. Furthermore,

S∗†S∗ = 1 = S∗S∗†

ThusS∗ is a normalised form ofS. For simplic-
ity, it is now assumed that all even-grade elements
used to create transforms have been normalised.
This is already true of the elements used to gen-
erate the examples of a rotation and a translation
in equations (2) and (3).

Suppose an object is defined by points in its own
local coordinate system. Then an even-grade ele-
mentS defines a map into world space which cre-
ates apose for that object. Two such elements
S0 andS1 define two different poses. If one can
smoothly interpolate betweenS0 and S1, then a
smooth motion from one pose to the other can be
created.

One such interpolation can be achieved using the
Bézier formulation. This uses the following com-
bination

S(t) = S0(1 − t) + S1t

where the parametert varies between 0 and 1.

GraVisMa 2009

11

Another interpolation technique isSlerp, spherical
linear interpolation, which was originally created
for use with the quaternions [10]. This uses the
following interpolation formula.

S(t) = S0 (S†
0S1)t

where againt lies between 0 and 1. At the end
points of the motion,

S(0) = S0

S(1) = (S0S
†
0)S1 = S1

using the assumption thatS0 is normalised, so that
motion does pass between the two poses.

If there is an elementU such that

S†
0S1 = exp(U) (4)

then the interpolation takes the form

S(t) = S0 exp(tU) (5)

The next two sections investigate how the expo-
nential function can be evaluated inG4. This is
done in the case in whichλ is taken as a general
real number with no assumption being made that it
is infinite (or even large). Some interesting sym-
metry and structure is apparent in the results ob-
tained. Naturally when the exponential is used in
the context of defining motions, there is a need to
let λ tend to infinity. For the examples presented in
section 6, this is achieved via the C++ procedures
which treat the coefficients as polynomials inε.

4. MATRIX REPRESENTATION

A representation of the even-grade algebra ofG4

is the set of2 × 2 diagonal matrices over the divi-
sion ring of quaternions. Ifi, j, k are the standard
quaternions, then one representation is the follow-
ing. (Other variations are possible by changing the
signs ofi, j, k throughout.)

1 =


1 0

0 1




e23 =


−i 0

0 −i




e13 =


j 0

0 j




e12 =


−k 0

0 −k




e0123 = ω = λ


1 0

0 −1




e01 = λ


i 0

0 −i




e02 = λ


j 0

0 −j




e03 = λ


k 0

0 −k




This representation leads to an isomorphism be-
tween the sub-algebra of even-grade elements of
G4 and the set of diagonal, quaternionic2 × 2 ma-
trices.

5. EXPONENTIATION

The aim here is to find an explicit form forexp(x)
wherex is an even-grade element ofG4. If such
an expression can be found, then it avoids the need
to evaluate the exponential in terms of its power
series. Following equation (1), the typical even-
grade element has the form

x = Cφ + B + Cωω

whereB is the bivector

B = C01e01 + C02e02 + C03e03

+ C12e12 + C13e13 + C23e23

Sinceω and, of course,1 commute with all even-
grade elements, it follows that

expx = exp(Cφ) exp(Cωω) exp(B)

The first factor here is a real number. The second
factor can be dealt with by noting thatω2 = λ2.

exp(Cωω)

= 1 + Cωω +
C2

ωω2

2!
+

C3
ωω3

3!

+
C4

ωω4

4!
+

C5
ωω5

5!
+ . . .

=
[
1 +

C2
ωω2

2!
+

C4
ωω4

4!
+ . . .

]

+
[
Cωλ +

C3
ωλ3

3!
+

C5
ωλ5

5!
+ . . .

]
ω

λ

= cosh(Cωλ) +
sinh(Cωλ)

λ
ω (6)

GraVisMa 2009

12

Before consideringexp(B), note that if

q = q1i + q2j + q3k

is a quaternion, then

q2 = −(q2
1 + q2

2 + q2
3) = −γ2 say.

Set q̂ = q/γ which is the corresponding unit
quaternion. Thenexp(q) can be found, in a sim-
ilar fashion toexp(Cωω), as follows.

exp(q)

= 1 + q +
q2

2!
+

q3

3!
+

q4

4!
+

q5

5!
+ . . .

= 1 + q − γ2

2!
− γ3q

3!
+

γ4

4!
+

γ5q

5!
− . . .

= (cos γ) + (sin γ)q̂

This, of course, is equivalent to Euler’s formula for
complex numbers.

Using the results of the last section, the2×2 matrix
corresponding to the bivectorB is the following.

B =


a 0

0 b




where

a = a1i + a2j + a3k

b = −b1i − b2j − b3k

and

a1 = (λC01 − C23)
a2 = (λC02 + C13)
a3 = (λC03 − C12)

b1 = (λC01 + C23)
b2 = (λC02 − C13)
b3 = (λC03 + C12)

Henceexp(B) is the matrix


(cos α) + (sinα)â 0

0 (cos β) + (sinβ)b̂




where

α =
√

[a2
1 + a2

2 + a2
3]

β =
√

[b2
1 + b2

2 + b2
3]

The matrix for exp(B) is now considered on a
term-by-term basis. Firstly the scalar part is given
as follows.


cosα 0

0 cosβ




= 1
2 (cos α + cosβ)


1 0

0 1




+ 1
2 (cosα − cosβ)


1 0

0 −1




= 1
2 [cosα + cosβ] + 1

2 [cosα − cosβ]
ω

λ

The term involvingi is next considered.


 sin α

α a1 0

0 − sinβ
β b1


 i

= 1
2

(
sin α

α a1 − sin β
β b1

)
i 0

0 i




+ 1
2

(
sin α

α a1 + sin β
β b1

) 
i 0

0 −i




= − 1
2

(
sin α

α a1 − sin β
β b1

)
e23

+ 1
2

(
sin α

α a1 + sin β
β b1

) e01

λ

The terms involvingj andk can be dealt with sim-
ilarly. Combining the results yields the required
expression forexp(B).

exp(B) = 1
2 [cosα + cosβ]

+ 1
2λ

[
sin α

α a1 + sin β
β b1

]
e01

+ 1
2λ

[
sin α

α a2 + sin β
β b2

]
e02

+ 1
2λ

[
sin α

α a3 + sin β
β b3

]
e03

− 1
2

[
sin α

α a3 − sin β
β b3

]
e12

+ 1
2

[
sin α

α a2 − sin β
β b2

]
e13

− 1
2

[
sin α

α a1 − sin β
β b1

]
e23

+ 1
2λ [cosα − cosβ]ω (7)

Some examples are now given.

The first example is to findexp(εde0u) whereε =
λ−2 is vanishingly small,d is a scalar, andu =
u1e1 +u2e2 +u3e3 is a vector of unit length. This

GraVisMa 2009

13

means that, in the previous notation,Cφ andCω

are both zero, and the only non-zero coefficients
within the bivector part areC01 = εdu1, C02 =
εdu2, C03 = εdu3. Hence

α = β = λ−1d
√

[u2
1 + u2

2 + u2
3] = λ−1d

which is small, so that its cosine is unity, and
(sin α)/α = (sinβ)/β = 1. Using equation (7)
gives

exp(εde0u)
= 1 + C01e01 + C02e02 + C03e03

= 1 + εde0u (8)

which, if v = du, is the same as the element creat-
ing a translation in equation (3).

The second example is to findexp(Bθ) in the case
whenB = C12e12 + C13e13 + C23e23 is a unit
bivector not involvinge0, so thatC2

12 + C2
13 +

C2
23 = 1. As before,Cφ andCω are both zero

and exp(Cφ) = exp(Cω) = 1. Additionally,
α = β = θ. So, from equation (7), it is seen that

exp(Bθ)
= cos θ + sin θ

θ [C12e12 + C13e13 + C23e23]θ
= cos θ + (sin θ)B (9)

which creates a rotation as in equation (2).

6. EXAMPLES

Some examples based around the idea of interpo-
lating between two poses are presented. In each
case an L-shaped block is the object that is moved.
This is defined by its vertices (and their intercon-
nections) which have coordinates specified in a lo-
cal frame of reference. Two even-grade elements
S0 andS1 are used to map from the local frame
into world space thus defining two poses for the
block. The interest is in smoothly interpolating a
motion between them. Interpolation based around
the idea of the Slerp, equation (5), is used. This
creates an even-grade elementS(t) for 0 ≤ t ≤ 1
with S(0) = S0 andS(1) = S1.

In the first example, the interpolation is pure trans-
lation. The initial pose is created at the origin so
that

S0 = 1

The second pose is a translation of 8 units in the
x-direction and 6 units in they-direction. The cor-
responding even-grade element is

S1 = 1 + 4εe01 + 3εe02

Figure 1: Pure translational motion

as in equation (3). Also needed is the elementU
such that equation (4) is valid. This leads to

U = 4εe01 + 3εe02

as in equation (8).

These even-grade elements form the ingredients
for the associated Slerp,S(t). This is evaluated
for equally spaced values of the parametert and
each is used to transform the block. The results are
shown in figure 1. The block translates between
the initial and final poses in equal steps.

The second example leads to an interpolation
which represents a pure rotation. The first pose
arises from a translation of 8 units in thex-
direction and is obtained with the following even-
grade element.

S0 = 1 + 4εe01

The second pose is obtained by initially rotating
through a right angle about thez-axis and then
translating 8 units in they-direction. Combining
the corresponding even-grade elements gives

S1 = 1√
2 [1 + 4εe01 + 4εe02 + e12]

This means that

S†
0S1 = 1√

2 [1 + e12]

and equation (9) shows that appropriate value for
elementU is the following.

U = π
4 e12

Figure 2 shows the resultant interpolation, again
evaluated for equally spaced values of the parame-
ter t.

The next example is a variation on the last. The
initial pose is obtained as before, but the final pose
now involves a rotation through half a revolution

GraVisMa 2009

14

Figure 2: Pure rotational motion

followed by a translation of 8 units in the negative
x-direction and a translation of 8 units in thez-
direction. This leads to

S1 = 4εe02 + e12 + 4εω

which means that

S†
0S1 = e12 + 4εω

and the required elementU is then the following.

U = π
2 e12 + 4εe03

This can be checked using equation (7). In the
previous notation all theCij are zero except for
C12 = π/2 andC03 = 4ε = 4λ−2. Hence

a1 = a2 = 0 = b1 = b2

α = a3 = 4λ−1 − π/2

β = b3 = 4λ−1 + π/2

sin α = −1 = − sinβ

cosα = −4λ−1 = − cosβ

Figure 3 shows the motion with the block follow-
ing a helical path. Figure 5 shows the same motion
as viewed in thez-direction and this shows that the
path is a circular helix.

Note thatU is the sum of two even-grade ele-
ments which commute. This means thatexpU is
a product of the exponentials of the two terms. Set
R = exp(π

2 e12) andT = exp(4εe03), and then

S†
0S1 = exp U = RT

Using equations (8) and (9) it is seen thatR is a
rotation about thez-axis andT is a translation in
thez-direction. This is a case of Chasles’s theorem
where the motion is expressed a combination of a
rotation about an axis and a translation along it.

The last example generates the same helical inter-
polation but now has the block rotating about the

Figure 3: Helical motion which a combined ro-
tation and translation

Figure 4: View of helical motion along the axis

direction of motion. To achieve this, the Slerp for-
mulation, equation (5), is modified to the follow-
ing.

S(t) = Rt S0 (S†
0S1)t = exp(tr)S0 exp(tU)

whereR = exp(r) is an even-grade element which
generates a rotation. ExpressingR as an exponen-
tial allows powers of it to be evaluated. Here the
following choices are made

r = π
2 e13

R = e13

SoR is a rotation about they-axis. The resultant
motion is shown in figure 5.

7. CONCLUSIONS

The geometric algebraG4 has been constructed
with the square of one of its basis vectors,e0, be-
ing equal to the real numberλ2. If this is regarded
as being infinite, the algebra represents projective
space and even-grade elements can be used to cre-
ate exact rigid-body transforms (combinations of
translations and rotations).

GraVisMa 2009

15

Figure 5: Helical interpolation with spin about
the direction of motion

Such transforms allow poses of any object to be
created in world space. Smooth motions can be
generated which interpolate between pairs of such
poses. One interpolation formulation is the Slerp
operation. This requires the evaluation of the ex-
ponential of even-grade elements ofG4.

A closed form for such exponentials has been ob-
tained which does not rely (explicitly) upon the
evaluation of a power series. This has been ob-
tained by using a representation of the even-grade
elements in terms of2 × 2 diagonal matrices over
the quaternions. The expression for the exponen-
tial, with λ being regarded as infinite, has been
used to obtain examples of smooth motions.

8. ACKNOWLEDGMENTS

The first author is supported by a research stu-
dentship provided by the Innovative Design and
Manufacturing Research Centre at the Univer-
sity of Bath which is funded by the Engineering
and Physical Sciences Research Council (EPSRC).
This support is gratefully acknowledged.

References

[1] Lee, C.-C., Stammers, C. W. and Mullineux,
G. On the historical overview of geometric
algebra for kinematics of mechanisms, in In-
ternational Symposium on History of Ma-
chines and Mechanisms. Yan, H.-S. and Cec-
carelli, M., eds., Springer, Berlin, pp. 21-34,
2009.

[2] Parker, R. and Doran, C. Analysis of one and
two particle quantum systems using geomet-
ric algebra, in Applications of Geometric Al-

gebra in Computer Science and Engineering.
Dorst, L., Doran, C. and Lasenby, J., eds.,
Birkhäuser, Boston, pp. 213-226, 2002.

[3] Bayro-Corrochano, E., Reyes-Lozano, L. and
Zamora-Esquivel, J. Conformal geometric al-
gebra for robotic vision. Journal of Mathe-
matical Imaging and Vision, 24, pp. 55-81,
2006.

[4] Etzel, K. R. and McCarthy, J. M. Interpola-
tion of spatial displacements using the Clif-
ford algebra ofE4. Journal of Mechanical
Design, 121, pp. 39-44, 1999.

[5] Purwar, A., Jin, Z. and Ge, Q. J. Rational
motion interpolation under kinematic con-
straints of spherical 6R closed chains. Journal
of Mechanical Design, 130, pp. 062301:1-9,
2008.

[6] Fang, Y. C., Hsieh, C. C., Kim, M. J., Chang,
J. J. and Woo, T. C. Real time motion fairing
with unit quaternions. Computer-Aided De-
sign, 30, pp. 191-198, 1998.

[7] Lasenby, A., Doran, C. and Lasenby, R.
Rigid body dynamics and conformal geo-
metric algebra, in Proc. Computer Graphics,
Vision and Mathematics (GraVisMa) 2009.
Hildenbrand, D. and Skala, V., eds., Uni-
versity of West Bohemia, Plzen, September
2009.

[8] Mullineux, G. Clifford algebra of three di-
mensional geometry. Robotica, 20, pp. 687-
697, 2002.

[9] Mullineux, G., Modelling spatial displace-
ments using Clifford algebra. Journal of Me-
chanical Design, 126, pp. 420-424, 2004.

[10] Shoemake, K. Animating rotation with
quaternion curves. ACM Siggraph, 19, pp.
245-254, 1985.

[11] Wareham, R. and Lasenby, J. Mesh vertex
pose and position interpolation using geo-
metric algebra, in Articulated Motion and
Deformable Objects, 5th International Con-
ference, AMDO 2008. Perales, F. J. and
Fisher, R. B. (eds.), Springer, Berlin, pp. 122-
131, 2008.

[12] Özgören, M. K. Kinematics analysis of spa-
tial mechanical systems using exponential ro-
tation matrices. Journal of Mechanical De-
sign, 129, pp. 1144-1152, 2007.

[13] Selig, J. M. Clifford algebra of points, lines
and planes. Robotica, 20, pp. 545-556, 2000.

GraVisMa 2009

16

Pose estimation based on Geometric Algebra
Yan Cui

DFKI
Trippstadter Strasse. 122

67663 Kaiserslautern Germany
Yan.Cui@dfki.de

Dietmar Hildenbrand
TU Darmstadt

Hochschulstrasse. 10
64283 Darmstadt Germany

Hildenbrand@gris.informatik.tu-darmstadt.de

ABSTRACT

2D-3D pose estimation is an important task for computer vision, ranging from robot navigation to medical intervention. In such
applications as robot guidance, the estimation procedure should be fast and automatic, but in industrial metrology applications,
the precision is typically a more important factor. In this paper, a new 3D approach for infrared data visualization precisely with
the help of 2D-3D pose estimation based on Geometric Algebra is proposed. The approach provides a user friendly interface,
a flexible structure and a precise result, which can be adjusted to almost all the geometrically complex objects.

Keywords: Geometric algebra, 2D-3D pose estimation, ICP algorithm.

1 INTRODUCTION
2D-3D pose estimation is an important problem in com-
puter vision. The standard requisites to the pose esti-
mation procedures are high speed, automatic mode and
high precision. The main aim in these procedures is to
define the relative position and orientation of a known
3D object with respect to a reference camera system.
In other words, we search for a transformation (i.e. the
pose) of the 3D object such that the transformed object
corresponds to 2D image data. For rigid objects, this
transformation should be the Euclidean transformation
consisting of a rotation R and a translation t. Pose es-
timation is a subclass of the more general registration
problem. The main focus in this paper is given to the
pose estimation based on Geometric Algebra and the
3D data visualization with texture mapping. This leads
to three main questions:

• How and what kind of image and object features to
extract?

• How to do the pose estimation precisely and fast?

• How to detect object parts (surfaces) are visible?

Note that throughout this paper the 3D object model
(independent of its representation) is assumed to be
known (3D object model is given .wrl file format). The
problem how the model of unknown object can be ob-
tained is discussed in works by N. Krueger [21] and M.
Zerroug [32].

A 3D object can contain different features like 3D
points, 3D lines, 3D spheres, 3D circles, kinematic
chain segments, boundary contours and contour parts.
The aim is to find the rotation R and the translation t
of the object which leads to the best fit of the reference
model with the actually extracted entities. So far, it is
not defined how to measure the fit quality. It is clear by

intuition that a mathematical formalization is not triv-
ial.Current approaches to pose estimation (and registra-
tion in general) can be divided into two categories:

• Explicit pose estimation [28]: The involved 2D and
3D entities are defined explicitly. This includes
points, lines and higher order entities such as con-
ics, kinematics chains or higher order 3D curves.

• Free-form pose estimation [28]: The involved enti-
ties are modeled as free-form objects such as para-
metric curves/surfaces, 3D meshes, active contours
and implicit curves/surfaces.

Additionally, from a statistical point of view, pose
estimations of global object descriptions are more ac-
curate and robust than those from a sparse set of local
features. But on the other hand, pose estimation based
feature can be performed much faster. In this paper we
discuss 2D-3D pose estimation using the feature-based
method in explicit point corresponding and the free-
from method in active contour. After finding the right
posed position of the 3D object, we try to visualize the
3D data with texture mapping from the 2D image to the
3D mode, test whether the triangles of the 3D object are
visible or not with a ray-tracing algorithm. In this pa-
per we implement the ray-tracing method based on the
Geometric Algebra approach in [13].

Main contribution in this work can be generalized as
follows:

• We do the camera calibration based on the linear
method. This model is used in the geometric alge-
bra framework. The conformal geometric algebra
[23] allows to deal with higher order entities (lines,
planes, circles, spheres) in the same manner as with
points. It is further possible to model the conformal
group on these entities by applying special operators
in a multiplicative manner.

GraVisMa 2009

17

• This paper introduces a new pose estimation method
based on the active object contour extraction. To es-
timate the pose of free-form contours, ICP (Iterative
Closest Point) algorithms [30, 15] are applied. Nor-
mal ICP starts with two data sets and an initial guess
for their rigid body motion. Then the transformation
is refined by repeatedly generating pairs of corre-
sponding point sets and minimizing the error met-
ric. Furthermore, they will later be used to compare
a 3D contour, modeled by Fourier descriptors, with
3D reconstructed projection rays. The use of Fourier
descriptors is accompanied by some features, which
can advantageously be applied within the pose esti-
mation problem: instead of estimating the pose for a
whole 3D contour, low-pass descriptions of the con-
tour can be used for an approximation. This leads
to a speed up of the algorithm. Meanwhile, this
paper brings forward an improved ICP, which im-
proves the normal ICP algorithm to avoid the local
minimum.

The paper is structured as follows. In section 2, re-
lated work of pose estimation based on the geomet-
ric algebra is presented. The 2D-3D entities constraint
equations and some experiments of 2D-3D point to line
constraints will be given in section 3. Section 4 de-
scribes 2D-3D pose estimation based on an active con-
tour method.

2 RELATED WORK
The first pose estimation algorithms were based on a
point-based method, which is widely discussed in many
foundational papers. A rigid body is generally assumed,
but no complete explicit geometric model is given.
Methods of this class were firstly studied in the 80’s and
90’s and pioneering works were done by Lowe [11, 12]
and Grimson [22]. Lowe applied a Newton-Raphson
minimization method to the pose estimation problem
and showed the direct application of numerical opti-
mization techniques in the context of noisy data and
in gaining fast (real-time capable) algorithms. Lowe’s
work is based on pure point concepts and he expresses
the constraint equations in the 2D image plane. To
linearize the equations, an affine camera model is as-
sumed. The extension to a fully projective formulation
is proposed by Araujo et al [1]. The minimum num-
ber of correspondences that produce an unique solution
are three (non collinear and non-coplanar) points. Four
coplanar and non-collinear points also give a unique so-
lution [17]. In general the accuracy increases with the
number of used point features. Over-determined solu-
tions are also used for camera calibration [25].

A pose estimation algorithm based on dual quater-
nions [31] is given by Walker et al. [24]. The method
uses the real-part of the dual quaternion to estimate the
rotational part and the dual-part of the dual-quaternion

to estimate the translational part of the pose. This ap-
proach is also discussed by Daniilidis [10] in the con-
text of hand-eye calibration.

There exist some methods that do the pose estimation
with image silhouettes (also called occluding contours,
extremal contours, apparent contours), which are a rich
source of geometric information about the 3D objects.
An image silhouette is the projection of the locus of
points on the object.

Reconstructing the shape from silhouettes was intro-
duced by Baumgart [4] more than three decades ago.
Cippolla and Blake [7] showed that by analysing sil-
houette deformations local surface curvature can be
computed along the corresponding contour generators.
Forsyth [8] showed that outlines of algebraic surfaces
completely determine their projective geometry from a
single view. Cross et al. [9] studied the projective rela-
tionship between the coefficients of quadratic algebraic
surfaces and the coefficients of the corresponding 2D
algebraic silhouettes. Due to perspective projection, the
relationship between algebraic surface and algebraic
plane curve coefficients is very complex for higher-
order surfaces. Kang et al. [18] reconstructed 3D sur-
faces from occluding contours of algebraic surfaces us-
ing a linear dual-surface approach that makes use of the
duality between 3D points and tangent planes.

For 2D-3D pose estimation, Kriegman and
Ponce [20] parameterised image silhouette equa-
tions by 3D pose parameters and minimized the
distance between such equations and pixels repre-
senting image outlines to obtain the optimal pose.
Rosenhahn [28] used the explicit approach instead
and back-projected lines through the silhouette pixels
in order to register 3D models with those lines. He
extended approach to human motion tracking in [29].
Ilic et al. [16] and Knossow et al. [19] also used image
silhouettes for human motion tracking using implicit
equations.

There are also several variations in the methods of
pose estimation. An overview of existing techniques
for pose estimation is given by J.S. Goddards PhD-
thesis [17].

3 POSE ESTIMATION WITH ENTI-
TIES CORRESPONDENCE

3.1 Pose constraints in conformal geomet-
ric algebra

In this section we give a brief framework about how the
interaction of entities in geometric algebras are applied
on the pose problem. As mentioned earlier, the main
problem in the pose estimation is determination of the
2D image features corresponding to 3D object features.
The constraint equations can lead to equations of the
following equation [28] (this one is just for point cor-
respondences).

2

GraVisMa 2009

18

λ
((

MXM̃
)
×e∞∧ (O∧ x)

)
· e+ = 0 (1)

where λ is a scale parameter, O is the camera position,
the underline characters stand for the points in confor-
mal space, the commutator × [26] is used to model a
distance measure.

The interpretation of the equation is simple as the
equation can be separated in the following manner,

λ



M X︸︷︷︸
point in
conformal

M̃


︸ ︷︷ ︸

rigid motion

×e∞∧

 O︸︷︷︸
optical
center

∧ x︸︷︷︸
image
point


︸ ︷︷ ︸
projection ray
in conformal space


︸ ︷︷ ︸
collinearity of the object point with reconstructed line

·e+

︸ ︷︷ ︸
Euclidean distance measure between line and point

= 0 (2)

We see that the strategy of expressing the pose prob-
lem can directly be seen from the equation. All geomet-
ric aspects are considered and the equation is compact
and easy to interpret.

The main denotes advantages of the constraint equa-
tions are:

1. The constraints are expressed in a multiplicative
manner, they are concise and easy to interpret. This
is the basis for further extensions, like kinematic
chains and other higher order algebraic entities.

2. The whole geometry within the scenario is con-
cerned and strictly modeled. This ensures an opti-
mal treating of the geometry and the knowledge that
no geometric aspects have been neglected or approx-
imated which is sometimes done in the literature [5]
by using orthographic camera models.

3.2 Numerical estimation of pose param-
eters

In the section 3.1, we give constraint equation that re-
late 3D object entities to 2D image information. In
these equations the object, camera and image informa-
tion are assumed to be known, the motor M expressing
the motion is assumed to be unknown. The main ques-
tion is now, how to solve a set of constraint equations
for multiple features with respect to the unknown motor
M. Since a motor is a polynomial of infinite degree, this
is a non-trivial task, especially in the case of real-time
estimation.

How to get a linear equation with respect to the gen-
erators of the motor? We try to solve this problem with

exponential representation of motors and the Taylor se-
ries expansion with the first approximation order. This
leads to a mapping of the above mentioned global mo-
tion transformation to a twist representation, which al-
lows for incremental changes of pose. This results in
linear equations in the generators of the unknown 3D
rigid body motion. In this section the linearization of
the motor is derived. For simplicity, we consider the
case of point transformations.

The Euclidean transformations of a point X in con-
formal space caused by the motor M is approximated
as:

MXM̃ = exp
(
−θ

2
(
l′+ e∞m′

))
X exp

(
θ

2
(
l′+ e∞m′

))
≈

(
1− θ

2
(
l′+ e∞m′

))
X
(

1+
θ

2
(
l′+ e∞m′

))
≈ E + e∞

(
x−θ(l′ · x)−θm′

)
(3)

We assume l := θ l′ and m := θm′, then:

MXM̃ ≈ E + e∞ (x− l · x−m) (4)

In the next step we estimate the motion of the 3D
object with the previously derived point-line constraint,
it leads to

0 = MXM̃×L

0 = exp
(
−θ

2
(
l′+ e∞m′

))
X exp

(
θ

2
(
l′+ e∞m′

))
×L

0 ≈ (E + e∞ (x− l · x−m))×L

0 = λ (E + e∞ (x− l · x−m))×L (5)

Due to the approximation ≈ in equation (5), the un-
known motion parameters l and m are linear. This equa-
tion contains six unknown parameters for the rigid body
motion. The unknowns are the unknown twist param-
eters for the motion. In the last step the linearized
constraints are scaled with a suitable factor λ to ex-
press an Euclidean distance measure as mentioned in
section 3.1. This means, all transformations are done
in the conformal space, only in the last step the con-
straint equations are scaled for transformations in the
Euclidean space.

The linear equations are solved for a set of corre-
spondences by applying the Householder method [27].
From the solution of the system of equations, the mo-
tion parameters R, t can easily be recovered by evalu-
ating θ := ‖l‖ , l′ := l

θ
,m′ := m

θ
. The motor M can be

evaluated by applying the Rodrigues’ formula.
The principle of this approximation is illustrated in

figure 1. The aim is to rotate a point X by 90 degrees
to a point X ′. The first order approximation of the rota-
tion leads to the tangent of the circle passing through X .

3

GraVisMa 2009

19

Figure 1: Principle of convergence for the iteration of a
point X rotated around 90 degrees to a point X ′. X1 is
the result of the first iteration and X2 is the result of the
second iteration. [28]

Figure 2: Iterative pose estimation process, the red ob-
ject is the position after the first iteration, the green one
is after the second iteration, the blue and the white ob-
jects are the positions after the third and fourth iteration.

Normalizing the tangent line to X ′(denoted by dashed
lines) X1 is gained as the first order approximation of
the required point X ′. By repeating this procedure the
points X2 . . .Xn will be estimated, approaching to the
point X ′. It is clear from figure 1 that the convergence
rate of a rotation depends on the amount of the expected
rotation.

All angles converge during the iteration. For the most
cases just a few iterations are sufficient to get a good
approximation. In situations where only small rotations
are assumed, four iterations are sufficient for all cases.

3.3 Result
We use the point-line constraint to construct the linear
equation matrix and the least square method to solve it.
Four iterations are needed to compute the final transla-
tion t and rotation R. The developed algorithm interac-
tively computes the camera position (see Figure 2).

The next problem that we need to solve for texture
mapping is detection of visible areas. We should detect
visible triangle for the computed camera position. To
solve the problem, the Ray-tracing algorithm is used:
For each point, there exists a ray from this point to the
camera position. If the ray hits a triangle of the ob-
ject before it gets to the camera position, we consider

Figure 3: Left: 2D image, the green points are the cor-
responding points. Right: final textured 3D object.

the point is invisible, otherwise it is visible. If three
points of the triangle are visible, we consider this trian-
gle as visible. Ray-tracing algorithm gives the texture
coordinates in the 2D image, which are used in texture
mapping. There’re some experiments results in Figure
3, on the left are the original image, the green points are
the corresponding points between 2D image and 3D ob-
ject detected by user, on the right are the texuted object.
We see clearly that the developed algorithm success-
fully solve the texture mapping problem.

Now we present a practical application of the de-
veloped algorithm for non-destructive testing (NDT).
Thermal inspection is one of the numerous methods in
NDT. The inspection consists of two cases: 1) excita-
tion using the flash lamps 2) observation of the cool-
ing process using an infrared camera. The existing
methods in representation of infrared data involve 1D
(time profile) and 2D (x/y space) forms. They’re caused
by using focal plane array (FPA) detectors in infrared
cameras. The technique developed in this paper sig-
nificantly extends capabilities in representation of ac-
quired data. The combination with prior known geom-
etry of an object to be inspected makes the representa-
tion more informative and allows analyzing the phys-
ical processes inside the object taking into account its
geometry. The developed algorithm was successfully
tested for visualization of thermal inspection data, Fig-
ure 4 shows the infrared 3D data sequence visualization
as time increase.

4

GraVisMa 2009

20

Figure 4: From Left to right, from top to bottom: 3D
Visualization of the thermal image set.

4 POSE ESTIMATION WITH ACTIVE
CONTOUR CORRESPONDENCE

4.1 3D object contour in Fourier domain
This section we intorduce signal theoretic foundations.
The aim is to define the discrete Fourier transformation
and its extension to the 3D space in classical matrix cal-
culus. More detail information can be found in [3, 2].

For 3D contour interpolation a set f 3
j ∈ℜ3 of 3D val-

ues is assumed j = 0, . . . ,M− 1,M ∈ℵ. These values
are contour points of a closed contour. To achieve a 3D
contour interpolation, the 3D signal can be interpreted
as 3 separate 1D signals:

F3
m =

1
M

M−1

∑
u=0

 f 3
u (1)

f 3
u (2)

f 3
u (3)

exp
(
−2πium

M

)
(6)

And its inverse transformation can be written as

f 3
u =

M−1

∑
m=0

 F3
m (1)

F3
m (2)

F3
m (3)

exp
(

2πimu
M

)
(7)

Taking only a subset of the phase vectors leads to a
low-pass approximation of the contour. This is applied
to speed up the algorithm for pose estimation of free-
form contours and to avoid local minimum during iter-
ations.

The user should give initial position of the 3D object
firstly, and then select the region or sub-region of the
3D object which is captured in the 2D image. Finally
the selected object will be mapped to 2D image, as Fig-
ure 5 left shows. This 2D information can help us to
find the discrete contour points of the 3D object. The
contour points of the mapped 2D image correspond to

Figure 5: Left: Mapped 2D image from 3D object. ‘1’
is the object region, ‘0’ is the background region. Mid-
dle: Discrete contour points of the 3D object. Right:
Continuous contour of the 3D object.

the discrete contour points of the 3D object. As Fig-
ure 5 middle shows, the algorithm can find the discrete
contour points. With Fourier transformation as talked
above, we can get the continuous contour of the 3D ob-
ject from the discrete contour points (as Figure 5 right
shows). The user can also select the sub-region of the
3D object and with the same processing, get the contin-
uous contour of the 3D object.

4.2 2D image contour
2D active image extraction algrithom [6] is proposed an
active contour model based on Mumford-Shah segmen-
tation technique and the level set method. The model
is not based on an edge-function to stop the evolving
curve on the desired boundary. Also, we do not need
to smooth the initial image, even if it is very noisy and
in this way, the locations of boundaries are very well
detected and preserved. By this model, we can detect
objects whose boundaries are not necessarily defined
by gradient or with very smooth boundaries, for which
the classical active contour models are not applicable.
The position of the initial curve can be anywhere in the
image, and it does not necessarily surround the objects
to be detected.

Let us define the evolving curve C in Ω, as the bound-
ary of an open subset ω (i.e. ω ⊂ Ω, and C = ∂ω).
Then, inside(C) denotes the region ω , and outside(C)
denotes the region Ω\ω . This method is the minimiza-
tion of an energy based-segmentation. Let us first ex-
plain the basic idea of the model in a simple case. As-
sume that the image u0 is formed by two regions of ap-
proximatively piecewise-constant intensities, of distinct
values ui

0 and uo
0. Assume further that the object to be

detected is represented by the region with the value ui
0.

We denote its boundary initially by C0. Then we have
u0 ≈ ui

0 inside the object (or inside(C0)), and u0 ≈ uo
0

outside the object (or outside(C0)). Now let us con-
sider the following ‘fitting’ energy function:

F (c1,c2,C) = µL(C)+νA(in(C))

+λ1
∫

in(C) |u0(x,y)− c1|2dxdy

+λ2
∫

out(C) |u0(x,y)− c2|2dxdy (8)
5

GraVisMa 2009

21

Figure 6: Left: 2D image and the initial contour given
by the user (green line). Right: 2D image contour given
by the active contour algorithm (green line)

Where L(C) stands for the length of the contour,
A(in(C)) stands for the area in the contour, c1 and c2
is are the average intensity levels inside and outside
of the contour. µ,ν ,λ1,λ2 are the weight parameters.
There’re some algorithms to find the minimization of
the energy function, Therefore, we consider the mini-
mization problem:

inf
c1,c2,C

F (c1,c2,C) (9)

Simply we can consider the Euler-Lagrange equation
to solve this problem. With this method the contour
of the object can be extracted reiteratively. THe final
results are shown in figure 6, on the left are the original
images, the green lines are the initial contour defined by
user, on the right are the contour results with the green
line showed.

4.3 Pose estimation between 2D image
and 3D object’s contour

The aim is to formulate a 2D-3D pose estimation algo-
rithm for any kind of free-form contour. The assump-
tions are the following:

• The object contour curve is given as a set of 3D
points f 3

j , spanning the 3D contour.

• In an image of a calibrated camera, the object is ob-
served in the image plane and a set of 2D points x2

j
spanning the 2D contour is extracted.

Since the number of contour points in the image is
often too high (e.g. 800 points in the experimental sce-
nario), just every kth point (e.g. k ∈ 5, . . . ,20) is used to
get an equal sub-sampled set of contour image points.

Note that there is no knowledge which 2D image
point corresponds to the 3D point of the interpolated 3D
model contour. Furthermore, a direct correspondence
does not generally exist since the contours are mostly
sampled from different starting points and the number
of image and object points may also vary.

Using the approach for pose estimation of point-line
correspondences, the Iterative Closest Point (ICP) [30]
algorithm for free-form contours consists of iterating
the following steps:

Algorithm 1: Normal ICP Algorithm

1. Reconstruct projection rays from the image points.

2. Estimate the nearest point of each projection ray to
a point on the 3D contour.

3. Estimate the pose of the contour with the use of this
correspondence set.

4. Goto 2.

The idea is that all image contour points simultane-
ously pull on the 3D contour. This is the normal ICP
algorithm, and there exist two aspects to improve the
performance.

• With Fourier transformation, increasing degree
method can improve the calculation speed.

• We can improve normal ICP to avoid the local min-
imum problem.

We talk about the methods in detail. Increasing de-
gree method: Using the Fourier coefficients for contour
interpolation works well, but the algorithm can be made
faster by using a low-pass approximation for pose esti-
mation and by adding successively higher frequencies
during the iteration. We call this technique the increas-
ing degree method. Therefore the pose estimation pro-
cedure starts with just a few Fourier coefficients of the
3D contour and estimates the pose to a certain degree
of accuracy. Then the order of used Fourier coefficients
is increased and the algorithm proceeds to estimate the
pose with the refined object description. Improve ICP
to avoid the local minimum: We can define the error,
which is sum of the distances between the posed object
points and the nearest rays from the image points. The
user can define a threshold, for our experiments, we de-
fine the threshold 0.005. If the error is bigger than the
threshold, the ICP comes to the local minimum. Then
rotate the image space, such as 10 degree around the
view angle, then do the normal ICP again, do this proce-
dure again and again, until the ICP get the error smaller
than the threshold. The algorithm pipeline is as follows:

With the improved ICP algorithm, the performance
of pose estimation results are presented in Figure 7.

6

GraVisMa 2009

22

Algorithm 2: Improved ICP Algorithm

1. If error > threshold (0.005), Rotation of the image.
(10 degree around the view angle).

2. Pose estimation, do this step 4 times

(a) Reconstruct projection rays from the image
points.

(b) Estimate the nearest point of each projection ray
to a point on the 3D contour points, which is pro-
duced by the Fourier interpolation.

(c) Estimate the pose of the contour with the use of
this correspondence set.

(d) Increasing the Fourier coefficients of the 3D ob-
ject contour, goto (b).

3. Calculation of the new error. Goto 1.

End

5 CONCLUSION

The main focus concentrates on pose estimation based
on Geometric Algebra and 3D data visulazation with
texture mapping. 3D object models are treated feature
based and active contour form based: The results of this
paper are summarized in the following points:

Figure 7: Left: 2D image. Right: textured 3D object
after contour corresponding estimation.

• The geometry of the 2D-3D pose estimation sce-
nario is analyzed and the interaction of entities given
in conformal space. It leads to a compact and lin-
ear description of the pose problem which contains
a distance measure. These equations can further
be scaled by a scalar which allows for an adap-
tive weighting of the constraints. The constraint
equations are solved by linearizing and iterating the
equations. The estimation of pose parameters is high
performance.

• The approach for modeling curves is related to
model 3D contours by using Fourier descriptors. In
this context ICP algorithms are used to estimate the
correspondences and poses for image contours and
object contours. The use of low-pass information
enables one further to avoid local minimum and to
speed up the algorithm. Furthermore, an automatic
method avoid the local minimum is possible, which
stabilizes the pose results.

The next extension of contour based free-form pose
estimation is pose estimation of free-form surfaces.
This has a much higher degree of complexity, simi-
lar to the extension of the 1D analytic signal and 1D
quadrature filters to 2D in an isotropic way, as presented
in [14].

Though the ICP algorithm works fine and stable in
tracking situations, its computational overhead leads to
hardly realizable real-time systems for complex object
models. Especially for the camera calibration, it’s dif-
ficult to realizable a stable and real-time performance.
Here also some work is possible and promising. E.g.
no fast Fourier transformation is applied so far and the
minima-search in the gradient descent method is highly
parallelizable. But maybe new search strategies are bet-
ter suited than the used ICP algorithm.

Another extendable topic is the image processing for
pose estimation. So far easy scenarios are assumed, e.g.
with little background noise. The image processing is
kept simple to extract the image contour, since the geo-
metric aspects of the pose scenario are dealt with in this
paper.

This leads to further extensions for computer graph-
ics or geometric algebra and is an interesting topic for
future research.

REFERENCES
[1] H. A. aposujo, R. L. Carceroni, and C. M. Brown. A fully pro-

jective formulation for lowe aposujo tracking algorithm. Tech-
nical report, 1996.

[2] J. B. Digitale bildverarbeitung. Springer-Verlag, Berling, Hei-
delberg, New-York, 1997.

[3] K. B. Fouriertransformation fuer ingenieur- und naturwis-
senschafte. Springer-Verlag, Berlin, Heidelberg, New York,
2001.

[4] B. Baumgart. Geometric Modeling for Computer Vision. PhD
thesis, stanford University, 1974.

7

GraVisMa 2009

23

[5] C. Bregler and J. Malik. Tracking people with twists and expo-
nential maps, 1998.

[6] T. F. Chan and L. A. Vese. Active contours without edges, 2001.

[7] R. Cipolla, G. Fletcher, and P. Giblin. Surface geometry from
cusps of apparent contours. In In: ICCV, pages 858–863, 1995.

[8] F. Computer and D. A. Forsyth. Recognizing algebraic surfaces
from their outlines. In In International Conference on Com-
puter Vision, pages 476–480, 1992.

[9] G. Cross and A. Zisserman. Quadric surface reconstruction
from dual-space geometry. In Proceedings of the 6th Inter-
national Conference on Computer Vision,Bombay, India, pages
25–31, January 1998.

[10] K. Daniilidis. Hand-eye calibration using dual quaternions. In-
ternational Journal of Robotics Research, 18:286–298, 1998.

[11] L. D.G. Solving for the parameters of object models from image
descriptions. in Proc. ARPA Image Understanding Workshop,
pages 121–127, 1980.

[12] L. D.G. Three-dimensional object recognition from single
twodimensional images. Artificial Intelligence, Vol. 31, No.
3:355–395, 1987.

[13] L. Dorst. Geometric Algebra for Computer Science An Object
-Oriented Approach to Geometry, Chapter 23. 2008.

[14] FelsbergM. Low-level image processing with the structure mul-
tivector. Technical report, Technical Report 0203,Christian-
Albrechts-Universitaet zu Kiel, Institut fuer Informatik und
Praktische Mathematik, 2002.

[15] D. Huber and M. Hebert. Fully automatic registration of multi-
ple 3d data sets, 2001.

[16] S. Ilic, M. Salzmann, and P. Fua. Implicit surfaces make for
better silhouettes,cvpr 05, 1135.

[17] G. J.S. Pose and Motion Estimation From Vision Using Dual
Quaternion-Based Extended Kalman Filtering. PhD thesis,
Springer-Verlag, New York Inc, 2001.

[18] K. Kang, J.-P. Tarel, R. Fishman, and D. Coope. A linear
dual-space approach to 3d surface reconstruction from occlud-
ing contours using algebraic surfaces. In In International Con-
ference on Computer Vision, pages 198–204, 2001.

[19] D. Knossow, R. Ronfard, R. Horaud, and F. Devernay. F.:
Tracking with the kinematics of extremal contours. In Com-
puter Vision ¨C ACCV 2006. LNCS, pages 664–673. Springer,
2006.

[20] D. J. Kriegman and J. Ponce. On recognizing and position-
ing curved 3-d objects from image contours. In IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, volume
12:1127–1137, Dec 1990.

[21] N. Krueger, M. Ackermann, G. Sommer, and L. F. K. Sys-
teme. Accumulation of object representations utilizing interac-
tion of robot action and perception. Knowledge Based Systems,
13:200–2, 2002.

[22] G. W. E. L. Object Recognition by Computer. The MIT
Press,Cambridge, MA, 1990.

[23] H. D. Li H. and R. A. A. generalized homogeneous coordinates
for computational geometry. pages 27–52, 2001.

[24] W. M.W. and S. L. Estimating 3-d location parameters using
dual number quaternions. Computer Vision, Graphics, and Im-
age Processing (CVGIP): Image Understanding, Vol. 54, No.
3:358¨C367, 1991.

[25] F. O. Three-Dimensional Computer Vision, A Geometric View-
point. MIT Press, Cambridge, 1993.

[26] C. Perwass. Applications of Geometric Algebra in Computer
Vision. PhD thesis, Cambridge University, 2000.

[27] V. W. Press W.H., Teukolsky S.A. and F. B.P. Numerical
Recipes. Cambridge University Press, 1994.

[28] B. Rosenhahn. Pose Estimation Revisited. PhD thesis, Inst. f.

Informatik u. Prakt. Math. der Christian-Albrechts-Universit"at
zu Kiel, 2003.

[29] B. Rosenhahn, U. G. Kersting, A. W. Smith, J. K. Gurney,
T. Brox, and R. Klette. A system for marker-less human motion
estimation. In Page 6 [22] Rosenhahn B., Klette, pages 45–51.
Springer, 2005.

[30] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp al-
gorithm. In INTERNATIONAL CONFERENCE ON 3-D DIGI-
TAL IMAGING AND MODELING, 2001.

[31] B. W. Kinematik und Quaternionen, Mathematische Monogra-
phien 4. Deutscher Verlag der Wissenschaften, 1960.

[32] M. Zerroug and R. Nevatia. Pose estimation of multi-
part curved objects. Image Understanding Workshop (IUW),
pp:831–835, 1996.

8

GraVisMa 2009

24

A GPU-Supported Approach to Registration of 3D
Scan Data

Adrie Kooijman

Delft University of Technology
Design Engineering dept.

Landbergstraat 15
2628CE, Delft, the Netherlands

a.kooijman@tudelft.nl

Joris Vergeest

Delft University of Technology
Design Engineering dept.

Landbergstraat 15
2628CE, Delft, the Netherlands

j.s.m.vergeest@tudelft.nl

ABSTRACT
We present a method of partial matching two shapes
aimed to support 3D scanning applications. To
digitize the surface of a 3D object, a number of scan
views are taken from different angles, collectively
representing the entire surface of the object. The
registration process assigns a transformation to each
of the scan views such that the surface of the object
can be reconstructed. The motivation of our work is
to provide an initial geometric model to a designer
who develops the shape further using Computer-
Aided Design. We propose a method of pairwise
shape matching of partial scans, without depending
on any distinct geometric feature type. The degree
of matching of two shapes, that is the congruence of
their overlapping portions, has been defined by a
matching index I, which should be maximized to
attain the right relative placement of the two shapes.
By using a simplification of one of the shapes and a
sampling strategy in 6D configuration space we
achieve matching in an amount of time that would
be too high for practical interactive use. However,
we offload the most computation intensive part of
the matching process to the graphical processing
unit (GPU) to achieve 50-80 times shorter times.
The method does not require the detection of
intrinsic or artificial features (or shape descriptors),
nor optical markers nor position or orientation
tracking information. To our best knowledge there
are no previous reports about practically usable
results of similar methods. We present the outcomes
of tests with scanned point clouds and initial
conclusions about the robustness and costs of the
method. The limitations of the method are discussed
and improvements of the search strategy and the

GPU-based computation of the matching index are
proposed.

Keywords: Partial shape matching, 3D scanning,
automatic surface registration, brute force,
configuration space sampling, GPU

1. INTRODUCTION
Surface registration is an essential part of 3D scan
data processing. To digitize the surface of a 3D
object, a number of scan views are taken from
different angles. The scan views should partially
overlap and collectively represent the entire surface
of the object. The registration process assigns a
transformation to each of the scan views such that
they all get aligned, and the surface of the object
can be reconstructed. Typically, the registration
process is supported by a software package that is
provided by the scanner manufacturer, and which
should be operated by the user. It starts with
pairwise registration of the surfaces, where the user
should designate several pairs of corresponding
points in the two surfaces. This information is
sufficient for the software to estimate the global
alignment of the two surface (initial pose), and the
registration is then accomplished by method based
on the Iterative Closest Point (ICP) algorithm [Besl
and McKay 1992]. Finally a global registration
(sometimes called fine registration) slightly adjusts
all surfaces such that they optimally represent the
object’s surface. Often the users of the scanning
software are incidental users: a scan is made, and
the result is exported to a CAD software package
for further processing. Since the user-assisted
registration process is often perceived as tedious
and sometimes even error-prone for incidental

GraVisMa 2009

25

users, much research is, until today, devoted to the
development of methods to achieve automatic
registration that require no or minimal user
intervention. One approach is to find the initial
transformation by supplying additional data about
the scan view orientations and/or positions from a
(possibly wireless) tracking device or from
mechanical manipulators attached to the object or
scanning device. Another way to obtain this initial
pose estimation is by physically placing reflective
markers on the object surface and to use these
markers to track the position of the object. The
correct working of the hand-held scanning device
named Handyscan 3D [Creaform 2009] depends on
the occurrence of such markers. Most methods of
initial pose estimation are based on the detection of
local shape descriptors in two surfaces. From the
placements of these shape descriptors, an
approximate transformation M can be calculated to
achieve an initial alignment of the two surfaces, see
for example [Li and Guskov 2005, Pottman et al
2007]. In case the local descriptors are relatively
small, they provide only a limited robustness of the
initial pose. The method proposed by [Aiger et al
2008] is based on wide structures, and therefore
more accurate. A general draw-back of shape
features is their possible non-uniqueness and their
possible occurrence outside of the overlap region,
such that the number of features inside the overlap
gets too small to derive the initial pose
transformation. Finally we mention approaches
based on restrictions imposed on the scan views
taken. Here the user (the person who takes the 3D
scan views) is instructed to take the scan views in a
particular manner. For example [Wang et al 2007]
could achieve automatic surface registration of
scans of a hand-held object, where the object was
manually rotated about a fixed axis. In fact the axis
was slightly different for each following pose, since
it was very difficult for a human to bring the object
in subsequent orientations about a common axis.
However, in practice it turned out possible to
predict the pose of a scan view relative to the
previous one accurately enough to apply ICP
successfully.

The motivation of our work is to support 3D
scanning of object surfaces, where the objects are
typically of size between 100 and 500mm. The
target application is providing an initial geometric
model to a designer who develops the shape further
using Computer-Aided Design (CAD). In industrial
design engineering, product design can commence
from a hand-made clay model, which is scanned at a
particular stage of shape development after which
the scanned model is further processed in the
computer. To make 3D scanning acceptable by

industrial designers and artists, the problem of
automatic scan registration should be solved.
However, it has turned out acceptable for the users
to put some simple restrictions to the way of
scanning e.g by limiting the rotation angle and
direction between scans to achieve semi-automatic
scan registration.

In this paper we propose a method of pairwise
shape matching based on direct comparison of the
two shapes, without depending on the occurrence of
any geometric feature type or other references. The
method is described in Section 2, the
implementation in Section 3 and results of initial
tests are presented in Section 4. In Section 5 we
evaluate the method and discuss its limitations and
opportunities for improvement. Because the method
is very computational intensive a large part of the
computations are performed parallel on a graphics
card. By executing several hundreds of calculations
in parallel the total calculation times remain
acceptable for interactive use of the method.

The main contribution of this work is the improved
understanding of the role the GPU can play in 3D
shape alignment processes. The acceleration is
explored for the basic method described in Section
2, and it is expected that the increase in
performance can also be obtained for dedicated
methods, as will be discussed in Section 5.

2. DESCRIPTION OF THE METHOD
The problem of matching two shape representations
A and B is to find a rigid transformation M such that
MB and A are have the correct relative placement.
We assume that A and B each represent a portion of
a surface of a 3D object, and that there may exist
subsets of A and of B representing the same portion
of that object, called the overlap region. If we can
detect portions of A and of B which are congruent
(or approximately congruent in case the
representations are not exact), then we have
candidate overlaps and we can compute the
transformation M. We propose a method of pre-
alignment based on explicit sampling of the 6D
configuration space of M and a shape matching
index I (A, MB) representing the degree of
consistency of shapes A and MB. Our approach is
based on the raw geometric data A and B only, that
is on the point sets representing the shapes; no
surface generation or triangulation is required. The
only preprocessing we do is down-sampling of point
cloud B to reduce the amount of calculation without
hampering the effectiveness of the method. Then we
compute the distance of that reduced point set to
point cloud A as:

GraVisMa 2009

26

2 1

1

1
(,) ()

Bn

i
iB

I A MB c d
n

−

=

= +∑ , whith

 di = 1,
min | |

A
i jj n

b a
=

− , (1)

where aj and bj are points in point cloud A and
(down sampled) point cloud MB, respectively. The
damping term c can be set to any positive value; it
will influence the shape of the distribution of I but
not the location of its maximum. If point sets A and
B are identical, then I can reach 1/c. If A and B are
not identical but each contain points representing
the same surface then I will typically reach 1/(c + s),
where s the scan resolution of A. The basic
assumption of our method is that a substantial
overlap of A and MB provides a big contribution to
I, whereas points outside the overlap region
contribute only little. At the end of this paper we
will discuss possible alternative measures. The
basic assumption of our method is that a substantial
overlap of A and MB provides a big contribution to
I, whereas points outside the overlap region
contribute only little. The index is relatively large if
many points in B are close to any point in A. The
index indicates, therefore the degree of overlap of
MB and A. If fraction p of the extent of MB is
overlapping with A then I can reach p/(c + s).
Down sampling of point cloud B, in our
experiments, is typically from about 10,000 to 250,
where we applied a simple G×G×G grid to divide
the bounding box of B, typically with G=10. We
selected one point from B for each grid element,
rather than the average of points inside a grid
element, since the latter position could be
significantly off A even at perfect alignment. Point
cloud A was always left intact; no simplification or
reduction was applied as to achieve a good estimate
of distance di.

The numerical approach to sample in configuration
space of M is as follows. M = M(α, β, γ, x, y, z)
transforms point cloud B into MB, which is rotated
by the three Euler angles [Craig, 1989], followed by
a shift amounting to vector (x, y, z)T. The amounts
of shift and of orientation are chosen, and typically
around 10mm and 5 degrees, or less, depending on
the dimensions of the object and the refinement
stage of the searching algorithm. The shift range in
a particular coordinate direction is determined by
the lengths of the bounding boxes of A and the
(rotated) B; the range of orientation can be limited
to a practical value of for example +/−30 degrees.
These values depend on the assumptions reasonable
for the scanning application, discussed later. Even
with these relatively large step sizes, the number of
matching index computations reaches a million or
more.

We have investigated the usability of I from two
respects: 1) the goodness for detecting overlap
regions and 2) efficiency with regard to interactive
application. We present preliminary results here,
based on a small number of scanned objects.

Figure 1: Two scan views of a car model

In Figure 1 two overlapping scan views of a simple
foam car model are shown. The number of points in
A and B are 6107 and 6518, respectively. Using 16
steps over 40 degrees for the three rotation axes and
16 steps for the three translation directions over the
bounding boxes of A and B, I was computed 166 =
16.8 million times. The highest I produced the
correct M and hence registration of the two scan
views, found in a few minutes of computation time.

3. IMPLEMENTATION
The calculation of I(MB) is a very computation
intensive job. The contribution of each point of the
down-sampled point cloud MB is independent from
the contribution by the other points. This allows
parallelizing the process. Therefore we have
implemented parts of the computation parallel on a
Graphical Processing Unit (GPU). We used the
Nvidia Geforce GTX 280 graphics card. This card
contains 30 multiprocessors, each of which consists
in its turn eight scalar processors. In total 240
processor cores, running at 1296MHz, are available.
Each multiprocessor can handle a maximum of 512
threads and has 16kbyte shared memory. The total
amount of memory available in the graphics card is
1Gigabyte. The programming environment is
Microsoft Visual C++ for the CPU part of the
software and Nvidia Compute Unified Device
Architecture (CUDA) for the Graphical Processing
unit (GPU). CUDA is integrated in Microsoft
Visual Studio. This combination provides an
integrated development environment including
emulation and debugging of the CUDA parallel
kernel program.

The down sampling of MB to a maximum number
of 512 points reduces the amount of computations
without decreasing the accuracy of the method and
makes it possible to calculate the contribution of all
the points of MB’ to I in a single thread block on the

GraVisMa 2009

27

GPU.

The thread scheduler of the graphics card allows a
2D grid of thread blocks to be executed, where each
thread block can handle a maximum of 512 threads.
Figure 2, copied from the CUDA 2.0 programming
manual, shows the structure of this grid of thread
blocks and the threads inside such a block. In figure
3 the global flow of the CPU part of the program is
shown, figure 4 shows the flow of the kernel
program, which is the part of the program that is
executed by the GPU. The CPU program is
responsible for copying the point set data to the
GPU memory and back from the GPU memory. The
GPU program can not access the PC's main
memory. The PC main memory is referred to as the
host memory in CUDA. The GPU internal memory
is known as device memory. The kernel program is
set up in Xsteps * Ysteps thread blocks, where
Xsteps and Ysteps are the number of translation
steps in X and Y directions, respectively. Each
thread in the kernel program has predefined
constants that tell in which thread number of which
thread block it is executed. This information is used
to calculate the local X, Y and Z shift for each
individual thread and to select the point from MB’
to use. The internal thread scheduler of the GPU
does the housekeeping and determines which thread
block is executed at which time making the
execution as efficient as possible.

From the CUDA v2.0 programming manual:

“Given a total number of threads per grid, the
number of threads per block, or equivalently the
number of blocks, should be chosen to

maximize the utilization of the available
computing resources. This means that there
should be at least as many blocks as there are
multiprocessors in the device. Furthermore,
running only one block per multiprocessor will
force the multiprocessor to idle during thread
synchronization and also during device memory
reads if there are not enough threads per block
to cover the load latency. It is therefore usually
better to allow for two or more blocks to be
active on each multiprocessor to allow overlap
between blocks that wait and blocks that can
run. For this to happen, not only should there be
at least twice as many blocks as there are
multiprocessors in the device, but also the
amount of allocated shared memory per block
should be at most half the total amount of
shared memory available per multiprocessor.
More thread blocks stream in pipeline fashion
through the device and amortize overhead even
more.”

For maximum performance of the GPU kernel
program it is important to submit many thread
blocks. We implemented the method in such a way
that for each combination of X- and Y shift a
separate thread block is launched. The shift in Z is
handled within the thread block. Each thread
calculates the contribution of a single point of MB
to I for all steps in Z direction. In one of our

experiments 16 * 16 * 16 shift steps are used, so in
that case we launch 256 thread blocks which is
sufficient to minimize idle times of the GPU. For
each combination of x- and y shift in M a thread

Figure 2: grid of thread blocks

Figure 3: CPU part of the program

GraVisMa 2009

28

block is launched on the GPU. The z-shifts are
handled within the individual threads. Each thread
in a thread block calculates the contribution of a
single point of point cloud B to matching index I for
each defined z shift. Rotating and down sampling of
point set B is performed on the CPU before kernel
execution.

The GPU card has a total of 1Gigabyte of global
memory. Each multiprocessor in the GPU has 16
kilobytes of shared memory. Global memory
requires up to 600 clock cycles to access while
shared memory is accessible from within a thread
block in only a few clock cycles. The amount of
shared memory is not enough to load point set A
completely. We copy subsets of nB points of point
set A from global memory to shared memory; in
parallel. This means that each thread in the thread
block copies one point per subset so nB points are
copied in parallel. After copying a sub set each
thread calculates the distance from its designated
point to all points in the sub set and keeps track of
the nearest. After finding the nearest point in a sub
set, the next subset is copied. This procedure is
repeated until all points of A are tested. This way of
accessing point set A minimizes the overhead
caused by memory latency.

4. RESULTS
We have investigated the usability of I if equation
(1) from two respects: 1) the goodness for detecting
overlap regions and 2) efficiency with regard to the
interactive application described above. We present

preliminary results here, based on a limited number
of scanned objects. The scanner applied was a
Minolta Vivid700 3D digitizer, producing
maximally 40,000 point measurements in one view.

Figure 5. Two scan views with large

In figure 5, two scan views of a simple foam car
model, having a maximum length of about 200mm,
and their overlap region are shown. Originally the
scan views are point clouds but are meshed for
visibility The number of points in A and B are 6107
and 6518, respectively. After down sampling the
number of points in point cloud MB is reduced to
approximately 256, the exact number depends on
M. Using 16 steps over 40 degrees for each of the
three rotation axes and 16 steps for each of the three
translation directions over the sum of the lengths of
the bounding boxes of A and B, 166 = 16.8 million
matching indices were computed. The computation
time was 24 minutes. The highest matching index
found was I = 0.249, producing the correct
transformation M and hence registration of the two
scan views (not shown here). The orientations were
stepped in three nested for loops, and for each of
the 4096 orientations, 4096 shifts of B were
involved. The maximum matching index found for
each of these orientations is shown in Figure 6. The
16 peaks visible in the top part of the graph
represent the local maxima as a function of Euler
angle β, for 16 values of angle α. The bottom of
Figure 6 is a more detailed view near the maximum
of the graph and shows that each of the 16 peaks
contains the variation of the index as a function of
angleγ.

Figure 4: GPU part of the program

GraVisMa 2009

29

0

0.05

0.1

0.15

0.2

0.25

0.3

1 329 657 985 1313 1641 1969 2297 2625 2953 3281 3609 3937

Rotation step

I
(

M
B

,
A

)

Figure 6. Top: Matching indices I(A, MB)

obtained by sampling configuration space of M,
plotted in order of orientations occurring in the
procedure. Bottom: Detail of the graph near its

maximum.

We have scanned a model puppet of Snoopy, about
200mm tall. Contrary to the car model the Snoopy
model represents a much more irregular shape. Two
scan views of the Snoopy model are shown in
Figure 7, in arbitrary orientation, each containing
about 2500 points. To test the behavior of the
matching index near its maximum, we plotted the I (
MB, A) for variations in (x, y, z)T (Figure 8). Since
the overlap region is smaller, the location of the
maximum matching index is less clear, compared to
the case of the car model.

Figure 7. Two scan views of Snoopy.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 550 1099 1648 2197 2746 3295 3844 4393 4942 5491 6040 6589

Translation step

I
(

M
B

,
A

)

Figure 8. Distribution of the matching index

near the correct matching M for deviations of
the translations. The two scan views are shown

in Figure 7.

We have refined the sampling procedure by
repeating the sampling process, starting from the
location in 6D where a maximum was found, but
using smaller step sizes and ranges for the rotations
and translations. In this way we iteratively approach
the maximum in increasingly small steps. The scan
views of the car model were used for an initial test,
and in Figure 9 it can be seen that in the second
stage no significant increase of I (MB, A) is
attained, whereas in stage 3 a significant
improvement is obtained the fourth stage again
brings little improvement and the iteration process
is aborted.

0

0.05
0.1

0.15
0.2

0.25

0.3
0.35

0.4
0.45

0.5

1 3121 6241 9361 12481 15601 18721 21841 24961 28081 31201

Search step

I
(

M
B

,
A

)

Figure 9. Matching index obtained in four
refinement stages of the sampling process.

Although the number of experiments with this
iterative approach was until now limited the results
look very promising. If the parameters are carefully
chosen the total time for the process is about the
same of the first approach, but results in a better
match.The current approach results in a
transformation M that still requires fine tuning by
ICP.

GraVisMa 2009

30

5. CONCLUSIONS AND
IMPROVEMENTS
We have described initial experiments of pairwise
surface registration based on a simple sampling
strategy in configuration space. If the amount of
overlap of the two surfaces is relatively large, the
proposed matching index exhibits a global
maximum, which can be found using the strategy in
approximately 1 to 10 minutes of computation time.
We have not yet achieved sampling of the full 6D
configuration space with sufficiently small step size
in acceptable times for interactive application. Since
in that application, the user should get feedback
about success or failure of the matching of the scan
view just taken, the procedure should not last longer
than about 10s. Using the current algorithm, the
method is usable if the user would follow operation
instructions (typically to exert limited rotation) to
ensure that sufficient overlap remains between the
last two scans. In order to release these restrictions
and to speed up the calculation, several
improvements are necessary.

The definition of I could be changed to include
contributions from points in MB which are near A
only. Especially when the overlap region is small
this might result in a better measure, and is indeed
more frequently occurring in the literature. To
decrease the computation time, one could
experiment with reduced A sets, e.g. and pre-
sampling of configuration space. The computation
of distance could be modified to let it break off
when one of the x-, y- or z-components exceeds a
threshold.

If no assumptions can be made about how the user
operates the scanning system, then an fully
exhaustive transformation space sampling would be
required, which is infeasible, even using CUDA
technology. However, near-brute force strategies
can be explored relatively conveniently. An
example includes the exhaustive testing of

congruence of fat tetrahedrons observed in B for
their congruence with any 4-point set in A [Vergeest
2009]. Without CUDA technology, such approaches
would deem impractical.

REFERENCES
Aiger, D., Niloy, M., Cohen–Or, D. 2008. 4–Points
Congruent Sets for Robust Pairwise Surface
Registration. ACM Trans. Graph. 27, 3, Article 85
(August 2008).

BESL, P. J., AND MCKAY , N. D. 1992. A method for
registration of 3-d shapes. IEEE Trans. on Pattern
Analysis and Machine Intelligence 14, 2, 239–256.

CRAIG, J.J., 1989. Introduction to robotics,
mechanics and control. Addison-Wesley.
CREAFORM, www.creaform.com.

LI, X., AND GUSKOV, I. 2005. Multi-scale features for
approximate alignment of point-based surfaces. In
Proc. Symp. Geometry Processing, 217–226.

POTTMANN, H., WALLNER, J., YANG, Y.-L., LAI, Y.-
K., and HU, S.-M. 2007. Principal curvatures from
the integral invariant viewpoint. Comput. Aided
Geom. Des. 24, 8-9, 428–442.

Vergeest, J.S.M., Kooijman, A., Song, Y. Partial
3D shape matching using fat tetrahedrons.
Technical Report, 1 September 2009, Delft
University of Technology.

Wang, H, Vergeest, JSM, Song, Y, Wiegers, T
2007. Automated 3D scan multi-view registration
based on rotation estimation. In: Proceedings of the
WSCG'2007,, University of West Bohemia, Plzen, J
Rossignac and V Skala, Eds., 137-144

GraVisMa 2009

31

Raytracing Point Clouds using Geometric Algebra
Crispin Deul1 Michael Burger1 Dietmar Hildenbrand1 Andreas Koch2

1Interactive Graphics Systems Group
Computer Science Department

TU Darmstadt, Germany
dietmar.hildenbrand@gris.informatik.tu-darmstadt.de

2Embedded Systems and Applications
Computer Science Department

TU Darmstadt, Germany
koch@esa.informatik.tu-darmstadt.de

ABSTRACT

Geometric Algebra (GA) supports the geometrically intuitive development of an algorithm with its build-in geometric primitives
such as points, lines, spheres or planes. But on the negative side GA has a huge computational footprint. In this paper we study
how GA can compete with traditional methods from Linear Algebra (LA) in the field of raytracing. We examine the raytracing
algorithm for both GA and LA on the basis of primitive operations. Furthermore we introduce a novel framework for rendering
point clouds based on spheres and planes as surface elements. We use this model to benchmark implementations of both
algebras. Our results show that depending on the microprocessor architecture like CPUs, FPGAs or GPUs Geometric Algebra
and Linear Algebra can raytrace with comparable speed.

Keywords: FPGA, Geometric Algebra, GPGPU, Point Cloud, Raytracing.

1 INTRODUCTION

this paper we investigate how to speed up calculations
in Conformal Geometric Algebra to get comparable
speed to linear algebra in the field of computer graph-
ics. In the last decades Geometric Algebra (GA) has
become a reasonable alternative in describing geomet-
ric algorithms compared to other systems like vector
algebra.

One can work with Geometric Algebra in a very in-
tuitive way since all objects of the algebra have a ge-
ometric meaning. In the conformal model, which we
use throughout this paper, one can describe lines, planes
and spheres directly as objects of the algebra. Further-
more operations like reflections and rotations can be ap-
plied uniformly to all geometric objects. As a result
algorithms formulated with GA are very compact com-
pared to systems describing geometry that are usually
used in computer graphics.

Besides the new objects like spheres or planes and the
uniformly applicable operations GA also includes many
other mathematical systems like vector algebra, projec-
tive geometry or quaternions that enjoy a widespread
use in computer graphics today. GA developers can
slightly shift from their knowledge in these systems to

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not made
or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Figure 1: Max Planck point cloud rendered at 4.5 fps
on an AMD HD4850 GPU. The viewport size is 640 by
480. The model consists of 96208 surfels.

the new opportunities introduced by GA while still be-
ing able to use their elaborate algorithms.

While these properties of Geometric Algebra are
very exciting especially for people working in graphics,
computer vision or animation, there seems to be one
major drawback that causes a niche existence of GA in
todays applications. The mathematics in the conformal
model of GA are based on the calculation of 32
dimensional so called multivectors. These multivectors
represent the geometric objects of GA like spheres or
planes. Different products between multivectors lead
to operations like intersections or reflections. To take
the scare here we have to admit that for geometric
meaningful objects one often does not need more
than ten non-zero entries of these multivectors. As a
result mathematical effort reduces a lot in a non-naive
implementation of GA [5]. While this still seems to be

GraVisMa 2009

32

a lot of mathematical effort there are algorithms that
work faster using GA instead of using LA [10].

There has been a second development in the last
years that leads to the results of our paper. After hit-
ting the power wall with their monolithic cores and in-
creasing clocks CPU developers began to put more and
more cores onto their chips to increase computational
power. Secondly around the same time GPUs have
been opened to general purpose computations by the in-
troduction of specialized computing platforms. Today
there are lots of parallel computational resources avail-
able in commodity hardware [1] [13] [16]. Geometric
Algebra benefits from these architectures since multi-
vector entries can be computed independently of each
other.

In this paper we chose a field of computer graph-
ics, namely raytracing, to investigate how much over-
head there really is in choosing GA in favor of LA by
simply counting the needed mathematical operations
for the different raytracing primitives. We introduce
a novel surfel (surface element) model based on GA
spheres and planes to represent the local surface of a
point cloud. With the help of this model we fortify
our theoretical observations by raytracing point clouds
on different microprocessor architectures. Furthermore
we investigate the impact of parallelism on both Linear
Algebra and Geometric Algebra versions of our algo-
rithms.

2 RELATED WORK
The performance of raytracing with conformal GA on
a general purpose CPU has already been examined
in [3] and [6] but without considering the question
of parallelization. Parallel FPGA implementations of
raytracers were presented in [21] or [4] but only on
the basis of LA. The topic of implementing a general
GA processor on special hardware architectures like
FPGAs was discussed in [19] and [7] with the first one
only implementing one of the products of conformal
GA and the second one concentrating on the 4D ho-
mogeneous space. Both also without the discussion of
optimization techniques and no relation to raytracing.
In this paper we try to combine all these topics to
optimized GA raytracing on specialized hardware
respectivly GPUs.

A number of rendering approaches and surface defi-
nitions of point clouds have been proposed in the past.
Rusinkiewicz et al. [20] propose a method based on
splatting small quadrats or ellipsoids onto the screen for
a subset of the point cloud. Ohtake et al. [17] use local
low degree implicit functions based surfels to approx-
imate the point cloud. Their approach is close to ours
since they use a surfel as a local approaximation and
define the region of influence of their surfel by using a
bounding sphere. Though their approach is still CPU

based. A GPU based extension of the SLIM rendering
is presented by Kanai et al. [14]. In contrast to our
approach Kanai et al. create their primary rays by ras-
terizing the bounding box of the surfels. Guennebaud
et al. [8] fit spheres into the point cloud similar to our
approach. While we use the spheres as a direct repre-
sentation of the surface Guennebauds spheres are only
an intermediate step in finding an algebraic point set
surface.

3 SURFEL MODEL
For our surfel model we chose a representation that di-
rectly fits to Geometric Algebra. As a result we can
take advantage of the primitives and operations that are
directly included in the algebra. We chose the two geo-
metric objects plane and sphere as a basis of the surfels.
These two objects are the only objects that on their own
represent a surface in GA. With planes and spheres we
can directly approximate local details of a real-world
model. To get a representation of a whole model we
simply use several of the surfels that each represent dif-
ferent local features of the model on their own. Since
there are no data file sources for our new model repre-
sentation we have to acquire the data from other rep-
resentations. One way is to use point clouds as a data
basis and to fit the surfel locally into a neighborhood of
points. Another way would be to use triangle meshes.
One could create the planes by using the plane of a tri-
angle. Spheres could be created by using one vertex and
three of its neighbors to describe a sphere of GA with
the help of the outer product.

3.1 Building the Model
We build our surface by using point clouds as a data ba-
sis. An Algorithm to fit planes and spheres into point
clouds has been published in [9]. The algorithm is
based on the distance measure of GA between points
and spheres. With the distance measure we can define
a least squares approach for the point neighbourhood.
Based on the least squares approach the eigenvalues
of a 5x5 matrix have to be solved where the smallest
positive eigenvalue directly includes coefficients of a
sphere. A nice property of the algorithm is that we do
not have to care whether the point neighborhood is pla-
nar since then the result of the algorithm are the coeffi-
cients of a plane. In fact in geometric algebra one can
think of a plane as a sphere with infinite radius [12].

We use an iterative algorithm to get our final model.
We fit surfels into the point cloud as long as there are
points that are not represented by one of the already
fitted surfels. To get the local neighborhood we ran-
domly chose a non-fitted point which we call the fit-
ting point. With the fitting point we query a kd-tree
including the whole point cloud for the k nearest neigh-
bors. The fitting point is always assumed to be fitted
by the calculated surfel from the fitting algorithm. For

GraVisMa 2009

33

the k neighbors we calculate the distance to the surfel.
We define each neighbor to be fitted if its distance to the
surfel is below a previously defined bound ε . Using this
approach we can significantly reduce the data amount
compared to a naive algorithm where one would fit a
surfel for every point of the point cloud.

Furthermore we introduce a bounding mechanism
into our surfel model. If you consider spheres with low
curvature or planes these objects will usually cover the
whole image while often approximating a part of the
model data that is relatively small in the image space.
To counter this behaviour we introduce the bounding
mechanism. A natural choice for the bound is a region
with some radius around the fitting point that includes
most of the points in the neighborhood that were in-
volved in the fitting process. The translation of this
requirement into GA is a sphere centered at the fit-
ting point. We calculate a first radius candidate of the
bounding sphere by taking the distance between the fit-
ting point and the farthest point of the neighborhood
that is fitted by the surfel. In most cases we can take this
candidate as a feasible radius for the bounding sphere
but there are cases where the fitted sphere will be sim-
ilar in size to the bounding sphere if taking this candi-
date for the radius. A result of the similar size are visual
artifacts in the final rendered image. For many models
it is sufficient to take a value between the radius down
to a quarter of the radius of the fitting sphere as an up-
per bound for the radius of the bounding sphere to avoid
most artifacts.

3.2 Raytracing the Surfel Model
In Raytracing we want to know where the nearest inter-
section between a ray shot from the camera through a
pixel and the surface is located in space. We represent
our rays by lines of Geometric Algebra. We create our
rays by taking the camera origin and the 3D position
of the pixel on the image plane. With these two points
we build the outer product with the point at infinity to
get a line. We can intersect the lines with both spheres
and planes. Since planes in GA are spheres with infinite
radius we can use our intersection indicator and inter-
section point algorithms for both of these objects. The
algorithm to find the nearest intersection point for one
pixel looks as follows:

1. Find a candidate fit We use both brute force and
spacial data structure based approches depending on
the use of our results.

2. Intersect the bounding sphere The bounding
sphere indicates the region in space where the
fitted surfel is feasible regarding the model data.
Additionally in most cases the bounding sphere is
much smaller in screen space than the fitted surfel.
To reduce the intersection operations with fitted

surfels we first calculate the intersection indicator
of the bounding sphere.

3. Test for intersection The effort of calculating the
intersection points can be saved in some cases when
the ray intersects the bounding sphere but is tangen-
tial to the surfel. Furthermore the calculation of the
intersection indicator imposes no extra cost since we
can reuse the calculated value in the calculation of
intersection points. Vielleicht noch dazu dass beim
betrachten eines modells the bspheres wie ein ma-
tel um das modell sind und diese Fälle dann aus-
geschlossen werden.

4. Calculate intersection points This operation is
somewhat more involved in GA than in LA. In LA
you can simply calculate the ray parameter t1 and
t2. Using the parameters, the origin and direction
of the ray one can easily calculate the intersection
points. In GA the result of the intersection is a
point pair which includes both of the intersection
points. We have to dissect the point pair to get
the intersection points. After dissection we have
to normalize the intersection points so that the
following tests work in the right way.

5. Test intersection points against bounding sphere
We have to introduce this test before we can expect
the intersection points to be feasible points of our
model. There are cases where a ray intersects both
the bounding sphere and the fitting sphere but only
one of the possible two intersection points or none of
them is feasible concerning our model description.
In figure 2 you can see three of the cases depicted
in 2D that can occure when a ray intersects both
spheres. The top case is the usual case where both of

Figure 2: Three cases of the intersection of a ray with
both the bounding sphere and the fitted surfel. The sur-
fel is depicted in black while the bounding spheres out-
line is stippled. There are three feasible intersection
points depiected by the stars and three infeasible inter-
section points represented by the black filled circles

GraVisMa 2009

34

the intersection points are feasible and we take the
nearest one for further calculations. In the middle
case only one of the intersection points is inside the
bounding sphere. The lower case shows an example
of the intersection of both spheres where none of the
intersection points is feasible for our model.

6. Test intersection points to be the nearest points
We use the inner product of Geometric Algebra to
get the distance measure between an actually found
intersection point and a point from a previous itera-
tion of the algorithm.

7. Repeat 1. - 6. for other candidate fits

After finding the nearest intersection point for the
ray we shade the pixel using the Phong lighting model.
To calculate the diffuse part of the shading the Phong
model needs the normal at the intersection point. Cal-
culating the normal is the first time we have to branch
depending on the type of our surfel. The normal of a
plane surfel can be read directly from the GA coeffi-
cients. The normal of a sphere surfel can be calculated
from the center of the sphere to the intersection point.

4 MINIMIZING OPERATIONS
One subgoal of this investigation was to compare our
GA raytracing approach to existing solutions which are
based on Linear Algebra and their amount of primi-
tive operations like additions and multiplications. We
looked at the following raytracing subtasks:

• Determining whether a ray intersects an object in the
scene, in our case spheres

• Calculating the intersection point of a ray and an ob-
ject

• Finding the surface normal at the intersection point

• Calculating the reflection vector which is needed for
lighting and recursive raytracing

The number of operations for the case of LA was
taken from [22] where a GPU raytracing method based
on quadrics is introduced. Our algorithm was devel-
oped and tested with CluCalc [18]. To analyse and in-
crease the performance of our algorithm we used the
tool Gaalop [11] to symbolically optimize our GA for-
mulas. The output of Gaalop was then searched for fur-
ther potential of optimization with the intend of reduc-
ing the total number of multiplications and addition-
s/substractions. This way differs from the approach
of optimization in [6] where a GA raytracer is im-
plemented on a CPU with the help of Gaigen2 [5].
Gaigen2 increases the performance of GA algorithms
by using specialized objects instead of standard 32 en-
try multivectors. This leads to the advantage that only

those entries are considered in calculations which really
belong to an object. For example a sphere will always
contain only non-zero coefficients for e1, e2, e3, ein f
and e0. In general we used three ways to reach our goal
of less primitive operations:

1. We searched for constant values of variables which
could be excluded from the calculation. Especially
constant values of zeroes and ones lead to simplifi-
cations.

2. Gaalop sometimes calculates coefficients which
don’t belong to the object. These calculations can
be removed completely.

3. Sometimes the same multiplications appear in more
than one coefficient or more than one time in the
same coefficient. These parts were factored out.
They can be precalculated in a previous step and the
result is used in the computation of the coefficients.

All optimizations were done under the point of view
that the algorithm should run on a parallel platform and
especially on GPUs and FPGAs. Point 3 of the list
above could be important for implementing the algo-
rithm on a FPGA, because it implies a pipeline architec-
ture where the result is calculated in some single steps.
This type of architecture can be computed on a FPGA
in an efficient way if it is assured that the pipeline can
be filled constantly with new data. This requirement is
fullfilled in raytracing applications because of the high
number of pixels for which the raytracing procedure
must be executed. Another intend during the develope-
ment of the algorithm was to avoid the use of square
roots and divisions because they cause lot of computa-
tional effort. In the LA case most divisions and roots
are caused by the normalization operation. In GA we
are in most cases able to use unnormalized objects be-
cause a scaled multivector represents the same geomet-
ric object in the conformal space. To demonstrate our
approach we describe in detail the inspection of the ray-
sphere intersection and reflections in the following two
sections.

4.1 Ray-Sphere Intersection
In the GA case we have two objects. The sphere S and
the ray R, which is represented by a line. The surface
normal is represented by a line, too. In the following
∗ denotes the geometric product of two entities, while
the inner product is represented by the . operator. S and
R are intersected through the outer product S∧R. The
result of this operation is the point pair Pp. We have
to extract the point P from Pp which is nearest to the
eyepoint. For this extraction the following formula is
used:

P = (
√

Pp.Pp±Pp)∗ (ein f .Pp)

GraVisMa 2009

35

This is a variation of the extraction formula from [12,
p. 74, 6.11] where the division through ein f .PP is
replaced by a geometric product. This represents the
same object in GA like described above.

The inner product Pp.Pp indicates whether the ray
intersects the sphere or not. If it is positive there exists
an intersection. The calculation of this value consists of
a long sum of products and can’t take advantage of par-
allelism. In LA it is necessary to compute the discrimi-
nant of a quadratic equation which leads to 8 additions
and 20 mutliplications. In GA we need 14 additions and
22 multiplications. So the effort for the decision of in-
tersection is comparable in both algebras. Considering
all subtasks, the inspection of [22] and counting of op-
erations lead to the amount of calculations summarized
in table 1.

GA LA
additions/substractions 29 12

multiplications 42 23
divsions 0 1

square roots 1 1
Table 1: operations for intersection

So in general GA needs two times more operations
than LA. But a point consists of five non-zero coeffi-
cients which can be calculated in parallel. In LA there
are only three entries in the result vector which can be
computed simultaneously. As a result it seems possible
that the GA computations can be performened in the
same time as those from LA on a parallel hardware.

4.2 Reflections
The field of reflections was analysed with the most ef-
fort of the four subtasks. First we looked at reflections
in the 5D conformal space. To reflect an incoming ray
on a sphere we construct a temporary plane PL through
the intersection point P in the direction of the surface
normal N in P. With the help of two geometric products
we can calculate the reflected ray Rre f by the formula:

Rre f =−Pl ∗R∗PL

The resulting C-code created by Gaalop contained
over 8 times more primitive operations than the LA so-
lution. By hand optimizations lead to a solution which
is still between 5 and 6 times larger than the existing
LA solution with the help of the formula. Further op-
timization seems not to be possible. Another approach
was to use a rotation around the normal. This is possi-
ble because our normal is represented as a line and not
as a direction vector like in LA. But this way also leads
to results comparable to the temporary plane solution.
This is due to the characteristic of 5D GA that all calcu-
lations are done free in space and not like in LA related
to the origin what leads to a clearly higher computa-
tional effort. So we analyzed the reflection in 3D GA.

Our investigation was based on [23, p. 108f] and took
into account two different variants of the GA descrip-
tion of reflection. The first one is the equivilant to our
5D solution and taken from [23, p. 109, 8.28]. The re-
fleced ray is calculated through two geometric products
of the ray R and the normal N of the plane PL.

Rre f =−N ∗R∗N

This leads to C-code with 3 times higher operation
count than LA. After by hand optimization the op-
eration count can be reduced to the same amount as
in LA. But to do this we had to presume that the
constructed normal has unit length, which has to be
achieved through cost intensive normalization. How-
ever because of our use of the Phong model we need
the normalized direction of the reflected ray anyway, so
that this is not drawback.

GA 5D GA 3D LA
additions/substractions 25 5 5

multiplications 37 7 7
Table 2: operations for reflection

So the GA and LA solution have the same amount of
operations in 3D. Like in LA the result vector contains
3 elements which can be computed in parallel.

5 IMPLEMENTATION DETAILS
In our fitting process we find the neighbors of the fit-
ting points by using a knn-search of the ANN library
[15]. We use the newmat library [2] to calculate the
eigenvectors of the 5x5 matrix computed from the point
neighborhood.

For our final implementation we use the OpenCL
environment together with an AMD Radeon HD4850
graphics card to raytrace views of our scenes. We cre-
ate a 256 by 256 array of threads which is the maximum
for our hardware in the OpenCL environment. The ar-
ray of threads is slided across the image domain so that
every pixel is covered once by one thread. Every thread
of the thread array calculates the raytracing algorithm
for the covered pixel independent of the other threads.

We derive the rays by calculating a GA line using the
origin of the camera and a point on the image plane.
The point on the image plane is interpolated bilinearly
in euclidean space from the 3D coordinates of the image
planes corners depending on the pixel position and the
image resolution.

To speed up the calculation of intersections we use a
modified kd-tree. When we split a node of the kd-tree
in the building process we can not cut surfels that cover
the splitting plane of the kd-tree node. We decided to
enlarge the axis aligned bounding boxes (AABB) of the
resulting child nodes so that every surfel is enclosed
completely in exactly one of the child nodes. We assign
the surfels to the child node that is covered by most of

GraVisMa 2009

36

Figure 3: Phlegmatic Dragon point cloud rendered at
2.6 fps on an AMD HD4850 GPU. The viewport size is
640 by 480. The model consists of 166162 surfels.

the surfels AABB volume. A result of our kd-tree build-
ing process is that several of the trees node AABBs will
intersect each other which does not happen in a real kd-
tree. Furthermore we have to use a larger memory foot-
print than is necessary for the usual kd-tree because we
save six coordinates for two corner points of the nodes
AABBs instead of only saving one coordinate for the
splitting plane and its direction. To traverse the kd-tree
we use a stack in OpenCLs shared memory. On our
hardware shared memory is emulated in global mem-
ory. A result of this is that on our hardware the large
memory footprint is not such a big problem. Instead of
reading the AABB information from the stack like one
would do it with the usual kd-tree we read the coordi-
nates from our kd-tree data structure. Both data sources
are in global memory.

6 RESULTS

We chose two different architectures to benchmark our
algorithms. We implemented a CPU version to measure
the impact of choosing one of the algebras for the ray-
tracing application directly. Our second architecture are
AMD 45xx series GPUs. The AMD GPUs can be seen
as a parallel processor for one invocation of the raytrac-
ing algorithm for one pixel. For further details we refer
to section 6.2.

6.1 Raytracing on CPUs

Our CPU implementation of the raytracing algortihm
is written in plain C/C++. We do not use any vector
extensions like SSE since we are interested in the per-
formance of LA and GA based on their mathematical
effort. To speed the algorithm invocation up we split
the calculations for the pixel array of the final image up
among multiple CPU cores with OpenMP pragmas.

6.2 Raytracing on GPUs
We decided to use the AMD Stream Technology for our
benchmarks on GPUs to get two advantages. First the
AMD processing elements that compute a single thread
of our GPU raytracing kernel have a 5-way VLIW De-
sign (very long instruction word). The processing ele-
ments can compute up to five floating point additions or
multiplications simultaneously which make up most of
the calculations of our GA raytracing algorithm. Sec-
ond with AMD Stream Kernel Analyzer we can disas-
semble the compiled code for the GPU. Let’s look at the
example of calculating the reflection in Linear Algebra.
In listing 1 you can see the according kernel written in
the Brook+ language.

kernel void reflection(float4 incident_ray<>,
float4 normal<>, out float4 reflected_ray<>){

float factor;
float4 ret;
factor = 2.f∗(incident_ray.x∗normal.x +
incident_ray.y∗normal.y+
incident_ray.z∗normal.z);
ret.x = incident_ray.x − normal.x ∗ factor;
ret.y = incident_ray.y − normal.y ∗ factor;
ret.z = incident_ray.z − normal.z ∗ factor;
ret.w = 0.f;
reflected_ray = ret;

}
Listing 1: Brook+ kernel that calculates the reflection
in Linear Algebra

The disassembly of the compiled code can be seen in
listing 2. There are five instructions denoted by the
numbers 2 to 6. The characters x, y, z, w and t show
which of the five ALUs are active in one instruction. In
instruction 2 there are four active ALUs of which three
calculate a multiplication while ALU t issues a move
operation. In contrast instruction 3 has only one active
ALU.

2 x: MUL_e∗2 T0.x, R1.z, R0.z
2 z: MUL_e∗2 ____, R1.y, R0.y
2 w: MUL_e∗2 ____, R1.x, R0.x
2 t: MOV R2.w, 0.0f
3 y: ADD ____, PV2.w, PV2.z
4 w: ADD ____, PV3.y, T0.x
5 x: MUL_e ____, R0.z, PV4.w
5 y: MUL_e ____, R0.y, PV4.w
5 z: MUL_e ____, R0.x, PV4.w
6 x: ADD R2.x, R1.x, −PV5.z
6 y: ADD R2.y, R1.y, −PV5.y
6 z: ADD R2.z, R1.z, −PV5.x
Listing 2: The computational part of the reflection dis-
sassembly

With the advantages of parallel execution of operations
inside a thread and the possibility to dissassmble the

GraVisMa 2009

37

compiled code we can directly measure the impact of
the parallel nature of GA multivector calculations com-
pared to an algorithm in Linear Algebra. The measure-
ment is possible both in terms of instruction count by
using the disassemblies of the according kernels and in
terms of execution time during a benchmark. The re-
sults in table 3 show that our theoretical considerations
which lead to the conclusion that the GA algorithm has
advantages on parallel architectures compared to LA
were right.

LA inst GA inst GA/LA inst GA/LA op
II 9 12 1.33 1.29
IP 13 17 1.3 2.0
RF 5 12 2.1 5.2

Table 3: GA/LA instructions and operations in compar-
ision for Intersection Indicator (II), Intersection Point
(IP) and Reflection (RF)

The table compares the instruction count of both
algebras (LA inst and GA inst). Furthermore the ratio
for the instruction count (GA/LA inst) and the observed
ratio for the operation count (GA/LA op), which was
derived in section 4, between them is shown. It is
obvious that the instruction ratio for the intersection
point and especially for the reflection vector is signif-
icantly smaller than the operation ratio. So the GA
multivectors can profit from AMDs architecture that
puts up to five operations into one instruction. The
value for the intersection indicator doesn’t change
because its computation can’t be parallelized like
shown in section 4.

6.3 Performance
We use artificial scenes and real world point clouds for
our benchmarks. The artificial scenes are designed to
show the impact of different stages in our raytracing
algorithm. For the intersection indicator we create a
scene consisting of 400 spheres. The spheres are placed
in a screen aligned 2D grid with a distance of their cen-
ter equal to 1.4 times their radius. As a result every
ray through a pixel of the image intersects at most two
spheres. The scene designed for the intersection con-
sists of 100 screen filling spheres that are placed one be-
hind the other to get a high depth complexity. A single
screen filling sphere is used to benchmark the impact
of the reflection calculation for shading. The real world
scenes are covered by the Egea model and a reduced
version of the chameleon point cloud with around 4500
points.

The CPU implementation is consistent with our the-
oretical observations in section 4. Table 4 shows that
the GA needs more time to render the same scene than
LA. The difference is not that high like in theory be-
cause there is a mixture of different parts of the algo-
rithm even if the scene is designed to show the impact

II IP RF CH EG
GA 2320 2190 270 21700 39089
LA 2000 1901 140 19580 34931

GA/LA 1.2 1.2 1.9 1.1 1.1
Table 4: Timings in milliseconds for different scenes on
an AMD Athlon 5600+ dual core at 2.8 GHz. Intersec-
tion Indicator (II), Intersection Point (IP) and Reflec-
tion (RF) are artificial scenes to benchmark the different
parts of the raytracing algorithm. The real world scenes
are Chameleon (CH) and Egea (EG). The viewport size
is 320 by 240

of one special part of the raytracing algorithm. Fur-
thermore the timings show the need for a spacial data
structure to render real world scenes.

II IP RF Chameleon Egea
GA 52 49 14 770 1402
LA 68 62 32 810 1322

GA/LA 0.76 0.79 0.43 0.95 1.06
Table 5: Timings in milliseconds for different scenes
on an AMD HD4850 GPU of the brute force approach.
Intersection Indicator (II), Intersection Point (IP) and
Reflection (RF) are artificial scenes to benchmark the
different parts of the raytracing algorithm. The view-
port size is 640 by 480

Looking at the results of the GPU brute force imple-
mentation presented in table 5 we were somehow sur-
prised. The GA algorithm does not only perform com-
parable to the LA implementation but is in some cases
even faster. An investigation of the dissasemblies of
both kernels shows a 5,26% increase in ALU instruc-
tions and a 28% increase in control flow instructions
for the LA implementation compared to GA. The in-
crease in control flow instructions seems to affect only
the artificial scenes with its low object count. The real
world scenes are rendered with nearly equal speed.

Bunny Max Planck Dragon
surfel count 19336 96208 166162
time (ms) 160 220 380

Table 6: Performance of the final implementation using
OpenCL on an AMD HD4850 GPU. The surfel models
were computed from the Standford Bunny, Max Planck
and original version of the Phlegmatic Dragon point
clouds. The viewport size is 640 by 480

The performance of our final OpenCL implementa-
tion presented in table 6 shows that we get interactive
frame rates for small and medium sized scenes.

7 CONCLUSION
We were able to show that it is possible to optimize GA
code in a way, that its amount of primitive operations is

GraVisMa 2009

38

comparable to that of LA solutions, with a little draw-
back for GA. In some cases we had to do some hand-
work to improve the results obtained by Gaalop even
further. In the field of reflections it does not seem to
be possible to reach a comparable count of operations
in the case of conformal space. To clearly increase the
performance we have to use the 3D case with the draw-
back to transform between spaces and to loose some
part of the elegance and compactness of GA. So there
exists always the task of finding a trade-off between
performance and elegance/compactness depending on
the kind of application which is developed.

Furthermore by using parrallel architectures one can
reach comparable speed for algorithm in GA and LA
even without additional handwork. Though the differ-
ence in speed for both algebras does not only depend on
mathematical effort but on other factors like the amount
of control flow instructions.

8 FUTURE WORK
We aim to implement our GA raytracing procedure on
a FPGA. Important questions to answer will be how to
partition the algorithm between FPGA and a CPU, what
spacial data structure to use and the relation between
pipeline and parallel architecture. Existing raytracing
procedures and GA co-processors on FPGAs reached
the capacity of the hardware very fast. So the challenge
will be to combine both tasks on a single component.

We also want to compare our introduced surfel model
to other surface representations to render point clouds.
We aim to improve the visual quality of our model by
interpolating neighboring surfels to get a smooth sur-
face without discontinuities. To enhance the render-
ing speed, which is about an order of magnitude below
other algorithms to render point clouds, we will inves-
tigate which spatial data structure is suited better to our
model than the presented kd-tree.

REFERENCES
[1] AMD. The AMD Stream Technol-

ogy home page. HTML document
http://www.amd.com/US/PRODUCTS/TECHNOLOGIES/STREAM-
TECHNOLOGY/Pages/stream-technology.aspx, 2009.

[2] Robert Davies. The Newmat home page. HTML document
http://www.robertnz.net/nm_intro.htm, 2009.

[3] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for
Computer Science, An Object-Oriented Approach to Geometry.
Morgan Kaufman, 2007.

[4] Joshua Fender. A high-speed ray tracing engine built on
a field-programmable system. In Proc. Int. conf. on Field-
Programmable Technology, IEEE, pages 188–195, 2003.

[5] D. Fontijne, T. Bouma, and L. Dorst. Gaigen
2: A geometric algebra implementation generator.
http://staff.science.uva.nl/ fontijne/gaigen2.html.

[6] Daniel Fontijne. Efficient Implementation of Geometric Alge-
bra. PhD thesis, University of Amsterdam, 2007.

[7] S. Franchini, A. Gentile, M. Grimaudo, C.A. Hung, S. Impas-
tato, F. Sorbello, G. Vassallo, and S. Vitabile. A sliced copro-
cessor for native Clifford algebra operations. In Euromico Con-
ference on Digital System Design, Architectures, Methods and
Tools (DSD), 2007.

[8] Gaël Guennebaud and Markus Gross. Algebraic point set sur-
faces. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,
page 23, New York, NY, USA, 2007. ACM.

[9] D. Hildenbrand. Geometric computing in computer graphics
using conformal geometric algebra. Computers & Graphics,
29(5):802–810, 2005.

[10] D. Hildenbrand, H. Lange, Florian Stock, and Andreas Koch.
Efficient inverse kinematics algorithm based on conformal geo-
metric algebra using reconfigurable hardware. In GRAPP con-
ference Madeira, 2008.

[11] D. Hildenbrand and Joachim Pitt. The Gaalop home page.
HTML document http://www.gaalop.de, 2008.

[12] Dietmar Hildenbrand. Geometric Computing in Computer
Graphics and Robotics using Conformal Geometric Algebra.
PhD thesis, Darmstadt University of Technology, 2006.

[13] Intel. The Ct: C for Throughput Computing home page.
HTML document http://techresearch.intel.com/articles/Tera-
Scale/1514.htm, 2009.

[14] Takashi Kanai, Yutaka Ohtake, Hiroaki Kawata, and Kiwamu
Kase. Gpu-based rendering of sparse low-degree implicit sur-
faces. In GRAPHITE ’06: Proceedings of the 4th international
conference on Computer graphics and interactive techniques in
Australasia and Southeast Asia, pages 165–171, New York, NY,
USA, 2006. ACM Press.

[15] David M. Mount and Sunil Arya. The ANN home page. HTML
document http://www.cs.umd.edu/ mount/ANN/, 2009.

[16] NVIDIA. The CUDA home page. HTML document
http://www.nvidia.com/object/cuda_home.html, 2009.

[17] Yutaka Ohtake, Alexander Belyaev, and Marc Alexa. Sparse
low-degree implicit surfaces with applications to high quality
rendering, feature extraction, and smoothing.

[18] C. Perwass. The CLU home page. HTML document
http://www.clucalc.info, 2008.

[19] C. Perwass, C. Gebken, and G. Sommer. Implementation of a
Clifford algebra co-processor design on a field programmable
gate array. In R. Ablamowicz, editor, CLIFFORD ALGE-
BRAS: Application to Mathematics, Physics, and Engineer-
ing, Progress in Mathematical Physics, pages 561–575. 6th Int.
Conf. on Clifford Algebras and Applications, Cookeville, TN,
Birkhäuser, Boston, 2003.

[20] Szymon Rusinkiewicz and Marc Levoy. QSplat: A multireso-
lution point rendering system for large meshes. In Proceedings
of ACM SIGGRAPH 2000, pages 343–352, July 2000.

[21] Jörg Schmittler, Ingo Wald, and Philipp Slusallek. Saarcor –
a hardware architecture for ray tracing. In Proceedings of the
conference on Graphics Hardware 2002, pages 27–36. Saar-
land University, Eurographics Association, 2002. available at
http://www.openrt.de.

[22] C. Stoll, S. Gumhold, and H.-P. Seidel. Incremental raycast-
ing of piecewise quadratic surfaces on the gpu. Symposium on
Interactive Ray Tracing, 0:141–150, 2006.

[23] John Vince. Geometric algebra: An algebraic system for com-
puter games and animation. London: Springer. xviii, 195 p,
2009.

GraVisMa 2009

39

Realtime KLT Feature Point Tracking

for High Definition Video

 Hannes Fassold1 Jakub Rosner2
 hannes.fassold@joanneum.at jakub.rosner@joanneum.at

 Peter Schallauer1 Werner Bailer1
 peter.schallauer@joanneum.at werner.bailer@joanneum.at

1 JOANNEUM RESEARCH, Institute of Information Systems, Steyrergasse 17, 8010 Graz, Austria
2 Silesian University of Technology, Faculty of Automatic Control and Robotics, Ulica Academicka 2, 44-100 Gliwice,

Poland

ABSTRACT
Automatic detection and tracking of feature points is an important part of many computer vision methods. A
widely used method is the KLT tracker proposed by Kanade, Lucas and Tomasi. This paper reports work done
on porting the KLT tracker to the GPU, using the CUDA technology by NVIDIA. For the feature point detection,
we propose to do all steps of the detection process, except the final one (enforcing a minimum distance between
feature points), on the GPU. The feature point tracking is done on a multi-resolution image representation to
allow tracking of large motion. Each feature point is calculated in parallel on the GPU. We compare the CUDA
implementation with the corresponding OpenCV (using SSE and OpenMP) routines in terms of quality and
speed, noticing a significant speedup of up to factor 10. Some additional experiments are done regarding the
influence of different parameterization on the runtime. Our GPU implementation achieves realtime (> 25 fps)
performance for High Definition (HD) video sequences, successfully tracking several thousands of points. In
summary, the GPU implementation achieves a significant speedup compared with an optimized CPU
implementation and allows the analysis of high resolution video sequences in realtime.

Keywords
KLT, feature point tracking, Lucas Kanade, corner detection, optical flow, motion estimation, GPU, CUDA

1. INTRODUCTION
The automatic detection and tracking of (typically
corner-like) feature points throughout an image
sequence is a necessary prerequisite for many
algorithms in computer vision. The gathered
information about the feature points and their motion
can be used subsequently for pose estimation, camera
self-calibration [Koc99] and for tracking various
kinds of objects like people and vehicles
[Lyp07][Kan06]. One of the most popular methods
for feature point tracking is the KLT algorithm which

was introduced by Lucas and Kanade [Luc81] and
later extended in the works of Tomasi and Kanade
[Tom91] and Shi and Tomasi [Shi94]. The KLT
algorithm automatically detects a sparse set of feature
points which have sufficient texture to track them
reliable. Afterwards, detected points are tracked by
estimating for each point the translation, which
minimizes the SSD dissimilarity between windows
centered at the current feature point position and the
translated position.

Despite being more than 20 years old, the KLT
algorithm is still widely used, as it operates in a fully
automatic way and its performance in terms of feature
point quality and runtime is competitive compared
with other methods. A problem occurs, when using
the KLT algorithm in realtime applications (e.g. in
surveillance), where strict runtime requirements must
be fulfilled. Typically cameras deliver 25 – 30
images per second, so the runtime of the algorithm
for one image may not exceed 33 - 40 milliseconds.

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2009

40

Current implementations of the KLT algorithm (e.g.
the OpenCV3 routine) achieve this only when the
image resolution is not higher than Standard
Definition (720x576) and the number of feature
points is a couple of hundreds at most. If the image
resolution is higher (e.g. for HD video) and more
points are to be tracked, one has to look for
alternatives.

Because of its tremendous computational capability
Graphic Processing Units (GPUs) gain significant
importance for computer vision. In this document we
describe work done on porting the KLT algorithm to
the GPU using CUDA. CUDA4 stands for Compute
Unified Device Architecture and is a C-like GPU
programming environment introduced by NVIDIA.
We first give an introduction to GPU programming
with a focus on CUDA (section 2) and discuss
previous work done on implementing the KLT
algorithm for the GPU (section 3). In section 4, an
overview of the general KLT algorithm is given and
section 5 discusses its implementation for the GPU.
Finally, section 6 compares the GPU implementation
with the reference CPU implementation in terms of
speed and quality.

2. GPU PROGRAMMING & CUDA
In the last few years, GPUs have evolved from
specialized devices for accelerating 3D graphics to
powerful coprocessors, which can be used for general
purpose GPU programming. The processing power of
GPUs (measured as number of floating-point
operations per second) is nearly doubling every year
and exceeds modern CPUs processing capabilities by
far. Moreover, while a couple of years ago GPU
developers had to adapt their algorithms to fit into a
special purpose computer-graphics oriented render
pipeline, the advent of general purpose GPU
programming languages like Brook5, CUDA or
OpenCL6 brought much more flexibility into the field
of GPU programming. In the following, we will focus
on CUDA, which is currently the most mature of
these and can be run on all current NVIDIA GPUs
starting with the Geforce 8 series.

CUDA GPU Architecture
The following properties are characteristic for a
CUDA-capable GPU:

• Manycore architecture (e.g. Geforce 280GTX
has 30 multiprocessors, corresponding to 240
processing cores),

3 http://sourceforge.net/projects/opencv/
4 http://www.nvidia.com/object/cuda_home.html
5 http://graphics.stanford.edu/projects/brookgpu/
6 http://www.khronos.org/opencl/

• A very fast thread management (done in
hardware), which allows switching between
different threads with virtually no overhead,

• Random access device memory (global
memory) which can be accessed by all threads,
but has a high latency,

• A very fast read-write cache called shared
memory (16 KB per multiprocessor), which has
to be managed by the algorithm developer,

• Other important memory types like texture
memory (read-only, cached, offers bilinear
interpolation) and constant memory (read-only,
cached).

Figure 1: Different memory types of a CUDA-capable
GPU. Blue = on-chip, yellow = off-chip, shaded = off-
chip, but cached. The arrows indicate the allowed access
type (read-only, read-write).

CUDA Programming Model
A CUDA program is typically composed of a control
routine which calls a couple of CUDA kernels. A
kernel can be compared to a C function, but is
executed on the GPU in parallel by a large number of
threads in a SIMT (single instruction, multiple
threads) fashion. Each thread is identified by its
unique thread id. Groups of 32 consecutive threads
are organized into warps with half-warps as their first
or second halves. Furthermore, sets of up to 512
consecutive threads are grouped into thread blocks,
which then form a grid.

Synchronization among different thread blocks can
only be achieved after the whole kernel has
completed (global synchronization). Depending on
the resources (registers, shared memory) a thread
block uses, one or more of them are assigned to a
multiprocessor to be executed simultaneously. After
having finished, new thread blocks are assigned to the
multiprocessor, until the whole grid has been
completed. The order in which thread blocks are
executed is not defined and depends on the number of
multiprocessors of the GPU.

GraVisMa 2009

41

Figure 2: CUDA assigns grids to a device (GPU), thread
blocks to its Streaming Multiprocessors (SM) and
threads to Scalar Processors (SP).

Note that in image processing algorithms, typically
one thread computes one pixel. A thread block is
typically corresponding to a small tile of the image.
All thread blocks corresponding to the whole image
then form the grid.

CUDA Porting Guidelines
In the following section, some general guidelines are
given how to port an algorithm efficiently to CUDA.
First (and most important), it must be able to split the
algorithm into a large number (at least hundreds) of
loosely coupled threads which run in parallel on the
GPU. One often has to rethink the whole algorithm or
parts of it to be able to fulfill this requirement.

A very common way in writing a CUDA kernel is to
divide it into three parts separated by a
synchronization barrier. In the first part all the data
essential for computations inside a given thread block
is loaded from global memory to the very fast shared
memory. It is essential to use a synchronization
barrier after the loading stage to ensure that all the
data has been loaded before proceeding to the next
step. In the next part, the processing stage, the shared
memory data is used in a way that depends on the
purpose of the given algorithm - e.g. a convolution,
interpolation, summation etc. The results are then
stored in a temporary buffer residing also in shared
memory. Another synchronization barrier has to be
set to ensure completeness of the processing stage.
The last part is usually the shortest one and simply
writes the temporary buffer back into the proper
location in global memory.

An obvious and troublesome problem for the
programmer is the very high level of parallelism in
kernel’s execution. There can be tens of thousands of

threads running concurrently on a single GPU. When
two threads try to increment, compare or change in
some other way the value at the same memory
address simultaneously, only one of them will be
likely to succeed. In that case it is strongly
recommended to think of another, sometimes
completely different way to implement the given
algorithm to allow parallel execution. This problem
can be very hard and in some cases the only way to
solve it is to use atomic functions. Atomic functions
will be completely serialized and for this reason can
significantly decrease the overall performance.

Branches (‘if-then-else’, ‘while’) within the threads
of a half-warp should be reduced to a minimum as
they lead to divergent execution of threads, and are
sometimes serialized. Memory transfers between
CPU memory and GPU memory should also be
reduced to minimum as they are very costly. The
same applies (to a lesser extent) to allocations and
deallocations of large memory buffers.

The available memory types as shown in Figure 1
should be understood and used properly to achieve an
optimal implementation. Especially the usage of
shared memory to cache a small part of the high-
latency global memory is important. Furthermore for
optimal performance in accessing global memory,
threads within a half-warp should access memory
locations of the same memory segment (coalescing
rule). It is possible to hide a large part of memory
latency in arithmetic computations by executing as
many threads simultaneously as possible (the limit is
1024 per multiprocessor for the latest GPUs).
Furthermore, for read-only data the usage of texture
and constant memory is often helpful as they are
cached.

Interactions between threads should be restricted to
threads of the same thread block and done using
shared memory. Shared memory is especially useful
in cases when those threads use data that mutually
overlaps and is generally as fast as registers, as it
resides on chip, unless bank conflicts occur. To avoid
them, threads from the same half-warp have to read
memory addresses with a step size which is dividable
by 4 bytes and not dividable by 8 bytes.

Register usage of a single thread block should be
minimized, otherwise the number of thread blocks
that can be run concurrently by a single
multiprocessor may be reduced.

Shared memory, which is mainly used for
communication between threads of the same block, is
a very powerful ally in kernel optimization.
Regarding the KLT algorithm implementation, it is
used in almost every CUDA kernel and greatly
improves the performance. Shared memory can also
be successfully used to store small per-thread arrays,

GraVisMa 2009

42

as otherwise they would be allocated by the compiler
outside the chip in the local memory, which has the
same latency as the global memory.

For some special functions like square-root(), sine()
and cosine() there exist significantly faster variants
with lower precision. Although available since the
NVIDIA G200 GPU series, the usage of double
precision values should be avoided as it is
significantly slower than single precision ones.

Note that in [Che08] a study has been done about the
effectiveness of CUDA when porting different kind
of algorithms (combinatorial logic, dynamic
programming, data mining etc.) to the GPU. They
report speedups ranging from moderate 2.9 times for
dynamic programming (which is hard to parallelize)
up to 72 times for k-mean clustering.

3. RELATED WORK
There has been done some previous work on porting
the KLT tracker to the GPU. In [Sin06] OpenGL and
the Cg7 shader language are used for the GPU
implementation. A fixed number of iterations is done
for each feature point to avoid conditional statements.
Detection of new feature points is done only every
fifth frame to save computation time. In [Zac08] the
KLT tracker is also implemented using Cg. Their
KLT tracker compensates for varying camera gain by
estimating it as a global multiplicative constant.
Another Cg KLT implementation is described in
[Ohm08]. They propose a modified variant of the
feature detection process to circumvent some hard
parallelizable parts of it. Note that to our knowledge,
no CUDA KLT implementation has been reported so
far in published works.

4. KLT ALGORITHM
The KLT algorithm can be divided into two main
parts. During the detection process, salient feature
points are found and added to the already existing
ones. Afterwards, in the tracking process for each
feature point its corresponding motion vector is
calculated. In the following, we describe each part of
it in more detail. The algorithm follows the standard
scheme for the KLT algorithm as was proposed in the
works of [Luc81][Tom91][Shi94].

Note that in the following Greek letters denote
scalars, lowercase letters denote column vectors and
uppercase letters denote matrices. We denote I as the
current image and J as the immediately next image in
the sequence. We write),(/ yxII ∂∂=∇ as the spatial

image gradient of I, which is typically done with the
Sobel or Sharr operator for robustness. Also we
define as W(p) a small rectangular region centered at

7 http://developer.nvidia.com/object/cg_toolkit.html

a given point p. Typically W(p) will be a 5 x 5 or
7 x 7 pixel neighborhood. As the tracking is done
with sub-pixel precision, p will have non-integer
coordinates. Its neighbors are then calculated using
bilinear interpolation.

Feature Point Detection
The task here is to detect new feature points in a
given image I and add them to the already existing
feature points. In order to track feature points
reliably, their pixel neighborhood should by richly
structured. As a measure of ‘structuredness’ of the
neighborhood of a pixel p, one can define the
structure matrix G:

∑ ∈
∇⋅∇=

)(
)()(

pWx
TxIxIG

Its eigenvalues λ1,λ2 (which are guaranteed to be ≥ 0
as the matrix is positive-semidefinite) deliver useful
information about the neighborhood region W. If W is
completely homogenous, then λ1 = λ2 = 0. In
contrast, λ1 > 0, λ2 = 0 indicates that W contains an
edge and λ1 > 0, λ2 > 0 indicates a corner. The
smaller eigenvalue λ = min(λ1,λ2) can now be used
as a measure of the cornerness of W, where larger
values means stronger corners.

The feature detection is now composed of the
following steps:

1. Calculate structure matrix G and cornerness λ
for each pixel in the image I.

2. Calculate the maximum cornerness λmax
occurring in the image.

3. Keep all pixels that have a cornerness λ larger
than a certain percentage (5% - 10%) of λmax.

4. Do a non-maxima suppression within the 3 x 3
pixel neighborhood of the remaining points to
keep only the local maxima.

5. From the remaining points, add as many new
points to the already existing points as needed,
starting with the points with the highest
cornerness values. To avoid points concentrated
in some area of the image, newly added points
must have a specific minimum distance (e.g. 5 or
10 pixels) to the already existing points as well
as to other newly added points (Minimum-
Distance-Enforcement).

Feature Point Tracking
In the tracking step, we want to calculate for each
feature point p in image I its corresponding motion
vector v so that its tracked position in image J is
p + v.

As ‘goodness’ criterion of v we take the SSD error
function ∑ ∈

−+=
)(

2))()(()(
pWx

xIvxJvε . It measures

GraVisMa 2009

43

1. Set initial motion vector Tv)0,0(1 =

2. Spatial image gradient),(/ yxII ∂∂=∇

3. Calc. structure matrix ∑ ∈
∇⋅∇=

)(
)()(

pWx
TxIxIG

4. for k = 1 to maxIter

a) Image difference)()()(kvxJxIx +−=η

b) Calc. mismatch vector ∑ ∈
∇⋅=

)(
)()(

pWx
xIxb η

c) Calc. updated motion bGvv kk
1

1
−

+ +=

d) if epsvv kk <−+ |||| 1 then stop (converged)

5. Report final motion vector v

Table 1: Pseudo-code of the calculation of the motion
vector v for a given feature point p. W(p) is a window

centered at p. Typically the window size is set to
5 x 5 pixel, maxIter to 10 and eps to 0.03 pixel.

the image intensity deviation between a neighborhood
of the feature point position in I and its potential
position in J and should be zero in the ideal case.
Setting the first derivative of ε(v) to zero and
approximating J(x + v) by its first order Taylor
expansion around v = 0 results in a better estimate v1.
By repeating this multiple times, we obtain an
iterative update scheme for v which is summarized in
Table 1.

Due to the Taylor expansion around zero the given
scheme is only valid for small motion vectors v. In
order to allow tracking of large motions of feature
points, which is quite common, we generate an image
pyramid and apply the scheme for all points in each
pyramid level. We are doing this from coarse
pyramid level to fine one, using the result of the
previous pyramid level as initial guess for the next
one.

5. CUDA IMPLEMENTATION
In this section we will discuss issues which are
specific for the CUDA implementation of the KLT
tracker.

The very first thing that has to be done before any
GPU kernel can be run is to allocate a GPU memory
buffer and transfer the essential data from CPU
memory to it. In order to save unnecessary allocations
and deallocations of GPU memory, before processing
the first image of the sequence a context object is
created which holds all the necessary memory
resources (for the image pyramids etc.) for the KLT
algorithm. It is reused during processing of the image
sequence and deleted after the processing is finished.

Feature Point Detection Implementation
The algorithm which does the feature point detection
has been divided into separate steps, as explained in
section 4, each being computed by one or more
kernels. For optimization purposes the operations
were assigned to kernels in a way that minimizes the
overall number of kernels and by that read-write
operations in global memory space, as those are
particularly costly.

The first step of the algorithm has been divided into
three different kernels, first computing the gradients
for each pixel and the next two summing them up in
window W in order to get the G matrix and the
cornerness λ.

The second step, which determines the maximum
cornerness, is a good example of an operation that
seems to be conceptually very simple, but is
complicated to implement efficiently for a massively
parallel architecture. In this case it involves a lot of
read-write hazards, when many threads want to
compare and modify a single value simultaneously. A
solution to this problem is to create a reduction tree,
in which each thread determines the maximum of a
couple of values and stores it at a different address. A
highly optimized version of this reduction algorithm
(along with some other useful algorithms for
compaction, sorting etc.) can be found in the CUDA
performance primitives library8 (CUDPP) and was
used by us for calculating the maximum value.

In steps 3 and 4 we mark features, that do not meet
their respective conditions, as invalid, since removing
them in each step separately would not only be
complicated on GPU, but also inefficient.

Before doing step 5, the potential feature points have
to be transferred back to the CPU memory.
Considering how costly such transfers are, the feature
points are compacted before that to remove the ones,
which were marked as invalid. Once again, we use
the CUDPP library for this purpose.

Step 5 of the feature point detection algorithm (the
enforcement of a certain minimum distance between
feature points) is very hard to parallelize and
inefficient to run on the GPU. This fact forces us to
do it on the CPU. Note that the standard algorithm as
implemented in the OpenCV library is only efficient
for a small number of features (less than 1000) as its
computational complexity increase quadratically. For
efficiently handling larger numbers of features we
have implemented an alternative algorithm, whose
complexity increases linearly with the number of
features. It requires an additional mask image, which
has the same size as the input image. The idea of this
algorithm is to add a feature point to the final feature

8 http://www.gpgpu.org/developer/cudpp

GraVisMa 2009

44

point list only when its position is not masked out in
the mask image. If it is added to the list, all
neighboring pixels which are within the specified
minimum distance are masked out in the mask image.
As the standard algorithm, it starts at the first feature
with maximal cornerness and moves towards features
with lower cornerness until it reaches the end of the
input vector (which we got in step 4) or until enough
new feature points have been added (as specified by
the maximum allowed number of feature points). It is
possible to choose automatically the faster minimum-
distance-enforcement algorithm (standard vs.
alternative), based on the minimum distance, the
number of input features and the maximal number of
features.

Feature Point Tracking Implementation
Unlike the feature detection, all the tracking steps
have been packed inside only one complex kernel, so
that a significant part of the data could be read once
and then kept in the shared memory. In each pyramid
level, each thread does the calculations for exactly
one feature point.

Since bilinear interpolation is essential for achieving
sub-pixel accuracy in the tracking algorithm, texture
memory has been used to store the image pyramids
for the images I and J. This allows to achieve sub-
pixel reads at the cost of a normal read access.

One of the most critical optimizations was to reduce
the number of necessary texture fetches, especially in
the most inner loop of the algorithm, where the
mismatch vector b is being calculated, as those are
the most time-consuming operations.

Another important issue in the optimization process
involves minimizing both shared memory and register
usage, while not allowing the compiler to place often
used variables in the local memory space, which has a
very high access latency just like global memory.

Also, finding the best compromise between the
number of registers per thread block, the amount of
shared memory used and the number of threads per
block is very troublesome and requires a lot of
experiments. In most cases a good idea is to set the
number of threads per block to 128 or 256 as those
configurations allow the full utilization of
multiprocessors. For the tracking kernel this number
had to be reduced as each thread requires a lot of
shared memory and registers on its own. Furthermore
one should remember that in many cases the overall
number of features to track, and therefore threads, is
relatively low, like less than a few thousands, so the
number of threads per block should be reduced even
more. For example if there are a thousand threads in
the tracking kernel, it’s not efficient to set it to 256 as
there would be only four blocks for four

multiprocessors. In that case a GPU like the Geforce
280GTX, which has 30 multiprocessors, would use
only 13% of its computing resources, as a single
thread block can never be split between different
multiprocessors.

Note that in contrast to the GPU KLT
implementations presented in [Sin06] and [Zac08],
we do not skip specific levels of the image pyramid.
Furthermore, we do a convergence test after every
iteration instead of employing a fixed number of
iterations.

6. EXPERIMENTS AND RESULTS
This section describes experiments done with the
CUDA KLT implementation. We compare the
CUDA implementation with the corresponding
function in the OpenCV library in terms of quality
and speed. Note that the OpenCV library internally
uses the Intel Performance Primitives (IPP) library
and OpenMP for performance reasons. The runtime
measurements were done on a 2.4 GHz Intel Xeon
Quad-Core machine, equipped with a NVIDIA
Geforce GX280 GPU.

Quality Tests
In Figure 3 a comparison of the detected points by
both routines is given. One sees that there are neither
green nor red points, indicating that the CUDA
implementation of feature detection gives the same
feature points as the OpenCV routine.

Figure 3: Quality results: Features detected by: Red =
OpenCV, Green = CUDA, Yellow = Both.

The results of the tracking algorithm are shown in
Figure 4. For each feature point its estimated motion
vector is drawn in. Only a small percentage of the
feature points has different motion vectors. These
differences might arise mainly due to the usage of a
more precise 5 x 5 Gaussian convolution kernel for
creating the image pyramids in the CUDA
implementation. For most correctly tracked feature
points both implementations give similar results.

GraVisMa 2009

45

Figure 4: Quality results: Features tracked by: Red =
OpenCV, Green = CUDA, Yellow = Both.

Runtime Tests
The various parts of the KLT algorithm depend on
different parameters. All the tests were done using the
parameters from Table 2, if not specified otherwise.
Note that HD 1080p denotes an image resolution of
1920 x 1080 pixels, HD 720p denotes 1280 x 720
pixels and SD 720 x 576 pixels.

Video format: HD 1080p (1920x1080)

Maximum # features: 10000

Quality level: 5 %

Minimum distance: 6 pixel

Window size (detection): 5 x 5

Enforce min. dist. algorithm: Automatic

Pyramid levels: 6

Accuracy threshold 0.03 pixel

Maximum iterations: 10

Window size (tracking): 5 x 5

Table 2: Default parameters used for experiments.

Figure 5 shows the runtime for the first four steps of
the feature detection algorithm for different image
resolutions. Experiments have shown that the runtime
is practically independent on any parameters apart
from the image resolution.

16,48

35,57

82,54

1,92

3,44

7,32

0 20 40 60 80 100

SD

HD 720p

HD 1080p

Im
ag

e
fo

rm
at

:

Time [ms]

GPU

CPU

Figure 5: Runtime of the feature point detection
(without minimum-distance-enforcement) for different
image resolutions.

The runtime for the enforcement of the minimum
distance is shown in Figure 6. It depends mainly on
the number of features.

0
2
4
6
8

10
12
14
16
18
20

0 1000 2000 3000 4000
Features

T
im

e
[m

s]

Standard
Alternative
Automatic

Figure 6: Runtime of the minimum distance
enforcement

The runtime measurements in Figures 7 and 8 show
the feature point tracking results for SD and HD
1080p material for different numbers of feature
points.

4,4

7,2

13,2

18,8

1,8

2,4

2,7

3,3

0 5 10 15 20

250

500

1000

1500

Fe
at

u
re

s

Time [ms]

GPU

CPU

Figure 7: Runtime of the feature point tracking for
different number of features for SD (720x576).

98,7

120,1

147,3

172,3

10,7

11,9

13,7

15,3

0 50 100 150 200

5500

7000

8500

10000

F
ea

tu
re

s

Time [ms]

GPU

CPU

Figure 8: Runtime of the feature point tracking for
different number of features for HD 1080p (1920x1080).

Some experiments were done with different window
sizes for the feature point tracking and are shown in
Figure 9. One can see that increasing the window size
results in a significant increase in runtime, so one
should use the smallest possible window size. For

GraVisMa 2009

46

most cases, a window size of 5 x 5 should suffice for
feature point tracking.

0

100

200

300

400

500

600

700

3 5 7 9 11

Integration window size

T
im

e
[m

s]

GPU

CPU

Figure 9: Runtime of the feature point tracking for
different window sizes for HD 1080p (1920x1080).

Finally, Figure 10 shows the overall runtime of the
KLT algorithm (feature point detection & tracking).

0

40

80

120

160

200

240

280

320

360

400

GPU 5000 CPU 5000 GPU 7000 CPU 7000 GPU 10000 CPU 10000

Feature tracking

Enf. Min. Dist.

Feature detection

Figure 10: Overall runtime for different numbers of
feature points for HD 1080p (1920x1080).

Overall, the CUDA implementation achieves a
speedup of approximately 5 – 10. The speedup is
higher for larger images and more feature points. This
might be due to better utilization of the GPU’s
processing capabilities.

7. CONCLUSION
The well known KLT algorithm was ported to the
GPU using CUDA. Experiments were done which
show that the GPU implementation has the same
quality as the corresponding CPU (OpenCV) routine,
but runs significantly faster (approximately 5 to 10
times). The usage of the GPU makes it possible to
track several thousands of feature points on Full-HD
material in realtime (>25fps).

8. ACKNOWLEDGMENTS
This work has been funded partially under the 7th
Framework program of the European Union within
the project “2020 3D Media – Spatial Sound and
Vision” (ICT-FP7-215475) and by the Austrian
Federal Ministry for Transport, Innovation and
Technology within the project “VAN-DAL”.

9. REFERENCES
[Che08] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer,

K. Skadron, A performance study of general-purpose
applications on graphics processors using CUDA,
Journal of Parallel and Distributed Computing, 2008

[Kan06] N.K. Kanhere, S.T. Birchfield, W. A. Sarasua,
Vehicle Segmentation and Tracking in the Presence of
Occlusions, Transportation Research Board Annual
Meeting, 2006

[Koc99] R. Koch, B. Heigl, M. Pollefeys, L. V. Gool, H.
Niemann, Calibration of Hand-held camera sequences
for plenoptic modeling, Proceedings of the
International Conference on Computer Vision, pp. 585-
591, 1999

 [Luc81] B.D. Lucas, T. Kanade, An Iterative Image
Registration Technique with an Application To Stereo
Vision, Joint Conference on Artificial Intelligence, pp.
674-679, 1981

[Lyp07] Y. Lypetskyy, Robust pedestrian detection and
tracking in crowded scenes, Proceedings of the SPIE,
Volume 6764, 2007

[Ohm08] J. Ohmer, N. Redding, GPU-Accelerated KLT
Tracking with Monte-Carlo-Based Feature Reselection,
Digital Image Computing: Techniques and
Applications, 2008

[Tom91] C. Tomasi, T. Kanade, Detection and Tracking of
Point Features, Technical Report CMU-CS-91-132,
Carnegie Mellon University, 1991

[Sin08] S. Sinha, J. Frahm, M. Pollefeys, Y. Genc, GPU-
Based Video Feature Tracking and Matching,
Technical Report 06-012, Department of Computer
Science, UNC Chapel Hill, 2006

[Shi94] J. Shi, C. Tomasi, Good Features to Track, IEEE
Conference on Computer Vision and Pattern
Recognition, pp. 593-600, 1994

[Zac08] C. Zach, D. Gallup, J.M. Frahm, Fast gain-
adaptive KLT tracking on the GPU, CVPR Workshop
on Visual Computer Vision on GPUs, 2008

GraVisMa 2009

47

Preprocessing of microscopy images
via Shannon's entropy on GPU

Jan Urban

Institute of Physical Biology

Zamek 136
373 33, Nove Hrady

Czech Republic

urban@greentech.cz

Jan Vanek

Institute of Physical Biology

Zamek 136
373 33, Nove Hrady

Czech Republic

vanekyj@kky.zcu.cz

Keywords
Image analysis, phase-contrast microscopy, Shannon’s entropy, GPU.

FULL PAPER

1. INTRODUCTION
This document presents GPU speed-up on entropy
contribution as image preprocessing method based on
Shannon's entropy. The method is developed
specially for microscopy images captured in phase-
contrast mode. But it can be used in many others
applications. Illustrative description of using entropy
is proposed in the paper and advantages are
discussed. Performance of individual methods is
illustrated. Finally, implementation on graphics cards
to overpass higher computation requirements of the
algorithm is described. The total speed-up of the
processing is about 3600x.

Observation of living biological systems (cell
culture) in long time as non-invasive technique via
microphotography (time laps) produce huge amount
of data (images, frames) for subsequent analyzing
steps. Monitoring the live cells and their behavior in
time consist of cell to background segmentation,
segmentation of individual cells, and identification
(parameterization) of cell events (division, fusion,
death, communication, etc.).

Those processing demands high computation
power especially for proper results in reasonably
amount of time. For assign the area of interest it is
necessary to locate the time changes as changes
between captured images using automated image
analysis and identify the events in sense of biological
terms. There are plenty of different methods for
changes evaluation available and described in the
literature [1, 2, 3, 4, 5, 6, 7, 8]. We propose a novel
idea of entropy fluxes between captured images set,
even between non-immediately ensuing. This method
is based on information contribution of one pixel [9]
to the information content in Shannon's meaning. In
fact, it represents how many observable information
was transferred in time to/from the pixel location.
Because of high computation time of this task, the

algorithm should be optimized for graphical
processing unit (GPU). The tasks of image analysis
are generally and semi-easily prepared for
parallelization because of pixel independence on the
rest of the image in major task steps.

2. Methods
Shannon's entropy from information theory

describes surprise of occurrence of given events v,
where each event v may occurs with different
probability pv. The total amount of information
(entropy) is the average of the information of the
individual events weighted by the probabilities of
their occurrences [10, 11, 12]. Definition of
Shannon's entropy is

 S=−∑ [pv log2  p v ] .
(1)

In the image analysis, we are able to measure the
information as Shannon's entropy where instead of
unknown probability distribution is used normalised
histogram function H(v).

Figure 1: Histogram function before normalisation.

Therefore, probability pv of event v means amount
of pixels in the image (or selected part of the image)
with intensity value assigned to the event v. This
amount is divided by the total amount of pixel in the
image (or selected part of the image) to fulfil the
condition

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

100

200

300

400

500

600

GraVisMa 2009

48

 ∑ pv=1 . (2)

In the pixel contribution to the information
content [9] is computed individual Shannon's entropy
for each pixel f(i,j) in the image. Cross of the whole
row i and whole column j in the image, where the
current pixel position is located, was chosen as part
of the image. But, there should be any type and size
of selected part for pixel contribution computation,
depended somehow on the objects in the image(s).
The value of pixel f(i,j) is counted only once.

Figure 2: Cross for current pixel f(i,j).

During evaluation of pixel contribution is counted
difference between entropy of selected part with
current pixel and entropy of the same selected part
without current pixel. Resulted value is the measure
of current pixel contribution to the entropy of
selected part of image. The histogram function for the
cross with centre pixel is

 H  vi,j =H v i+H v  j−h v i,j  . (3)

And the histogram function without the center pixel is

 H  vi,j =H v i+H v  j−2h v i,j  , (4)

where H(v)i and H(v)j are precomputed histograms
of row i and column j, respectively.

3. RESULTS

One of the powerful tools is based on evaluation of
information entropy using the Shannon equation.
Although the formula is well known, there are still
many ways how to use it.

To prove the usability of developed approach, we
performed the tests on several biological samples
from different experiments (Figure 1). For all kinds
of images the algorithm performance is very good.

Figure 3. From left to right: HeLa cell line
experiment using phase contrast; Green alga

Scenedesmus using bright field microscopy; Chinese
goldfish digital camera picture

4. IMPLEMENTATION ON GPU
Currently, two high-level GPU programming

technologies from both main manufactures are
usable. Brook+ from AMD [16] and CUDA from
NVIDIA [18]. The algorithm was done in CUDA
because of NVIDIA hardware. GPU programming is
not so easy especially if maximum speed is necessary.
But the final speed of implementation satisfies more
sophisticated programming style.

The key to high performance of implementation
is to fit the algorithm to GPU highly-parallel
architecture. The architecture of NVIDIA GPUs is
illustrated on figure 5.

Figure 4: NVIDIA GPU architecture with a set of
multiprocessors with on chip shared memory.

For the architecture the double-hierarchy is
typical. Whole GPU is the set of multiprocessors as
well as the multiprocessor (MP) is a set of eight
scalar processors (SP). All multiprocessors can

GraVisMa 2009

49

access data in the device memory. For reading they
can employ texture or constant cache. SPs inside one
multiprocessor can utilise excepting its registers also
joint shared cache. Read and write accesses can be
synchronised and the SPs inside one multiprocessors
can cooperate this way. The survey of all memory
kinds are listed for betted understanding:

• Host (CPU) memory - "normal" memory
where all data have to be prepared before
transfer to GPU memory through PCI-
Express bus. The results are transferred back
from GPU to host memory after
computation. It is faster to transfer less
amount of larger memory blocks than
transfer high number of small blocks. Keep
in mind that the bus is relatively very slow
and could be a bottle-neck of the
computation performance.

• Device (GPU, global) memory - main
memory installed on graphics card. It has
high delay therefore the implementation has
to look at this fact. Random read/write of
single data-types affects the performance a
lot. Using block read/write ("coalesced
access") is necessary. The second option is
to use constant or texture cache.

• Constant cache - limited amount of this
kind of memory can be used for reading. It
is advisable to use it for example for look-in
tables.

• Texture cache - read-only data in device
memory can be cached via texture cache. It
can be allocated either linear memory or in
2D manner. It is advisable to use it for all
data which are read-only.

• Shared memory - limited amount of on-
chip memory which is shader-clocked and it
belongs to individual multiprocessor. It is
accessible only for SPs of this
multiprocessor. The implementation should
avoid "bank conflicts" which reduce
performance. Appropriate using of this kind
of memory can be a key part of high-
performance implementation.

• Registry - memory which belongs to
individual SPs. They are used to store the
internal variables.

CUDA data-parallel programming model is based
on the hardware double-hierarchy. The data have to
be split into algorithmically independent parts on two
levels. At the first level the data are split into grid of
blocks. Each block is processed with the same
algorithm which is called "kernel". During processing

of the block several number of thread is running. It is
the second level of the hierarchy (it is illustrated in
fig. 6). All threads which evaluate one block are
running on one multiprocessor and they can utilise its
shared memory for data interchange.

Figure 5: CUDA double-hierarchy data-parallel
programming model.

To manage this programming model, SIMT
(single-instruction multiple thread) architecture is
employed. The multiprocessor maps each thread to
one SP core, and each scalar thread executes
independently with its own instruction address and
register state. The multiprocessors threads are
executed in parallel groups. The programmer has to
implement its algorithm this parallel way too. At least
32 threads should do the same work.

In our task - entropy flux calculation - the data
parallelisation is strait-forward as well as in other
image processing tasks where pixels can be evaluated
independently. If the histograms for all rows and all
columns are precomputed, the algorithm for single
pixel is following:

• Load and add the histograms of row i and
column j.

• Normalise histogram.

• Compute entropy value with current pixel.

• Load pixel values from the current as well as
the next-image pixel.

• Subtract the current pixel values and add the
next-image pixel values from the histogram.

• Compute entropy value with next-image
pixel.

• Store the resulted entropy difference into
device memory.

GraVisMa 2009

50

Before entropy computation itself, the histograms
are pre-computed. Each pixel of the image represents
one block of the grid. In each grid 128 threads are
executed. The histogram vectors are 256 long,
therefore the entropy intra-sum-values are computed
in two steps. The sum itself is calculated in semi-
parallel manner [GPU-sum] in seven steps. The
optimization of implementation in CUDA is not
trivial but the performance could be highly affected
by non-optimal implementation.

Times of processing 2Mpix and 6Mpix images
and cumulative speed-ups for all implementations are
shown in Table 1. All tests were done on computer
with Intel Core2Duo 2.4GHz CPU and NVIDIA
GeForce 9800GTX+ GPU. CPU times assume single-
core versions. The total speed-up of the processing is
about 3600x with this configuration. So what used to
take hours before, now cause come in matter of
seconds.

Version Elapsed Time Cumulative
speed-up2Mpix 6Mpix

Matlab 27 min > 2 h -
Matlab optim. 136 s 13 min 12x
C++ 21.8 s 128 s 72x
Framewave 11.2 s 64 s 150x
CUDA GPU 0.45 s 2.75s 3600x

Table 1: Processing times and speed-ups

5. CONCLUSION
Useful extension of pixel contribution based on
Shannon's entropy was described and its features
were discussed. Our approach of entropy fluxes
allows to identify the location in the image set with
relevant changes of information content. Used
equation is very simple, but computational time for
each pixel is time consuming. Therefore, we propose
to using parallelisation on graphics cards. Finally,
optimization of the algorithm was described and
enormous speed-up was achieved. Implementation on
GPU was done in CUDA. However, it could be also
simply rewritten in OpenCL. In possibility of future
release of Intel Larrabee platform, the algorithm
could efficiently use its novel cache architecture for
sharing of precomputed histograms.
The algorithm should be used for other images with
objects on more-less simple background.

6. ACKNOWLEDGMENTS
This work was supported by grant HCTFOOD
A/CZ0046/1/0008 of EEA funds and GAJU grant
091/2008/P of Grant agency of South Bohemia.

7. REFERENCES
[1] Sonka M., Hlavac V., Boyle R.: „Image
Processing, Analysis and Machine Vision“,
Brooks/Cole Publishing Company, 1999
[2] Gonzales R. C., Woods R. E.: „Digital Image
Processing“, Addison-Wesley Publishing., 1992
[3] Yang J. Lu W. Waibel A.: :„Skin-Color Modeling
and Adaptation“, Proceedings of the Third Asian
Conference on Computer Vision-Volume II, 1998
[4] Otsu N.: „A Threshold Selection Method from
Gray-Level Histogram," IEEE Trans. On Systems,
Man, and Cybernetics SMC-9, pp. 62--66, 1979
[6] Beucher S., Lantuejoui C.: „Use of Watershed in
contour detection“, International Workshop on image
processing, real-time edge and motion
detection/estimation, Rennes, France, 1979.
[7] Vanek J., Urban J., Gardian Z.: „Automated
detection of photosystems II in electron microscope
photographs“, Technical Computing Prague, 2006.
[8] Carpenter et al.: „CellProfiler: image analysis
software for identifying and quantifying cell
phenotypes “, Genome Biology, 7:R100, 2006.
[9] Urban J., Vanek J., Štys D.: „Preprocessing of
microscopy images via Shannon's entropy”, In proc.
Of PRIP, Minsk, Belarus, 2009
[10] C. E. Shannon, ``A mathematical theory of
communication,'' Bell System Technical Journal, vol.
27, pp. 379-423 and 623-656, 1948.
[11] Hatley J.V.: Bell System Technical Journal 7,
535, 1928
[12] P.Jizba and T.Arimitsu: The world according to
Renyi: Thermodynamics of multifractal systems,
Analytical Physics. 312, 17 — 59, 2004
[13] Vincent L., „Morphological grayscale
reconstruction in image analysis: applications and
efficient alghorithms“, IEEE Transactions on Image
Processing, 176-201, 1993
[14] MATLAB software, www.mathworks.com, The
Mathworks, Natick, Massachusetts, USA.
[15] Framewave, AMD Performance Library
developer.amd.com/cpu/libraries/framewave
[16] General-Purpose Computation Using GPUs,
www.gpgpu.org
[17] AMD/ATI Stream computing SDK,
ati.amd.com/technology/streamcomputing
[18] NVIDIA CUDA gpgpu development tools,
www.nvidia.com/cuda

GraVisMa 2009

51

http://www.gpgpu.org/
http://www.nvidia.com/cuda

THE BPT ALGORITHM (BRIANCHON – POINT –
TRIANGLE) - DETECTING CONICAL CURVES IN

RASTER GRAPHICS

Krzysztof T. TYTKOWSKI

The Silesian University of Technology

Geometry and Engineering Graphics Centre – RJM-4

POLAND, 44-100 Gliwice, ul. Krzywoustego 7

E-mail krzysztof.tytkowski.@polsl.pl

Keywords
algorithm, Brianchon’s theorem, conical curves, detection

1. INTRODUCTION
Many aspects of technology require determination of
curves e.g. 3D restitution of objects etc. In the past
pictures obtained in photochemical way were used
and then basing on them characteristic points were
determined. The precision/ depended on the zoom
which was used as well the material used for picture.
These pictures were made on material of low speed
and thanks to that the pictures were in focus which
allowed precise determination of characteristic
points. Introduction of digital photos facilitated the
process significantly and basing on that new
applications occurred e.g. vision systems. Accuracy/
precision in case of digital picture depends on its size
(the size of matrix). With analog picture zoomed to
format e.g. 0.6x0.4 m the precision/ could reach up to
0.001 m. Having similar precision/ between digital
picture and analog picture requires 6000x4000 pixels
resolution. Kodak KAF-50100 8176 x 6132 pixels,
(which gives 50 million pixels) [Kod01] is the ready
made matrix of biggest resolution which is currently
produced.

Processing data is the next aspect. Recognition in
analytic and descriptive way is possible. These two
methods are probable in analog picture as well but
then it would be necessary to determine e.g.
coordinates of characteristic points. It can be done by
scanning or reading coordinates from analog picture.
Using descriptive methods it is not compulsory to
determine points coordinates but to use e.g. tangent to
curve and curve properties. This different approach
results in completely different solutions to the
problem of curve recognition e.g. of conical curve.

As regards analytic methods it is necessary to obtain
coordinates of points belonging to curve. In case of
conical curve the most general solution is in the form:

 0FEyDxCyBxyAx 22 =+++++ (1)

Assuming that F≠0, a set of quadratic equations for
points: Q1(x1,y1), Q2(x2,y2), Q3(x3,y3), Q4(x4,y4),
Q5(x5,y5) is necessary in order to solve it

1EyDxCyyBxAx

1EyDxCyyBxAx

1EyDxCyyBxAx

1EyDxCyyBxAx

1EyDxCyyBxAx

55
2
555

2
5

44
2
444

2
4

33
2
333

2
3

22
2
222

2
2

11
2
111

2
1

=++++

=++++

=++++

=++++

=++++

 (2)

The solution of that set of equations is obvious but
complicated, and requires many mathematical
operations.

Analytic methods as well as some descriptive
methods use points which e.g. belong to curve. In
methods based on descriptive constructions it is also
possible to use tangents to the conic. The method of
obtaining information on curve from the found
tangent to the curve is easier and more exact than
finding point on a curve. In case of a point it is the
error of determination of each coordinate and in
horizontal or vertical tangent the error is connected
with one coordinate.

1.1 History
The research on conical curves started in ancient
Greece. The first definition of conics was coined by
Menaechmus (Μέναιχµος, 380–320 BC), who was
the disciple of Plato and Eudoxus.

He used parabola when solving a problem of
doubling cube volume (which is the solution of
equation x3=2). He introduced a notion ‘section of a
right-angled cone’ for ellipse ‘section of an acute-
angled cone’, and for hyperbola ‘section of an
obtuse-angled cone’ [Loc61]. Euclid (Εὐκλείδης fl.
300 BC) wrote four books on conics. Archimedes of
Syracuse (Ἀρχιµήδης; c. 287 BC – c. 212 BC) using

GraVisMa 2009

52

the method of exhaustion worked on parabola. When
solving the problem of doubling cube volume (which
is the solution of equation he used parabolas. He used
the following notion for parabola’section of a right-
angled. Cone’, for ellipse ‘section of an acute-angled
cone’, and for hyperbola ‘section of an obtuse-angled
cone’ [Loc61]. Euclid (Εὐκλείδης fl. 300 BC) also
wrote four books on conics. Archimedes of Syracuse
(Ἀρχιµήδης; c. 287 BC – c. 212 BC), using the
method of exhaustion, dealt with calculation of area
under parabola and ellipse arc. Thanks to Apollonius
of Perga (Ἀπολλώνιος, ca. 262 BC–ca. 190 BC) we
have the name parabola (παραβολή ' ‘equality’, ‘an
exact comparison’.), ellipse (ἔλλειψις, a ‘falling
short’), and hyperbola (ὑπερβολή, ‘over-thrown’ or
‘excessive’). He wrote eight volume Conic Sections
and researched the properties of conics. Pappus of
Alexandria (Πάππος ὁ Ἀλεξανδρεύς, c. 290 – c.
350), introduced the notion of focus of a conic and
directrix [Ivo41].

Translation of Greek works into Arabic resulted in
preservation of these achievements as for example
Omar Khayyám (خ رمع
 – AD in Neyshapur 1048 ;ما
1123 AD in Neyshapur,), used conics for solving
algebraic equations.

Johann Kepler (27th December 1571 in Weil der
Stadt, Württemberg – 15th November 1630 in
Regensburg) developed the theory of conics adding
the ‘principle of continuity’. Desargues (21st February
or 2nd March 1591 in Lyon – October 1661 in Lyon)
and Blaise Pascal (19th June 1623 in Clermont – 19th
August 1662 in Paris) formed the foundation of
projective geometry. The following scientists are
connected with ellipse: Johannes Kepler and Tyge
Ottesen Brahe (14th December 1546 in Knutstorp,
Skane – 24th October 1601 in Prague, Bohemia), -
orbit of Mars was elliptical, Kepler was the first one
to use the notion of ‘focus’. René Descartes (31st
March 1596 in La Haye ,Touraine – 11th February
1650 in Stockholm) carried research on conics by
means of algebraic methods. These are only fractions
of facts and names connected with research and
application of conics.

2. USING TANGENTS
Determination of tangents to curve in case of raster
picture in chosen directions (horizontal and vertical)
is much easier and more exact than finding points on
that curve. In case of raster picture some directions
are special i.e. horizontal and vertical line.

The next four directions where it is easy to determine
tangents are tangent at the angle of ¼π to horizontal
and vertical. Having six tangents to the curie at our

disposal it is possible to determine Brianchon1’s point
PB (Fig. 1) [Cox69], [Veb10], [Lin22], [Mat14],
[Way17]. In order to eliminate the mistake of
accepting curve as conic, for the analysis it is
necessary to choose six out of eight tangents. It gives
28 cases, which significantly rises credibility of the
method. If lines do not intersect in one point we deal
with a triangle. The size of the triangle shows how
given curve diverges from a tangent.

3. PRINCIPLE OF DETECTING
TANGENTS

For determination of eight tangents the properties of
raster picture have been used. Tangents in both
horizontal and vertical direction can be easily
determined. In this way four tangents are obtained.
The remaining tangents are a little more difficult to
determine. Tangents slanted at the angler of ¼π to the
previous ones have been used in the algorithm
(Fig. 2). Knowing directions of tangents (previously

1 Charles Julien Brianchon (19th December – 1783 in

Sèvres, 29th April 1864 in Versailles, France), published
his theorem in 1806 in the Journal de 1'Ecole
Polytechnique, Vol. XIII, [Emc05] and afterwards
repeated in his Mémoire sur les lignes du second ordre
(Paris, 1817) [Cre85].

P
2

P
3

P
4

P
6

P
7

P
5

P
8

P
1

x

y

Fig. 2 Determination of points

A

B

C
D

E

F

1

23

4

5

6

P
B

Fig. 1 Determination of Brianchon’s point

GraVisMa 2009

53

assumed) it is enough to find one point belonging to a
given tangent. As it can be easily seen not all
coordinates must be determined because points are on
proper straight lines and thus for points P1 and P5
coordinate y is the only one important, whereas for
points P3 and P7 it is only coordinate x which is
essential. For points P2,P4,P6,P8 both coordinates are
significant but we know the angle of inclination to the
straight line.

In order to find point P1, and in fact coordinate y1, it
is necessary to find point which has the biggest value
of coordinate y. The same refers to point P5.but it will
be the smallest value of y of curve point.

Next point P3, and to be precise coordinate x3, will
be easy to find since it is curie point of minimal value
of coordinate x, and maximum value of coordinate x
will be for point P7. Point P2 is a point on a line
which is slant to axis x at the angle of ¼π. The points
on that line are characterized by the fact that
difference of coordinates x and y is of minimal value.
Point P6 on tangent, as the remaining points on the
line, has maximal value of that difference. Similarly
to point P4 but for all points on tangent the sum of
coordinates x and y reaches minimum and for P8 the
sum reaches maximum.

4. THE ALGORITHM OF PIXELS
DETECTION

Assuming that the analyzed picture is of size v pixels
in vertical and h pixels in horizontal and information
on e.g. color is in the box of o[v,h] then this
algorithm could be as follows:
var:
xmin=v, ymin=h, xmax=1, ymax=1;
sumin=v+h, dimin=v-h, sumax=2, dimax=0;
begin
 for I=h do
 for k=v do
 if o(i,k)=color then
 su=x+y;
 di=x-y;
 if i<xmin then xmin=i;
 if k<ymin then ymin=k;
 if i>xmax then xmax=i;
 if k>ymax then ymax=k;
 if su<sumin then sumin=su;
 if di<dimin then dimin=di;
 if su>sumax then summax=su;
 if di>dimax then dimax=di;
 k=k+1;
 i=i+1;
end.

5. FINDING POINTS OF TANGENTS
INTERSECTION

Since raster picture forms an approximation of curve
and in fact we do not know where exactly curve
points are, but we only know area in form of pixels
where they occur; therefore, finding points of

tangents’ intersection is rough. Depending on which
tangents we choose point of intersection it can be of
type a, b, or c (Fig. 3) as well as it can also be
incorrect point. The areas where such point can occur
are rhomboids (sometimes squares). If the solution
was looked for with a set of equations then each
coordinate should be considered with some accuracy,
depending on the size of pixels.

It is possible to use two ways: circle estimation or
point coordinates resulting from rhomboid (Fig 3).

The first method is based on inscribed or described
circles, the latter one which is more exact is based on
extension of rhomboid sides. The first method gives
apparent area, which is especially visible in type b
where there is neither described nor inscribed circle
since the circle intersects only two out of four
vertexes or is tangent only to two out of four sides.

Therefore lines analysis which are extension of
rhomboid sides, is a more accurate method. Tangents
intersection passing pixels pairs P1P3, P3P5, P5P7,
P7P1 will be of type a , pairs P2P4, P4P6, P6P8, P8P3.
type c, pairs P1P5, P2P5, P3P7, P4P8 are incorrect
points, and the remaining cases are of type b.

Determination if such location of lines, incorporated
between lines resulting from extension of pixels
outlines (tangents) so that they intersect in
Brianchon’s point, is possible requires checking if
there is common area for outlines of three lines
(Fig. 4– such an area where one can find point PB is
GFK triangle).

In order to check if such area is probable it is
necessary to consider all possible cases. Conditioned
instructions can be used for that purpose but they
have to be multilayer. Another way to determine if
point PB exists is using anharmonic ratio.

In order to state if there is a possibility of finding
Brianchon’s point it is necessary to have common

Fig. 3 Types of areas depending on types of
straight line

A B C
D

E
F G H

L

N

K

Fig. 4 GFK Brianchon’s triangle

GraVisMa 2009

54

area for the outline of three liners. This area in a form
of a triangle is called Brianchon’s triangle which is an
equivalent of Brianchon’s point in raster graphics.
Two anharmonic ratios e.g. created in intersection of
lines forming one outline with lines determining the
remaining two outlines, resulting from ‘points’ where
tangents intersect, will be used to state if such a
triangle exists. Univocal determination if it is
possible that tangents will intersect in one point needs
researching two different anharmonic ratios [Cox69],
[Veb10], [Lin22], [Mat14], [Way17]. Let the first
one be four ABCD and let us calculate value of k1

BD

AD

BC

AC
k1 /= (3)

Where : AC is the distance of point C to point A
 BC is the distance of point C to point B
 AD is the distance of point D to point A
 BD is the distance of point D to point B

5.1 Possible location of points ABCD
anharmonic ratio

Assuring that point A, which is on the line, has
smaller coordinate x from point B, and point C from
point D; the possible location of these points on the
line is as follows: ABCD, ACBD, ACDB, CADB,
CDAB, CABD (Fig. 5)

It should be noticed that if points ABCD are different
then common area will not occur for two sets ABCD
and CDAB. In other cases common area will exist. In
order to determine quickly which case are we dealing
with we will use anharmonic ratio.

On the line we assume a point from which distances
to particular points will be measured. The distance
between this assumed point and point A is determined
as a. For the remaining points their distance from
base point is given in relation to point A, as thus the
distance to point B is b=a+l.

5.1.1 abcd – lack of common area

 1k
BD

AD

BC

AC = (4)

With this mutual location of points, the distances
reach respectively:

 321 lcdlbclab +=+=+= ,, (5)

 








−
−










−
−=

ad

bd

bc

ac
k1 (6)

Putting dependencies (5) to the equation (6) we get:

() ()

() ()1321121

32121
1 lalllalalla

alllaalla
k

−−+++−−++
−+++−++

= (7)

After necessary simplifications we obtain

() ()

() 1
lll

lllll
k

322

32121
1 >

+
+++

= (8)

Therefore, for points location in the ABCD order
k1>1

5.1.2 cdab – lack of common area
In this situation distances equal respectively:

 231 ladldclab −=−=+= ,, (9)

Putting dependencies (9) to the equation (6) we get:

() ()
() ()alalalla

lalaalla
k

2132

1232
1 −−−−−−

−−−−−−
= (10)

After simplifications

 1
llllll

llllllll
k

322221

32223121
1 >

++
+++

= (11)

Similarly to the previous case for points location in
the CDAB order k1>1

5.1.3 acbd – areas have common part
The points’ distance can be recorded as:

 321 lbdlcblac +=+=+= ,, (12)

Putting dependencies (12) to the equation (6) k1 will
equal:

() ()
() ()21321211

3211

llalllallala

alllaala

−−−+++−−−+
−+++−+

 (13)

After simplifications we obtain:

()

0
ll

llll
k

32

3211
1 <

−
++

= (14)

If points are in the order ACBD then k1 <0.

5.1.4 CADB – areas have common part
There are the following dependencies between
distances

 231 ladldblac +=+=−= ,, (15)

Based on equation (6) and dependencies (15) we get:

() ()
() ()alallala

llalaala
k

2321

3221
1 −+−−−−

−−−+−−
= (16)

After reduction we acqiure:

() ()

0
llll

ll
k

2321

31
1 <

++−
−−

=
)(

 (17)

If points are in the order CADB then k1 <0.

A B C D

A BC D

A BC D

A BC D

A BC D

A BC D

Fig. 5 Possible mutual location of points ABCD

GraVisMa 2009

55

5.1.5 acdb – CD is incorporated in AB
The distances between points are equal:

 231 lcdldblac +=+=+= ,, (18)

Putting (18) to equation (6) gives:

() ()
() ()allalllala

lllallaala
k

213211

321211
1 −++−−−−+

−−−−++−+
= (19)

After transformations we obtain dependencies for k1:

 1
llll

ll
0

2132

31 <
++−

−
<

))((
 (20)

If a pair of points CD is inside segment AB then
0<k1<1.

5.1.6 cabd – AB is incorporated in CB
In this case distances are:

 321 lbdlablac +=+=−= ,, (21)

Using equation (6) and dependencies (21) we obtain:

() ()
() ()allalala

lallaala
k

3221

2321
1 −++−−−

−−++−−
= (22)

Dependencies for k1 assume the following form:

 1
llll

ll
0

3221

31 <
++−

−
<

))((
 (23)

If a pair of points AB is inside segment CD then
0<k1<1.

Analyzing equations (8),(11),(14),(17),(20) and (23)
it should be noticed that in case when consequent
occurrence of points excludes a possibility of the
existence of an area where Brianchon’s point would
be of value k1>1.

However, one anharmonic ratio does not provide full
answer. If k1<1 then we are sure that Brianchon’s
triangle is possible. With value k1>1 other
anharmonic ratio should be checked e.g.. EFGH
(Fig. 4).

GH

EH

GF

EF
k2 /= (24)

Then, analyzing value k2 we get the answer if
Brianchon’s triangle exists. If so the analyzed curve
is conical curve with the precision of one pixel.

6. BRIANCHON’S TRIANGLES
Choosing in sequence six tangents out of determined
eight we check if there is Brianchon’s triangle. There
are 28 possibilities and with the existence of 28
triangles we can state that all eight tangents are
tangent to the conical curve. In case when only seven
triangles exist we can state that these seven tangents
are tangents to conical curve. If there is only one
triangle then only tangents which trace it are conical
curves. Naturally, when there is a lack of triangle in

all possible sets of eight tangents we can state that
none of six out of eight tangents do not fulfill the
condition of being tangent to conic line. In remaining
cases the value which confirms if we deal with conic
line is coefficient ∆B

k

i
B=∆ (25)

where: i – the number of Brianchon’s triangles
k – the number of used tangents

7. CONCLUSIONS
BPT algorithm has the following advantages:

• The fact that it is based on tangents their
determination in case of raster picture and in
chosen directions is fast and easy (it is
searching of minimum and maximum of
coordinates and their sum and difference).
There is no need to solve a set of quadratic
equations .

• It is possibile to state in a simple way if a
presented curie is a conic or not

However, the following facto are the disadvantages:

• the fact that the algorithm can not cope with a
part of a curve since for correct action six
tangents are necessary which are at the angle not
less than ¼π, so a given section of a curve
must be of obtuse value minimum 1½π,

• for constructing e.g. a missing part of a curve
other algorithms are necessary but in case of
solving a set of equations (2) it is not

Naturally, if we add other tangents apart from the
suggested eight it would be also possible to check if
a curve section is a part of the conical curve.

8. FUTURE WORK
To perform such a function there is a computer
application using a BTP algorithm. The applied
program exists already. A predicted testing set will
consist of ellipses that variously sized. Images with
dimension from 100 to 1500 pixels will contain
rotated ellipses (rotation 10 degrees in range 0-90
degrees because of symmetry). Tested will be raster
files with antyaliasing and aliasing.

9. REFERENCES
[Cox69] Coxeter H.S.M. Introduction to Geometry,

Wiley, 1969

[Veb10] Veblen O., Young J.W. Projective
Geometry, Vol 1, Blaisell Publ. Co. 1910

[Lin22] Ling G.H., Wentworth G., Smith D.E.:
Elements of Projective Geometry, Ginn and Co
1922

GraVisMa 2009

56

[Mat14] Mathews G.B. Projective Geometry,
Longmans, 1914

[Way17] Wayland Bowling L. Projective Geometry,
Hill 1917

[Loc61] Lockwood E. H.: A Book of Curve,
Cambridge at The University Press, 1961

[Ivo41] Greek Mathematical Works, Ii, Aristarchus
To Pappus by Thales (Translator), Ivor Thomas
1941

[Emc05] Emch A.: An introduction to projective
geometry and its applications; an analytic and
synthetic treatment, New York John Wiley &
Sons, London : Chapman & Hall, Limited, 1905

[Cre85] Cremona L. Elements of Projective
Geometry, Translated by Leudesdorf C. The
Clarendon Press, Oxford, 1885

[Kod09] http://www.kodak.com/global/en/business/I
SS/Products/Fullframe/

GraVisMa 2009

57

From Exact Correspondence Data to Conformal
Transformations in Closed Form Using Vahlen Matrices

Carsten Cibura
Universiteit van Amsterdam

C.Cibura@uva.nl

Leo Dorst
Universiteit van Amsterdam

L.Dorst@uva.nl

ABSTRACT

We derive a method to determine a conformal transformation in nD in closed form given exact correspondences between data.
We show that a minimal dataset needed for correspondence is a localized vector frame and an additional point.
In order to determine the conformal transformation we use the representation of the conformal model of geometric algebra by
Vahlen matrices, which helps reduce the problem to purely Euclidean geometric algebra computations, as well as structure the
solution into geometrically interpretable components.
We give a closed form solution for the general case of conformal (resp. anti-conformal) transformations, which preserve (resp.
reverse) angles locally, as well as for the important special case when it is known that the conformal transformation is a rigid
body motion, which preserves angles globally. Rigid body motions are also known as Euclidean transformations.

Keywords: geometric algebra, versors, closed-form solution, conformal mappings, conformal transformations, Euclidean
transformations, Vahlen matrices

1 INTRODUCTION

Conformal transformations are transformations that
preserve angles locally. They are closely linked to
(complex) differentiable mappings and useful in a
number of applications in physics and engineering.
A notable special case of conformal transformations
are rigid body motions or Euclidean transformations.
Classically, conformal mappings of the complex plane
are studied, but there is a framework that generalizes
conformal mappings to spaces of arbitrary dimensions:
the conformal model of geometric algebra.

Introduced many decades ago, geometric algebra has
gained increasing attention in the recent past by math-
ematicians, physicists and computer scientists. It facil-
itates the unified representation of many mathematical
and physical problems and promotes the intuitive, be-
cause geometrically supported, design and understand-
ing of well-known and new formulas. Its development
from a promising framework towards a full calculus [5]
has revealed its computational power.

However, well established techniques for solving
even basic equations or algorithmic recipes as they
might be readily available in, say, classical linear
algebra, still seem to be in short supply. Matters
are complicated by the non-commutative nature of
the fundamental geometric product occurring in the
sandwiching versor product which is used to perform
transformations on multivectors.

In this paper we use the structuring power of Vahlen
matrices to derive a closed form solution for an even
conformal versor – the geometric algebra representa-
tion of a general conformal transformation – given a
minimal set of exact data. To our knowledge such a
closed form is new.

Since the given correspondences have to be exact, the
solution is suitable for those applications in robotics,
computer graphics, differential geometry etc., where a
pair of start and target configurations is known precisely
and the conformal transformation between the two has
to be found.

[7] introduces a numerical method for estimating ver-
sors even from noisy data or if more than minimal
data is given. Even though a suggestion for efficient
implementation is made, this method resorts to clas-
sical linear algebra and singular value decomposition
(SVD), which introduces extra cost when minimal data
is known.

The structure of this paper is as follows. Assuming
that the reader is familiar on a basic level with geomet-
ric algebra and its conformal model, in section 2 we
give a brief introduction and establish the notation we
use in this paper. We basically adopt concepts and no-
tations from [4] and [3]. In section 3 we consider a
minimal set of data needed to determine an even con-
formal versor and derive a closed form solution for it. In
section 4 we generalize the solution to include odd con-
formal versors, extend it to arbitrary dimensions and
reflect on its general applicability and its limitations.
Also we analyze the special case of rigid body motions.
In section 5 we present a way to extract a minimal data
set from exact point correspondences alone. Section 6
contains concluding remarks and an outlook to future
work.

2 PRELIMINARIES
The geometric algebra over a Minkowski space Rn+1,1,
denoted G (Rn+1,1) is called conformal geometric alge-
bra (CGA) when it is used to represent geometric ob-
jects and transformations in n-dimensional Euclidean

GraVisMa 2009

58

space Rn,0 = Rn. In the following we will talk about
the elements of the Euclidean vector space v ∈ Rn as
Euclidean vectors and denote them in bold face. Ele-
ments of the Minkowski space Rn+1,1 we will refer to
as conformal vectors. While Euclidean space is a sub-
space of the Minkowski space and conformal vectors
can (and in general do) have Euclidean vector compo-
nents, we choose this notation to emphasize the geo-
metric significance of purely Euclidean vectors.

In general, the geometric product of any number of
vectors results in a multivector, the sum of components
of different grade. The projection of a multivector X
onto a specific grade k will be denoted 〈X〉k, e.g. 〈X〉0
is the scalar part of X , 〈X〉1 its vector part etc. If a mul-
tivector can be written as the outer product of a number
of k vectors, it is called a k-blade.

We will denote the manifold of pure k-blades from a
geometric algebra over any vector space V by G k(V)
and introduce the involutions grade involution .̂ and
Clifford conjugation .̄ on elements of G (V) by

v̂ = (−1)kv , v ∈ G k(V) , (1)

v = (−1)
1
2 k(k+1)v , v ∈ G k(V) . (2)

Note that the grade involution is an automorphism
of G (V) while the Clifford conjugation is an anti-
automorphism of G (V), i.e. v̂w = v̂ŵ and vw = wv for
v,w ∈ G (V).

Finally, we denote the Clifford group on a vector
space V by

Γ(V) = {s ∈ G (V) |s−1 exists and sV ŝ−1 ∈V} . (3)

In order to work with CGA one can introduce a
vector basis. A basis is never unique, however, and
the most commonly used are the orthonormal basis
and the null basis. The orthonormal basis is given by
{e+,e1, . . . ,en,e−} with e2

i = 1, i ∈ {1 . . .n}∪{+} and
e2
− =−1 as well as ei ·e j = 0 for i 6= j. The null basis is

given by {no,e1, . . .en,n∞} with orthonormal Euclidean
vectors ei, i = 1, . . . ,n and ei · n j = 0 for i = 1, . . . ,n,
j = o,∞ and no and n∞ defined in terms of the orthonor-
mal basis as

no =
1
2
(e−+ e+), (4)

n∞ = e−− e+, (5)

which implies that n2
o = 0 = n2

∞ and no ·n∞ =−1. In the
following we will use only the null basis.

Conformal vectors can be seen as representing
(hyper-)spheres [4] of different (and possibly negative)
radii in n-dimensional Euclidean space. Using the
inner and outer product we can create a variety of
geometric objects [3] like, for example, planes, circles
and lines from them, as well as determine incidence
and intersection relationships between those. For

instance a conformal point at Euclidean position
p is represented by the isotropic conformal vector
p = α(no + p + 1

2 p2n∞), up to scale α ∈ R which is
called the point weight. It should be noted that the fact
that the vector p is isotropic, i.e. p2 = 0, implies that it
is not invertible.

The geometric product of a number of invertible con-
formal vectors si ∈ Rn+1,1, i = 1, . . . ,k results in a
versor s = s1 . . .sk, an element of the Clifford group
Γ(Rn+1,1) that can be used to perform an orthogonal
transformation on a geometric object x ∈ G (Rn+1,1) by
the sandwiching geometric product x′ = sxŝ−1. Orthog-
onal transformations of elements of G (Rn+1,n) can be
interpreted as conformal transformations of objects in
Rn.

It is also possible to represent hyperspheres, geo-
metric objects and versors by 2× 2-matrices with en-
tries from G (Rn), the geometric algebra over the n-
dimensional Euclidean base space [1, 4]. For example,
we are able to represent the isotropic elements of the
null basis by

no '
(

0 0
1 0

)
, (6)

n∞ '
(

0 −2
0 0

)
, (7)

the Euclidean elements by

ei '
(

ei 0
0 −ei

)
, i = 1, . . . ,n . (8)

A conformal point at Euclidean position p is repre-
sented by

p ' P =
(

p −p2

1 −p

)
. (9)

The matrix representing an object from G (Rn+1,1) -
called a conformal object from now on - is only defined
up to scale. If we are not interested in that scale, i.e. the
object’s weight, we will often use ' to suppress the
weight and keep the matrices simple and recognizable.

The geometric product between conformal objects is
now implemented by matrix multiplication between the
matrix representations, where the (non-commutative)
geometric product of G (Rn) is employed between
entries. Finally, the inner and outer product arise
from their definitions as symmetric and anti-symmetric
part of the geometric product. Let v ∈ Rn+1,1,
w ∈ G k(Rn+1,1). Then

v ·w =
1
2

(vw− ŵv) , (10)

v∧w =
1
2

(vw+ ŵv) . (11)

With this we can define a conformal tangent t an-
chored at a conformal point p at Euclidean position p

GraVisMa 2009

59

and pointing in the direction of a Euclidean vector t. In
terms of CGA this tangent is a null blade that can be
written in the form [3]

t =−p · (p∧ t∧n∞) . (12)

Representing the participating (conformal) vectors by
matrices and carrying out the involved products using
(10) and (11), we find the following matrix representa-
tion for the conformal tangent t.

t ' T =
(

pt −ptp
t −tp

)
(13)

The matrix representations of conformal vectors have
to obey the conditions of the chosen vector basis. If we
turn our attention to the matrix representations of ver-
sors, we find that – by their construction as the geomet-
ric product of a number of invertible conformal vectors
– additional constraints arise. In general, we will call a
matrix S =

(
a b
c d

)
with entries a,b,c,d ∈G (Rn) a Vahlen

matrix, if it fulfills the conditions [4]

a,b,c,d ∈ Γ(Rn)∪{0} , (14)

ab̂, b̂d,dĉ, ĉa ∈ Rn and (15)

∆(S) = ad̂−bĉ ∈ R\{0} . (16)

The concepts of grade involution and Clifford conju-
gation extend to Vahlen matrices as follows.

Ŝ =

(
â −b̂
−ĉ d̂

)
(17)

S =

(
d̂ −b̂
−ĉ â

)
(18)

A Vahlen matrix is always invertible with

S−1 =
1

∆(S)
S . (19)

Notice that the matrix representations given so far are
not strictly Vahlen matrices and not necessarily invert-
ible, since they fail condition (16).

Now let us assume a Vahlen matrix of the form

S =
(

a b
c d

)
(20)

Given a conformal object X ∈ G (Rn+1,1) in its matrix
representation, Vahlen matrix S acts on it via the twisted
adjoint action

X ′ = SXŜ−1

=
1

∆(S)
SXŜ (21)

Spelling out the action of a Vahlen matrix on a confor-
mal tangent and a conformal point, respectively, we find
that

ST Ŝ−1 =
1

∆(S)

(
p′t′ −p′t′p′
t′ −t′p′

)
, (22)

SPŜ−1 =
(cp+d)(cp+d)

∆(S)

(
p′ −p′2
1 −p′

)
(23)

where

t′ = (cp+d) t(cp+d) and (24)
p′ = (ap+b)(cp+d)−1, (25)

if (cp + d) 6= 0, i.e. (cp + d)−1 exists. Otherwise we
find that

ST Ŝ−1 ' 1
∆(S)

(
0 −2t′
0 0

)
, (26)

SPŜ−1 '
(

0 −2
0 0

)
, (27)

where

t′ = (ap+b) t(ap+b) and (28)
(cp+d) = 0. (29)

(26) and (27) represent a conformal tangent anchored at
n∞ (also called a free vector in [3]) and the conformal
point at infinity n∞, respectively.

Representing an even conformal versor by a Vahlen
matrix helps both in design and interpretation of the
transformation performed. Some basic transformations
in Euclidean space are represented as follows.

• Translation along a Euclidean vector t

S =
(

1 t
0 1

)
(30)

• Transversion parametrized by Euclidean vector v

S =
(

1 0
v 1

)
(31)

• Rotation by Euclidean rotor R

S =
(

R 0
0 R

)
(32)

• Uniform scaling by factor exp(γ), γ ∈ R

S =
(

exp(γ/2) 0
0 exp(−γ/2)

)
(33)

Note that transversion (31) and scaling (33) are able to
change the weight of transformed points.

GraVisMa 2009

60

These simple structures make it easy to predict the
interaction between basic transformations or analyze a
composite transformation. Also, this representation fa-
cilitates the interpretation of the algebraic result of a
transformation in terms of its effects on the Euclidean
parts of a conformal object. Note that these simple
transformations trivially fulfill the Vahlen conditions
(14), (15) and (16).

Because one often works with the null basis repre-
sentation of CGA, it is useful to have a conversion from
the matrix representation available.

s =
1
2

(A+ D̂)+
1
2

(A− D̂)E +Ĉno−
1
2

Bn∞

∈ G (Rn+1,1) . (34)

3 POINT AND TANGENT TRANSFER
Let us assume that we have two sets of conformal ob-
jects {xi}, {x′i}, i = 1, . . . ,N with element-wise cor-
respondences, and that we know that they are related
by a conformal transformation. Our goal is to deter-
mine that conformal transformation by determining the
(even) versor s that performs this transformation by
sxis−1 = x′i for all i = 1, . . . ,N.

3.1 Even and Odd Versors
So far we have used the term “conformal transforma-
tion” rather loosely to mean a transformation that lo-
cally preserves the magnitude of angles and only im-
plied that the angles’ orientation (or handedness) is also
preserved. In fact, conformal geometric algebra pro-
vides means to represent both, transformations that lo-
cally preserve angle magnitudes as well as orientations
and transformations that locally preserve angle magni-
tudes but reverse all orientations.

An even versor in CGA is the geometric product of an
even number of invertible conformal vectors. It induces
a conformal transformation, which preserves angles lo-
cally. As such it is opposed to an odd versor, which is
the geometric product of an odd number of vectors and
induces a locally angle-reversing anti-conformal trans-
formation. In the Vahlen matrix representing an even
(odd) versor, the diagonal elements are the geometric
product of an even (odd) number of Euclidean vectors,
while the off-diagonal entries are the geometric prod-
uct of an odd (even) number of Euclidean vectors and
its determinant (16) is positive.

It has been shown [5] that every even versor in the
geometric algebra over a Euclidean or a Minkowski
space can be written as the exponential of a bivector
s = exp(b), 〈b〉2 = b. Conversely, the exponential of
any bivector results in an even versor. Note that in gen-
eral b is not a 2-blade, i.e. b 6∈ G 2(Rn+1,1), but may be
written as a sum of 2-blades. This observation provides
us with a counting argument for the number of degrees

of freedom of an even versor. It is equal to the num-
ber of degrees of freedom of a bivector in the geometric
algebra over the given space. In case of CGA we have

#DOF of an even versor =
(

n+2
2

)
. (35)

For now, we will restrict our considerations to the
specific case of n = 3. Then (35) amounts to

#DOF of an even versor =
(

5
2

)
=

5!
2!3!

= 10 , (36)

which limits our choice for the object correspondences
{xi} ↔ {x′i} that we observe. To explain our basic
method we take a well chosen minimal set of data as
follows.

3.2 Minimal Data
Let us begin with a vector frame {ti}, i = 1, . . . ,3,
which, without loss of generality, we can assume to
be orthonormal, because every non-orthogonal frame
can be orthonormalized using Gram-Schmidt orthogo-
nalization in the Euclidean space R3. By taking this
frame and anchoring it at a given point, the frame’s Eu-
clidean location in space clearly provides us with three
degrees of freedom. The first direction vector provides
two more as, since it is normalized, only its direction
matters but not its scale. The second direction vector
provides only one degree of freedom, because it has to
be orthogonal to the first and is normalized, too. The
third direction vector is completely determined by the
former two because of the orthonormalization assump-
tion we made. The corresponding vector frame {t′i} that
{ti} is mapped to by the conformal transformation is or-
thogonal, because conformal transformations preserve
angles. But the vectors may be related by a common
scaling factor, since conformal transformations allow
for uniform scaling, thus providing one more degree of
freedom. So far we have accounted for 3+2+1+1 = 7
degrees of freedom, which leaves us three degrees of
freedom short of specifying a conformal transforma-
tion. They can be provided by observing the transfor-
mation of an additional point in Euclidean 3-space.

In summary, we assume a frame made up of three
conformal tangents t1, t2, t3 anchored at a common con-
formal point p1 and an additional conformal point p2,
all being mapped to another frame t ′1, t

′
2, t
′
3 anchored at a

common point q1 and an additional point q2. In CGA it
is quite hard to solve for the even versor mapping these
two sets to each other, because of the non-commutative
geometric product and interactions between the differ-
ent multivectors involved in intermediate stages of the
mapping.

3.3 Approach to Solution
In order to reduce the complexity and dimensionality
of the equations to solve, we employ two main ideas.

GraVisMa 2009

61

Firstly, we turn to the matrix representations of the con-
formal objects. This gives us

xi = Ti

=
(

p1ti −p1tip1
ti −tip1

)
, i = 1,2,3 (37)

x4 = P2

=
(

p2 −p2
2

1 −p2

)
, (38)

for the “original” set and analogous expressions for the
“image” set {x′i}.

Secondly, we will introduce a set of transfer objects
{yi}, which have a very simple matrix representation.
This idea is similar to the “projective frame” technique
using homogeneous coordinates to calculate Möbius
transformations in the 2D (complex) plane. In partic-
ular, we introduce

yi = T 0
i

=
(

0 0
t0
i 0

)
, i = 1,2,3 (39)

y4 = P∞ = n∞

=
(

0 −2
0 0

)
, (40)

i.e. a frame at the origin and the point at infinity. Then
we try to find the Vahlen matrices S j =

(
a j b j
c j d j

)
, j =

1,2, which take each of the sets {xi} and {x′i} of con-
formal objects to these transfer objects, respectively,
i.e. S1xiŜ1

−1
= yi and S2x′iŜ2

−1
= yi for all i = 1, . . . ,4.

Finally, we find the conformal transformation that takes
{xi} to {x′i} as S = S−1

2 S1, such that

SxiŜ−1 = x′i for all i = 1, . . . ,4. (41)

3.4 Solution
Consider S1 acting on (37) and (38) via (22) and (27),
respectively. This takes all the tangents to the origin,
i.e. p′1 = 0, and the additional point to infinity.

By (25) and (29) we find that

a1p1 +b1 = 0 , so b1 =−a1p1 and (42)
c1p2 +d1 = 0 , so d1 =−c1p2 . (43)

Next we ensure that S1 is indeed a Vahlen matrix by
asserting conditions (14), (15) and (16).

Remember (see beginning of section 3) that S has to
represent an even versor. Therefore either S1 and S2
both represent even versors or both represent odd ver-
sors. Without loss of generality we will assume that
both represent even versors. Consequently, a1 has to be
the geometric product of an even number of Euclidean
vectors and c1 must be the geometric product of an odd
number of Euclidean vectors. By this, condition (14) is
fulfilled.

We evaluate condition (16) to

R\0 3 ∆(S1) = a1d̂1−b1ĉ1

= −a1ĉ1p2 +a1p1ĉ1

= a1p1ĉ1−a1p̂2 ĉ1

= a1(p1−p2)ĉ1, (44)

so that

a−1
1 =

1
∆(S1)

(p1−p2)ĉ1 . (45)

This also fulfills condition (15) as we see when we write
out the four individual equations.

So far, our Vahlen matrix S1 is of the form

S1 =
(

a1 −a1p1
c1 −c1p2

)
, (46)

which, with (45), leaves the odd Euclidean versor c1 as
the only unknown. We can find a solution using (39)
and (22), which claims that

t0
i = (c1p1 +d1) ti (c1p1 +d1) , i = 1,2,3

= (c1p1− c1p2) ti (c1p1− c1p2)
= c1(p1−p2) ti c1(p1−p2) . (47)

If we normalize the tangent vectors ti = ||ti||ťi and
introduce the even Euclidean versor c′1 = c1(p1−p2),
we are allowed to write

ť0
i =

||ti||
||t0

i ||
c′1 ťic′−1

1 , i = 1,2,3 (48)

and find that we have reduced our problem to finding
an even Euclidean rotor c′1 which rotates an orthonor-
mal Euclidean vector frame {ť1, ť2, ť3} onto another one
{ť0

1, ť
0
2, ť

0
3}. In [6] we find a solution for this even versor

up to a scaling factor. We let

c′1 = 1+
3

∑
i=1

ť0
i ťi , (49)

and calculate

c1 =

√√√√ ||t0
i ||

||ti||c′1ĉ′1
c′1(p1−p2)−1 . (50)

Now, substituting (50) and (45) back into (46) gives
us a full closed-form solution to S1. A solution for S2
can be found in a perfectly analogous way and we find
the Vahlen matrix S = S−1

2 S1 by straightforward appli-
cation of (19).

The Vahlen matrix S representing an even versor
can be converted back into a multivector expression in
terms of the null basis of CGA by interpretation formula
(34).

GraVisMa 2009

62

4 GENERALIZATION AND LIMITA-
TIONS

In this section we generalize our method to odd ver-
sors and arbitrary dimensions. We analyze the impor-
tant special case of rigid body motions and reflect on the
general applicability and limitations of our solution.

4.1 Even vs. Odd Versors
Throughout the procedure we have assumed that the
corresponding data is related by a conformal transfor-
mation, which can be represented by an even versor. If
the two configurations are related by a locally angle re-
versing anti-conformal transformation, the method has
to be modified slightly.

In this case the handedness of only one of the local-
ized vector frames will match the handedness of our
transfer frame. We can compute handedness for exam-
ple by the sign of the expression t1 ∧ t2 ∧ t3. On the
other configuration (without loss of generality let this
be {x′i}) we introduce a reflection in an arbitrary but
fixed hypersphere represented by a conformal vector r
and obtain {x′′i } = −r{x′i}r−1. Now we compute the
even conformal versor S′ relating {xi} and {x′′i } and find
the desired odd conformal versor relating {xi} and {x′i}
by undoing the reflection introduced before:

S =−r−1S′r. (51)

4.2 Closed Form in nD
Even though we have derived our formulas for the ex-
ample of n = 3, it should be noted that, up to (49),
we have not made an explicit assumption about the
dimensionality n of the represented base space. We
find that, in general, a localized orthonormal Euclidean
vector frame consisting of n direction vectors provides
(n−1)+(n−2)+ · · ·+1+0 degrees of freedom, their
common scale provides one more, their location n more
and an additional Euclidean point provides an addi-
tional n degrees of freedom, making for a sum of

#DOF = (n−1)+ · · ·+1+1+n+n

= 1+n+
n(n+1)

2

=
(n+2)(n+1)

2

=
(

n+2
2

)
(52)

in accordance with (35), which suggests that our
method would provide a solution for arbitrary n. The
limitation we face, however, is that formula (49) only
works in n = 3 dimensions and would have to be
generalized to arbitrary n in order to apply our method.
A closed form solution to this problem is given in [2].

Another observation is that our source [6] for formula
(49) does not require an orthonormal frame. By sub-
stituting the Euclidean transfer frame with its recipro-
cal frame, we find a solution for an arbitrary Euclidean
frame. Since conformal transformations preserve an-
gles locally, however, the mutual angles between the
vectors of the three frames {ti}, {t′i} and {t0

i } (in par-
ticular, their handedness; see section 4.1) have to corre-
spond. Also, one has to make sure that the frames are
pairwise related by one common scale. For these rea-
sons, explicit orthonormalization can be advantageous,
depending on the way the data is acquired.

Finally, there exist certain singular configurations
which do not yield a closed form solution. For exam-
ple, if {ti} and {t′i} are related by a rotation through π

radians, (49) will result in zero. The reason for that is
that it is impossible to determine a unique plane of rota-
tion. Rather, a one parameter family of possible rotation
planes exists. Note that this ambiguity is inherent in the
geometry of the problem and cannot be resolved analyt-
ically. The same problem occurs in higher dimensions
[2].

4.3 Special Case: Rigid Body Motions
An important special case of conformal transformations
are rigid body motions or Euclidean transformations,
which preserve angles globally. If it is known before-
hand that the transformation we seek is a rigid body
motion, the equations simplify significantly.

A convenient way to incorporate this additional infor-
mation would be to specify the point at infinity as being
preserved, e.g. P2 = P′2 = P∞. However, our method de-
pends on the Euclidean position vectors p1, p2 and p′1,
p′2 of the given points, respectively. The point at infinity
cannot be specified explicitly in terms of Euclidean po-
sition vectors, breaking down equations (23) and (25).
We must replace equations (42), (43), (45) and (50) by
the following considerations.

The action of a Vahlen matrix S on the point at infin-
ity is given by

SP∞Ŝ−1 '
(

a b
c d

)(
0 −2
0 0

)(
d b
c a

)
=

(
−2ac −2aa
−2cc −2ca

)
. (53)

Thus, if we want the point at infinity to be preserved,
our conditions for S1 simplify to

c1 = 0 , (54)

a1 = ∆(S)d̂1
−1

, (55)
b1 = −a1p1 , (56)

d1 ti d1 = t0
i , (57)

and analogously for S2, which yields a solution for S
using the above methods.

GraVisMa 2009

63

5 MINIMAL DATA FROM EXACT
POINT CORRESPONDENCES

Note that a localized vector frame and an additional
point are minimal data. That means that every such cor-
respondence uniquely determines a conformal transfor-
mation. However, sometimes it may be inconvenient
to give the correspondence data in this format, e.g. be-
cause of the way the data is acquired. In this section we
will introduce a way to acquire a minimal set of corre-
spondence data from point correspondences.

Several methods are being developed to determine a
conformal versors from correspondence data. The ap-
proach in [2] can also determine a conformal versor
from exact point correspondences, but only if the point
weights are known. A general conformal transforma-
tion can change point weights, whereas rigid body mo-
tions (i.e. purely Euclidean transformations) preserve
them. Our method here has the advantage of working
with purely Euclidean geometric information, i.e. point
locations in Euclidean space.

A crucial prerequisite is that the points are indeed re-
lated by a conformal transformation, as the counting
argument suggests. For example, in three dimensions
a single point correspondence provides three degrees of
freedom. Therefore, three point correspondences would
provide only 9 DOF leaving us one degree of freedom
short of specifying a conformal transformation. On
the other hand, four point correspondences provide 12
DOF, thus overdetermining the problem.

If we assume the existence of a conformal transfor-
mation, we can use the properties of conformal trans-
formations and the representational power of CGA to
find a closed form solution to (41). Again, we restrict
our explanations to three dimensions, but the principles
generalize to arbitrary dimensions.

First of all, we observe that conformal transforma-
tions preserve hyperspheres (depending on their dimen-
sionality these can be point pairs, circles, spheres etc.),
i.e. hyperspheres are mapped to hyperspheres. Sec-
ondly, conformal transformations preserve angles lo-
cally, i.e. if two hyperspheres intersect at a certain an-
gle, their images intersect at the same angle. Therefore,
in three dimensions, two circles intersecting in a point
at Euclidean position p are enough to specify a vector
frame localized at p up to scale. Two of the vectors are
given as the tangent directions of the circles in p and
the third one can be determined as being orthogonal to
both.

Three points uniquely determine a circle. In CGA the
circle can be directly represented as the outer product of
three conformal points. In order to specify two indepen-
dent circles we need at least four points {p1, p2, p3, p4}.
Without loss of generality we pick the circles

c1 = p1∧ p2∧ p3 and (58)
c2 = p1∧ p2∧ p4 (59)

intersecting in p1. The tangents to these circles in p1
are given by

t1 = p1 · c1 and (60)
t2 = p1 · c2, (61)

their Euclidean directions can be recovered and the lo-
cal frame specified by

t1 = −n∞ · t1, (62)
t2 = −n∞ · t2 and (63)
t3 = −(t1∧ t2)I3, (64)

where I3 denotes the three-dimensional pseudoscalar
I3 = e1∧ e2∧ e3.

Due to the preservation properties of conformal trans-
formations, the corresponding vector frame could be
determined perfectly analogously by replacing the con-
formal points by their images {p′1, p′2, p′3, p′4} in equa-
tions (59) through (64).

However, for our closed form solution to work, the
respective angles between frame vectors not only have
to be preserved, they also have to be known, because
in an intermediate step we match the frames with the
transfer frame. To ensure that the angles in the local-
ized frames and in the transfer frame match, we pre-
fer to employ an orthonormalization procedure [5] very
similar to Gram-Schmidt orthonormalization. This en-
ables us to pick a cartesian frame {e1,e2,e3} as the
transfer frame. With this and an additional point corre-
spondence (without loss of generality we can pick any
point other than p1, say, p2) we have all the information
to compute the versor s up to the scale parameter σ .

Because of the orthonormalization of both localized
frames we cannot recover the scaling factor. Also, this
scaling factor cannot be recovered by the properties
of the point correspondences directly, because we as-
sumed that we have no information about their weights.
Fortunately the scaling factor is just one scalar parame-
ter and it can be found as follows.

If the original frame and its image are related to the
transfer frame by scaling factors σ1 and σ2, respec-
tively, they are related to each other by scaling fac-
tor σ = σ1/σ2. Without loss of generality we assume
σ1 = σ and σ2 = 1. Applying the pure scaling transfor-
mation (33), we find that we can replace (46) by

S1 =
(

a1 b1
σc1 σd1

)
(65)

and track the scaling factor through the whole process.
It turns out that the final Vahlen matrix takes on the
form

S = S−1
2 S1

'

(
d̂2a1−σ b̂2c1 d̂2b1−σ b̂2d1

−ĉ2a1 +σ â2c1 −ĉ2b1 +σ â2d1

)
(66)

GraVisMa 2009

64

its effect on the Euclidean position p of a point being

p′ = ((d̂2a1−σ b̂2c1)p+ d̂2b1−σ b̂2d1)
((σ â2c1− ĉ2a1)p+σ â2d1− ĉ2b1)−1,(67)

which can be solved for σ giving

σ = (p′ĉ2a1p+p′ĉ2b1 + d̂2a1p+ d̂2b1)

(p′â2c1p+p′â2d1 + b̂2c1p+ b̂2d1)−1.(68)

In order to find the correct scaling parameter, we de-
termine the one parameter family of Vahlen matrices
S(σ) by (66) and pick one Vahlen matrix with a spe-
cific scale parameter, e.g. set σ = 1. Note that by de-
sign the points p1 and p2 will be aligned to p′1 and p′2
by the Vahlen matrix, no matter which value we choose
for σ . We calculate the Euclidean position of an addi-
tional transformed point (without loss of generality we

choose p3) P′3 = S(1)P3Ŝ(1)
−1

and substitute the result
into (68) yielding σ .

6 CONCLUSION
We have derived a closed form solution to a conformal
versor given exact correspondences between two sets of
data. We have shown that a minimal set of data needed
is a localized Euclidean vector frame and an additional
point in Euclidean space. It turns out that this provides
exactly the number of degrees of freedom necessary to
completely specify a conformal (resp. anti-conformal),
i.e. locally angle preserving (resp. angle reversing),
transformation.

In order to derive this solution we have made use of
the representation of the conformal model of geomet-
ric algebra by matrices. This representation reduces the
problem of calculating a general even conformal ver-
sor to that of finding an even Euclidean rotor, thereby
reducing the dimensionality of the problem.

Moreover, the method works with purely Euclidean
geometric information on point locations and direction
vectors. As opposed to other methods [2, 5, 7] knowl-
edge of the weights of conformal points is not required.

A counting argument suggests generalizability of the
closed form solution to arbitrary dimensions of the rep-
resented base space using the closed form generaliza-
tion of the rotary frame matching (49) in [2].

Interesting subjects for further research include ap-
proximate solutions under non-exact correspondences,
optimization of those solutions under certain aspects,
e.g. minimization of Euclidean distances, as well as
propagation of errors or uncertainty in the given data.

REFERENCES
[1] R. Abłamowicz, P. Lounesto, and J. Parra. Clifford Algebras with

Numeric and Symbolic Computations. Birkhäuser, 1996.

[2] L. Dorst. Determining an Even Versor in n-D Geometric Algebra
from the Known Transformation of n Vectors. In GraVisMa,
2009.

[3] L. Dorst, D. Fontijne, and S. Mann. Geometric Algebra for Com-
puter Science. Morgan Kaufmann, 2007.

[4] U. Hertrich-Jeromin. Introduction to Möbius Differential Geom-
etry. Cambridge University Press, 2003.

[5] D. Hestenes and G. Sobczyk. Clifford Algebra to Geometric Cal-
culus: A Unified Language for Mathematics and Physics. D.
Reidel, Dordrecht, 1984.

[6] A.N. Lasenby and C. J. L. Doran. New geometric methods for
computer vision: an application to structure and motion esti-
mation. International Journal of Computer Vision, 26:191–213,
1998.

[7] C. Perwass. Geometric Algebra with Applications in Engineer-
ing. Springer, 2009.

GraVisMa 2009

65

Determining a Versor in n-D Geometric Algebra
from the Known Transformation of n Vectors

Leo Dorst
University of Amsterdam, The Netherlands

L.Dorst@uva.nl

ABSTRACT

Suppose we only know of some elements in a geometric algebra how a versor has transformed them, can we then reconstruct
the unknown versor V ?
We present an O(2n) method that works in n-D geometric algebra for n exact vector correspondences. This makes it usable
for determining, for instance, a Euclidean rigid body motion in n-D from a frame correspondence providing the required n+2
conformal vectors as: the frame location, the n axis directions, and the invariance of the point at infinity. The method can only
determine a full conformal transformation if the weights of the transformed entities are also observed.

Keywords: geometric algebra, versor, correspondence data, conformal model, Euclidean motion, rigid body motion

1 CORRESPONDENCE DATA GIVES
PROJECTED VERSOR INFORMA-
TION

In geometric algebra, common transformations of ele-
ments in n-D can be represented as orthogonal transfor-
mations in a well-chosen m-D representational space.
These orthogonal transformations are then represented
by versors, to make them applicable to any element of
the algebra (see e.g. [4, 3]). Examples are rotations in
Euclidean Rn represented by rotors (with quaternions
for R3 as a special case); and conformal transforma-
tions of Rn represented as versors in the conformal
model Rn+1,1 (with Euclidean rigid body motions as a
special case).

We cannot observe versors directly, but we can look
at the motions of geometrical elements. Clearly, we
would like to have a technique that uses these obser-
vations and finds the versor that caused them. Some
techniques for this exist [4, 6], but their applicability to
n-D has not been shown; we treat them below in their
appropriate context.

Though a truly practical method should be able to
handle noise (and moreover preferably optimally), in
this paper we consider exact data only. And to make
the problem more tractable, we first limit this data to be
direct observations of vectors in the geometric algebra
of the versor (rather than higher grade elements, or lo-
cations of geometrical elements in the space modelled
by the algebra).

So let x be a vector, and the primed symbol x′ the
corresponding transformed vector under the action of
a versor V . Of course x′ should be equal to V̂ xV−1

(with ·̂ denoting the grade involution), but we do not
know V . Still, observing that x transforms to x′ gives us

some information on V . We can see this by rewriting
the chord x′− x:

1
2 (x− x′) = 1

2 (x−V̂ x/V) = 1
2 (xV −V̂ x)V−1 = (xcV)/V.

(1)
(note that the final rewriting as a contraction uses the
fact that x is of grade 1). We recognize the projection
formula from geometric algebra (though this is usually
only applied to the case when V is a blade represent-
ing the subspace of projection). The chord of x, which
is measurable, therefore provides the projected compo-
nent of x onto the unknown versor V . Intuitively, we
would expect to be able to determine the versor V from
having enough projections available. This is indeed
possible, in a structured manner, and this paper shows
how.

We know from the theory of reciprocal frames [4, 3]
that a general multivector V of the geometric algebra of
an n-dimensional metric vector space can be expressed
using its components under the scalar product on a com-
plete basis {eJ} for the algebra,

V = ∑
J

eJ (eJ ∗V).

Probing the versor with a vector leads to eq.(1), which
does not contain a scalar product (which acts as a grade
selector) but a contraction (which does not). We can
use the measurements to form the quantity

D1 = ∑
basis vectors x

xr (x− x′)/2 = ∑
basis vectors x

xr(xcV)/V

(using ·r as a notation for the reciprocal vector within
the chosen basis), but this does now not give V imme-
diately. Instead, it may be derived that:

∑
basis vectors x

xr (xcV)/V =

=
(
(0

1)V0 +(1
1)V1 +(2

1)V2 + · · ·
)
/V

=
(
V1 +2V2 +3V3 +4V4 + · · ·

)
/V, (2)

GraVisMa 2009

66

where Vi ≡ 〈V 〉i, the i-th grade part of V (for a deriva-
tion, see [3], pg. 258, or eq.(11) for the more general
case).

Since versors are either fully odd or fully even, two
cases may be distinguished. For ease in explanation, we
first focus on even versors, and start with those having
a highest nonzero grade of 2.

2 HIGHEST EVEN VERSOR GRADE 2
If we are trying to determine an even versor that has
highest grade 2, the quantity D1 is sufficient for deter-
mining V2/V (namely, as 1

2 D1 by eq.(2)). That quantity
can in turn be related to V/V0 by V2/V = (V −V0)/V =
1−V0/V . Working out this special case therefore gives
a way to compute the original even versor (modulo a
scalar factor):

V/V0 =
(
1− 1

2 ∑
basis x

xr (xcV)/V
)−1

=
(
1− 1

4 ∑
basis x

xr (x− x′)
)−1

∝
(
4−n+ ∑

basis x
xr x′)

)−1

∝ 4−n+ ∑
basis x

x′ xr. (3)

In [5], the formula for the case n = 3 in E3 is given,
which then determines a rotation rotor from a frame be-
fore and after rotation (in an effectively equivalent form
that puts the reciprocal on x′). We now recognize that
we can use eq.(3) in other spaces and metrics, such as
in the (m + 2)-D conformal geometric algebra (i.e., in
Rm+1,1) used as a model of Em.

For instance, we may use eq.(3) to determine
a translation versor in Rm+1,1 (with null basis
{no,n∞} for R1,1 and an orthonormal basis {ei}
for the Euclidean subspace) from the data: no 7→
no + t+ 1

2 t2n∞ and ei 7→ ei +(ei · t)n∞ and n∞ 7→
n∞ (showing where the origin goes, that orienta-
tions do not change, and that the point at infinity
is preserved). Using no

r =−n∞, n∞
r =−no, and

ei
r = ei, we get:

V/V0 ∝ (4−m−2)+
m

∑
i=1

(ei +(ei · t)n∞)ei

−(no + t+ 1
2 t2n∞)n∞−n∞ no

= (2−m)+(m+n∞ t)+2− tn∞

∝ 1− tn∞/2,

which is the correct answer.

However, general rigid body motion versors in the con-
formal model of E3 may also contain grade 4 parts, so
more is needed even in such a low-dimensional (but im-
portant) case.

3 EVEN VERSOR, HIGHER GRADES
If the parts of the even versor V of grade higher than
2 are not zero, the vector-based method of eq.(3) is not
sufficient to determine the full V/V0, since by eq.(2)
it then only determines the combination D1 = (2V2 +
4V4 + · · ·)/V from the vector correspondences. To ob-
tain independent information on the other parts, we
need to probe with higher order elements. For instance,
probing with all 2-blades from a 2-blade basis would
give a quantity we label D2:

D2 ≡ ∑
basis 2-blades X

X r (XcV)/V

=
(
(0

2)V0 +(2
2)V2 +(4

2)V4 + · · ·
)
/V

=
(
V2 +6V4 + · · ·

)
/V, (4)

(proof of this identity below in eq.(11)), and therefore
provides an independent equation on the grade parts
Vi = 〈V 〉i of V . But if we are to use this in practice, we
should make sure that the sum on the left hand side can
be performed on the measured data, i.e., that (XcV)/V
is measurable for all 2-blades X in some basis for the 2-
blades of the geometric algebra of the n-D vector space.

In some setups, one may be able to measure the 2-
blades directly; but the most obvious way to measure
the transformation results on the elements in a basis of
2-blades is: from the n vector correspondences already
measured. A simple expansion shows how a term in-
volving the 2-blade (y∧ x) can be constructed from the
observed vector correspondences x 7→ x′ and y 7→ y′:(
(y∧ x)cV)/V =

(
yc(xcV)

)
/V

= 1
2

(
yc(xV −V x)

)
/V

= 1
4

(
yxV − yV x+ xV y−V xy)

)
/V

= 1
4 (yx− yx′+ xy′− x′ y′). (5)

This outcome can be determined completely from the
known correspondences x 7→ x′ and y 7→ y′, and is there-
fore measurable from vector correspondences. From
n independently measured vectors, we can then con-
struct the (n

2)-dimensional basis of 2-blades. This in
turn makes D2 in eq.(4) computable from the data,
and therefore gives us the quantity (V2 + 6V4 + · · ·)/V .
Other independent equations for the other grades can be
obtained in a similar manner, giving the general method
summarized in Section 4.

As an example, if we now restrict ourselves to the
important conformal model of 3D space, the vector di-
mension is n = 5, and the highest grade for an even
versor is 4; so D1 and D2 should suffice to determine V .
To make this explict, we have:[

D1
D2

]
=
[

2 4
1 6

] [
V2/V
V4/V

]
so [

V2/V
V4/V

]
=
[

6/8 −4/8
−1/8 2/8

] [
D1
D2

]
.

GraVisMa 2009

67

Then the even versor W with no higher grade than 4 is
determined from 5 vector correspondences as:

W ≡V/V0 = (1−V2/V −V4/V)−1

∝ (8−5D1 +2D2)−1

∝ 8−5D̃1 +2D̃2. (6)

If a normalized even versor V (a.k.a. a rotor) is required,
this can be retrieved as V = W/

√
WW̃ .

There are alternative ways of computing the same
versor. In R4,1 the highest grade part of an even ver-
sor is of grade 4. We can define

D4 ≡ ∑
basis 4-blades X

X r (XcV)/V = V4/V (for n < 6). (7)

We might be able to measure where 5 independent
spheres or planes go, thus directly providing transfor-
mation results on a complete basis of 4-blades. Or we
can determine (XcV)/V for all X in a complete basis of
4-blades from vector correspondence data, by a simple
expansion similar to eq.(5):(

(d∧ c∧b∧a)cV)/V =

= 1
16 (dcba−dcba′+dcab′−dca′b′

−dbac′+dba′c′−dab′c′+da′b′c′

−cbad′+dcba′d′− cab′d′+ ca′b′d′

+bac′d′−ba′c′d′+ab′c′d′−a′b′c′d′). (8)

In either case, the measure D4 = V4/V is found through
multiplication by the appropriate reciprocal frame vec-
tors and summing. The grade 2 part of V/V0 can then
be gleaned from D1 or D2 above.

These examples in R4,1 show that alternative methods
may be employed to retrieve the versor, involving data
or computations of different grades. For exact data and
computations, these lead to equivalent results. Numeri-
cally, or with noisy data, one method may be preferable,
but this remains to be investigated.

4 EVEN VERSOR DETERMINATION
IN N-D

The pattern above generalizes to the n-dimensional
case.

1. We define the quantity:

Dk = ∑
basis k-blades X

X r (XcV)/V. (9)

2. We observe that Dk is measurable from n vector cor-
respondences by the recursion formula for a k-blade
of the basis:(
(Xk−1∧ xk)cV

)
/V =

(
Xk−1c(xkcV)

)
/V

= 1
2

(
Xk−1c(xk V −V xk)

)
/V,

of which repeated application ultimately rewrites
(XcV)/V as a properly weighted sum of geomet-
ric products of k factors of the measured data xi and
x′i (i = 1, · · · ,n). Having n vector correspondences
available then provides the correspondences of all
(n

k) independent basis k-blades.

3. On the other hand, Dk equals a weighted sum of the
even grade parts of V :

Dk =
n

∑
K=0,2,···

(K
k)VK/V (10)

Proof: We adapt a result from [4] (his eq.(2.41)),
replacing Hestenes’ inner product by the contraction
for the case k ≤ K:

∑
basis k-blades X

X r (XcVK) =∂Bk(BkcVK) = (K
k)VK , (11)

where Bk denotes the general k-vector.

4. Collect enough independent Dk to get a solvable sys-
tem for all components of the even grades of V/V0.
This can always be done.
The simplest way to demonstrate this for a versor of
highest possible grade h = 2bn/2c in n-D is to take
the entries D2, · · · ,Dh−2,Dh, which depend linearly
on the V2/V, · · · ,Vh−2/V,Vh/V through an upper tri-
angular matrix which is obviously of full rank, since
its leading entries are all equal to 1:

D2
D4
D6
D8
...

=


1 6 15 28 · · ·
0 1 15 70 · · ·
0 0 1 28 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




V2/V
V4/V
V6/V
V8/V

...


Invert this relationship to solve for the Vi/V in terms
of the Dk, giving

V2/V
V4/V
V6/V
V8/V

...

=


1 −6 75 −1708 · · ·
0 1 −15 350 · · ·
0 0 1 −28 · · ·
0 0 0 1 · · ·
...

...
...

...
. . .




D2
D4
D6
D8
...


(as is the pattern for inverses of upper triangular ma-
trices, this inverse grows as k grows by adding rows
and colums, but earlier entries do not change).

Since this simple procedure does not necessarily
lead to the simplest expressions, a more complete
overview of the relationship between the Vi/V and
Dk is provided below.

5. If required, normalize the even versor to a rotor.

For any dimension, a closed form solution can now be
constructed by the above procedure, or by alternative
procedures based on different grades in step 4.

GraVisMa 2009

68

5 THE PATTERN FOR ODD AND
EVEN BLADES

Using the even grades only in step 4 may lead to un-
necessarily involved expressions. For instance, for Eu-
clidean 3-space this procedure produces:

V/V0 = (1−V2/V)−1 = (1−D2)
−1

∝ 1− D̃2,

as a 2-blade expression to ‘compete’ with the straight-
forward 1-blade expression 1− 1

2 D̃1 in eq.(3) based di-
rectly on the vector data. For the conformal model R4,1,
the procedure gives:

V/V0 = (1−V2/V −V4/V)−1

= (1−D2 +5D4)
−1

∝ 1− D̃2 +5D̃4,

to rival eq.(6). The latter is simpler to compute because
it is based on lower grades (it avoids evaluating eq.(8)).

We give an extended table up to 8 dimensions for the
coefficients in the identity eq.(10), to be used in alter-
native strategies:

D0
D1
D2
D3
D4
D5
D6
D7
D8
...


=



1 1 1 1 1 · · ·
0 2 4 6 8 · · ·
0 1 6 15 28 · · ·
0 0 4 20 56 · · ·
0 0 1 15 70 · · ·
0 0 0 6 56 · · ·
0 0 0 1 28 · · ·
0 0 0 0 8 · · ·
0 0 0 0 1 · · ·
...

...
...

...
...

. . .





V0/V
V2/V
V4/V
V6/V
V8/V

...



The row for D0, representing the trivial identity 1 =
V/V , was added to show the symmetry of the table: its
colums are even rows of Pascal’s triangle, in accordance
with eq.(10).

6 COMPLEXITY
In principle, we only need to determine (n

2) = 1
2 n(n−1)

parameters for an even versor in n-D.
In our algorithm, determining Dk from the data takes

k 2k operations: there are 2k terms of k geometric prod-
ucts of n-vectors (though some use of recursive struc-
ture may be possible). If we only use the lowest grade
Dk’s to determine the versor, we need to compute all up
to grade bn/2c. Therefore the computational complex-
ity of the algorithm is ∑

bn/2c
i=1 k 2k, i.e., O(2n).

In [6](pg.205), a numerical method is given to deter-
mine a versor from possibly noisy and redundant corre-
spondence data in n-D. It does so by rephrasing the ver-
sor recovery in terms of a set of linear equations in the
linear, 2n-dimensional space of multivectors, and deter-
mining the null space of a 2n× 2n matrix. Since this
is in general an O(23n) procedure, it may be consid-
erably more expensive than our O(2n) method (though

perhaps the sparseness of the geometric product matrix
can be exploited to reduce this). We emphasize that
[6]’s method was designed for more exacting situations
than the exact data that interest us in this paper.

In any case, compared to the 1
2 n(n− 1) parameters

actually required to be extracted from n points in n-D,
both methods seem rather expensive. One would expect
a more efficient, perhaps even polynomial, algorithm to
beat both these methods in the future.

7 ODD VERSORS
For odd versors, our method fails. For instance, for a
versor consisting only of single term of grade 1, we ob-
tain by eq.(11) D1 = V1/V , and the other Di are zero.
Therefore we can only determine V1/V = 1, and this
gives no information on the actual reflection vector in-
volved. Essentially the same indeterminacy happens for
arbitrary odd versors, and kills the method. (Actually,
a similar indeterminacy occurred for the lowest grade
term in even versors, since we could only determine
V/V0; but of course a mere scalar factor does not af-
fect the versors determination in a crucial manner.)

However, we can still determine the odd versor from
the data if we apply one step to convert the problem into
that of determining an even versor. Taking any vector
x that is changed to a different vector x′, form v = (x−
x′) as the versor that is capable of transforming x to
x′ (but mind that v should be non-null as well as non-
zero, if it is not pick a different x). Then apply v to
all original vectors xi, giving intermediate vectors vi ≡
−vxi/v. Now find the even versor V that transforms all
vi into x′i by the regular method. The total odd versor
transforming the xi into the x′i is then V v.

Incidentally, there is a simple check to determine
whether an odd or an even versor is required to trans-
form the n vectors xi into the x′i: just form the pseu-
doscalars x1∧·· ·∧xn and x′1∧·· ·∧x′n. If their ratio is 1
look for an even versor, if it is -1 look for an odd versor.

8 AN ALTERNATIVE METHOD?
In [4](pg. 111), there is a method of ‘finding the rotor
S from the matrix of a rotation’ (a rotor is a normalized
even versor, for which S S̃ = 1). It is based on a rotor-
induced linear mapping f being given as a matrix, i.e. a
correspondence between the vectors xi in a complete
basis and their rotated versions f (xi). It is observed that
the S-transformations of the xi obey the relationship:

∑
i

xi SxiS̃ = ∂ f = ∑
i

xi f (xi) = ∑
i j

fi jxix j. (12)

The right hand side involving f is fully computable
from the correspondences xi 7→ x′i = f (xi), and the left
hand side involves S. Then [4] states that this equation
for S can be solved in general by decomposing ∂ ∧ f
into orthogonal blades. This general method would be

GraVisMa 2009

69

completely different from our approach, and is actu-
ally not necessarily of closed form in n-D, due to the
need to solve polynomial equations of degree n (which
is in general not possible beyond n = 4, though An-
thony Lasenby’s recent usage of them up to n = 10 sug-
gests that these particular equations may take a solvable
form, but this remains unproven).

However, Hestenes and Sobczyk also state that ‘for
spaces of small dimension it is practical to solve eq.(12)
directly for S’, and this is closer to our goal. Unfortu-
nately, they do not give a method, but merely an ex-
ample for n = 4. They use the relationship ∂̇ Sr ẋ =
(−1)r(n− 2r)Sr to derive: ∑i xiSxi = ∂xSx = 4(S0 −
S4), so that ∂ f = 4(S0− S4)S̃, and therefore ∂ f ∂̃ f =
(4(S0−S4))2. Therefore in this case of n = 4, if we can
take a square root of an element consisting of (scalar
+ quadvector), we can determine the factor in front of
S̃ from the data on ∂ f alone, and invert the equation
as S̃ =±∂ f /(∂ f ∂̃ f)1/2 (with some exceptional special
cases).

Generalizing this example to other dimensions is not
as straightforward as [4]’s lack of detail seems to sug-
gest. Already in the conformal model with n = 5, we
find ∂ f = (5S0 + S2− 3S4)S̃, and ∂ f ∂̃ f now involves
all grades 0, 2, 4, making the square root even harder to
extract.

For n = 3, we get ∂ f = (3S0−S2)S̃. Their sketched
solution procedure now does not work, and the equation
is most easily solved by observing the rather fortuitous
fact that ∂ f =(3S0−S2)(S0−S2)= 3S2

0 +S2
2−4S0S2 =

4S0(S0−S2)−1 = 4S0S̃−1, so that S̃ ∝ (1+∑xi f (xi)),
which is the 3D case of eq.(3) reported in [5].

The solvable cases appear to depend on rather clever
manipulation or accidental factorization that does not
generalize. It would seem that using eq.(12) one would
have to resort to somehow setting up more equations on
the higher order correspondences. Our method based
on eq.(9) and eq.(10) gives a structured way of doing
just that.

9 PRACTICAL CONSIDERATIONS
Under several circumstances occurring in practice,
naive application of our method to the data may give
the wrong result. We list some of those traps and
discuss their resolution.

9.1 Exceptional Failure
There are situations in which a unique versor cannot be
determined from the transformation data. This is for in-
stance already the case in a 2-D rotation over π: taking
an orthonormal basis e1 7→ −e1 and e2 7→ −e2, and the
classical formula eq.(3) yields V/V0 = 0.

I do not know what the conditions for failure are in
a general geometric algebra. In the Euclidean model
Rn (where versor are rotations) for even versors, they

are precisely the failure conditions of eq.(3) which are
a single rotation over π (of which the 2-D case above
is the canonical example). In that case V/V0 evaluates
to zero, and therefore V = 0. To resolve this issue, one
may pick an arbitrary normalized rotation plane I, and
form the versor V = exp(−Iπ/2). In the conformal
model Rn+1,1 this is slightly generalized to translated
rotations, and resolved by choosing the properly trans-
lated version of an arbitrary origin rotation plane I.

9.2 Unknown Weights
Our method works by knowing where vectors have
gone; in an application like the conformal model
Rm+1,1 of En, where the vectors represent points, one
cannot always measure that from the point data. For
instance, in a uniform scaling around the origin by
a factor α , it seems as though a point at location p
goes to a point at location αp. However, this is not an
orthogonal transformation of the conformal representa-
tion space Rm+1,1, and can therefore not be described
by a versor. As a consequence, reconstruction by
our method fails. Using as input the naive no 7→ no,
n∞ 7→ n∞ and ei 7→ αei, we obtain:

4−n+∑x′ xr =

= 4−n+∑αei ei +no(−n∞)+n∞(−no)
= 6−n+nα

∝ 1,

which is clearly wrong.
When a uniform scaling versor is applied to con-

formal vectors, the conformal basis vectors actually
change according to: no 7→ no/α , n∞ 7→ αn∞ and ei 7→
ei. Using this in reconstruction by eq.(3) (since we hap-
pen to know that the highest grade is 2) indeed produces
the correct scaling versor:

4−n+∑x′ xr =

= 4−n+∑ei ei +no(−n∞)/α +αn∞(−no)
= 4+ cosh(α)+ sinh(α)no∧n∞

= 2cosh(α/2)
(

cosh(α/2)+ sinh(α/2)no∧n∞

)
∝ exp(αno∧n∞/2).

As the vector transformation indicates, a unit-weight
point no +p+ 1

2 p2n∞ becomes the weighted point (no +
αp+ 1

2 (αp)2n∞)/α at the location αp.
To apply the formulas of this paper to points in the

conformal model, one therefore needs to observe not
only point locations, but also their weights. Where this
is an unrealistic assumption in practice, we recommend
the alternative weightless method [2], especially de-
signed for the conformal model. It employs a Vahlen
matrix representation to reduce the conformal versor
determination to purely Euclidean computations. Yet
even that paper does not make the present contribution

GraVisMa 2009

70

superfluous: it uses our method to make the Euclidean
part of its computations extend to the m-D case required
in Rm+1,1.

9.3 Rigid Body Motions Covered
It should be noted that the method can be used to deter-
mine the weight-preserving transformations of the con-
formal model. Since the weight of a point represented
by a vector p equals −n∞ · p, those are the transforma-
tions for which n∞ is invariant. These are of course
precisely the useful Euclidean transformations (though
not the Euclidean similarities).

The determination of weight-preserving transforma-
tions can be extended to non-Euclidean geometries;
we can choose our infinity i as an arbitrary vector in
the conformal model rather than i = n∞, and define
the weight of a point represented by a vector p as
−i · p. Then all i-preserving transformations can be
determined by our method (since we need not observe
their weights). By judicious choice of i, these then in-
clude the equivalents of translational and rotational mo-
tions in spherical geometry and in hyperbolic geometry
(see e.g. [3], Chapter 16).

9.4 Nonexact Data
Our method does not use the versor nature of V explic-
itly. For non-exact or redundant data, it presumably de-
generates gently, to produce a non-versor ‘almost, but
not quite, entirely unlike’ the original V , and which
nearly preserves grades. How to optimally correct such
a multivector outcome to a versor is not yet known.

REFERENCES
[1] P. Anglès, Construction de revêtements du

group conform d’un espace vectorial muni d’une
"métrique" de type (p,q). Annales de l’Institut
Henri Poincaré, Section A, Vol. XXXIII:33-51,
1980.

[2] C. Cibura, L. Dorst, From Exact Correspondence
Data to Conformal Transformations in Closed
Form Using Vahlen Matrices, Gravisma 2009.

[3] L. Dorst, D. Fontijne, S. Mann, Geometric Alge-
bra for Computer Science, Morgan-Kauffmann,
2007.

[4] D. Hestenes, Clifford Algebra to Geometric Cal-
culus, Reidel, Dordrecht, 1984.

[5] J. Lasenby, A.N. Lasenby, C.J.L. Doran,
W.J. Fitzgerald, New Geometric Methods for
Computer Vision: an application to structure
and motion estimation, IJCV 36(3), pp.191-213,
1998.

[6] C. Perwass, Geometric Algebra with Applications
in Engineering, Springer 2009.

GraVisMa 2009

71

Conformal Geometric Algebra by Extended Vahlen Matrices
Leo Dorst

University of Amsterdam, The Netherlands

L.Dorst@uva.nl

ABSTRACT

The classical Vahlen matrix representation of conformal transformations on Rn is directly related to the versor representation
of conformal geometric algebra (CGA) using Rn+1,1. This paper spells out the relationship, which enriches both fields with
insights and techniques. We extend the Vahlen matrices to include the representation of blades in CGA, and then use a decom-
position in terms of eigenlines to derive Chasles’ theorem for representation of Euclidean rigid body motions. This naturally
leads to the logarithm of a Vahlen matrix of such a motion. We also derive the table of commutation relationships between
the basic even conformal transformations (translation, rotation, uniform scaling and transversion), in which the rather involved
translation-transversion result may be new.

Keywords: conformal transformations, conformal geometric algebra, CGA, conformal model, Vahlen matrices, rigid body
motions, Chasles’ theorem, commutation relations

1 INTRODUCTION
The conformal transformations in Rn can be modeled
conveniently as orthogonal transformations of Rn+1,1

[1], and these in turn are representable as versors in ge-
ometric algebra (i.e. as geometric products of invert-
ible vectors, see e.g [3]). Using anti-symmetric com-
binations of geometric products, an outer product can
be introduced as the basis for the Grassmann alge-
bra of Rn+1,1. The outer products of not necessarily
invertible vectors form blades representing subspaces
of Rn+1,1 that can be identified with circles, spheres,
planes and tangents (and more) in the space Rn. The
versors act on them in a structure-preserving manner.
Thus we get universal conformal operators, simplify-
ing software. As a consequence the ‘conformal model’
(a.k.a. CGA, conformal geometric algebra) is beginning
to be useful in computer science fields like graphics, vi-
sion and robotics, where the main interest is usually in
Euclidean transformations rather than the general con-
formal mappings.

On the other hand, conformal transformations have
been studied in mathematics using Vahlen matrices, as
a homogeneous representation of Möbius transforma-
tions. The Vahlen matrices have been extended to allow
coefficients from a Clifford algebra.

In this paper, we mix the two ideas, to lay the foun-
dation for a fruitful interaction, expanding results in
[7, 4]. On the one hand, we get a convenient mech-
anism for computations in the conformal model using
the Vahlen matrices (though extended from transforma-
tions to the representation of geometric primitives), in
which we never need more than the familiar Euclidean
geometric algebra to do our conformal computations.
Conversely, the geometrical semantics of the conformal
model permits a study of, for instance, all conformal
transformations that preserve a given line and hence in-
forms the study of Möbius transformations, easily re-

covering Chasles’ theorem. A full table of commuta-
tion relationshops between elementary even conformal
motions is easily derived, notably a possibly new result
on the commutation of translation and transversion.

2 THE CONFORMAL MODEL OF R3

The conformal model of R3 uses the geometric alge-
bra of a Minkowski space of two more dimensions R4,1

to represent conformal transformations of R3. By the
choice of correspondence between the two spaces and
the metric of R4,1, conformal transformations of R3

are representable as orthogonal transformations of R4,1;
and by the use of geometric algebra, those are repre-
sentable as the product of (at most 5) invertible vectors.
Such a product of invertible vector is called a versor,
and it is applicable to all elements of the algebra by
a sandwiching product. Geometrically, the vectors of
R4,1 are interpretable as affine planes or general spheres
(including points) in Rn, and the versor representation
is interpretable as multiple reflection in the correspond-
ing elements. It is a computationally attractive im-
plementation of the Cartan-Dieudonné insight that an
orthogonal transformation of an m-dimensional metric
space can be represented using at most m reflections.

The basic correspondence between Euclidean ele-
ments and their conformal representation is:

• The point at infinity is represented by a null vector
n∞ ∈ R4,1. ‘Null vector’ implies that n2

∞ = 0.

• A point X with weight α is represented as a null
vector x such that −n∞ · x = α .

• The squared Euclidean distance between two points
X and Y is represented as

d2
E(X ,Y) =

(
x

−n∞ · x

)
·
(

y
−n∞ · y

)
.

GraVisMa 2009

72

As a consequence, Euclidean transformations are
represented by orthogonal transformations in R4,1

that preserve n∞.

• A Euclidean geometric primitive (such as a plane or
circle) is represented directly by the blade A if its
points x satisfy x∧A = 0, and dually by the blade
D if its points satisfy xcD = 0 (where c is the con-
traction, an extension of the inner product of R4,1 to
multivectors, see [3]).

The geometric primitives that can be represented in
this manner may be found in the Table 1; they include
flats (planes, lines, flat points); rounds (spheres, cir-
cles, point pairs); tangents (tangent planes, tangent vec-
tors, weighted points); and directions (free vectors, free
bivectors, free volumes).

2.1 Matrix Representation Principles
It is convenient to partition the Minkowski space R4,1

as R4,1 = R1,1⊗R3, with the R3 a ‘copy’ of the Eu-
clidean space of directions we are modelling, and R1,1

being used for the metric aspects of location and size.
We are going to model this structure as 2× 2 matrices
(encoding the R1,1 structure) with matrix entries taken
from the geometric algebra of Euclidean R3 (encoding
the R3 part). These include Vahlen matrices for the ver-
sors, but also null matrices for some of the geometric
primitives. We use � to denote the correspondence,
and bold font for the Euclidean elements.

The geometric product in R4,1 is then represented as
the product of such matrices, as is usual for Vahlen
matrices [7]. Representation of other products can be
based on reductions to linear combinations of geomet-
ric products: the outer product of a vector x and a
blade A is transferred by using x ∧ A = 1

2 (xA + Âx)
(where the hat denotes grade involution); and the con-
traction product of a vector x and a blade A by using
xcA = 1

2 (xA− Âx).

2.2 The core R1,1

A basis for R1,1 is e+ and e− such that e2
+ = 1 and e2

− =
−1, with e+ · e− = 0. Picking a matrix representation
of these elements as:

e+ �
[

0 1
1 0

]
and e− �

[
0 −1
1 0

]
(1)

satisfies these relations (with the unit represented as the
identity matrix). But putting a minus sign on either of
these is also permitted (as are other variations).

Besides the identity 1(= e2
+ = −e2

−), the other ele-
ment in the Grassmann algebra basis for the geometric
algebra of R1,1 is

E ≡ e+∧ e− �
[

1 0
0 −1

]
= 1

2
([0 1

1 0

] [
0 −1
1 0

]
−
[

0 −1
1 0

] [
0 1
1 0

])
.

It is common in CGA treatments to prefer the use of a
specific null basis for R1,1:

no = 1
2 (e+ + e−) and n∞ = e−− e+,

which satisfy no · n∞ = −1. Note that no ∧ n∞ = e+ ∧
e− = E. Geometrically, n∞ and no will represent the
point at infinity, and the (arbitrarily chosen) origin.

Using the above matrices, this basis leads to the fol-
lowing matrix representation for R1,1:{

1,no,n∞,E ≡ no∧n∞

}
� (2){[1 0

0 1

]
,

[
0 0
1 0

]
,

[
0 −2
0 0

]
,

[
1 0
0 −1

]}
.

We can then represent an arbitrary multivector of R1,1

with scalar coefficients as a matrix. The conversion
back is:[

α β

γ δ

]
� 1

2 (α +δ)+ 1
2 (α−δ)E + γ no +β (−n∞/2).

(3)
We emphasize that this is defined for scalar coefficients.

2.3 Translated Points

In the work on Möbius transformations in Clifford al-
gebras, the Vahlen matrix representing a translation is
taken to be (see e.g. [7]):

Tt �
[

1 t
0 1

]
. (4)

The theory usually deals only with the correspondences
between the conformal transformations represented by
these and other matrices. In searching for an embedding
of the conformal model, we would like them to work as
versors on the matrix representation of R1,1. The null
vector no is taken as representing the point at the origin;
therefore a point x at location is represented as:

x = Tx no T−1
x � (5)[

x −x2

1 −x

]
=
[

1 x
0 1

] [
0 0
1 0

] [
1 −x
0 1

]
.

This matches [7, 4]. However, we see that naive ap-
plication of the interpretation formula eq.(3) produces
x = no + xE + 1

2 x2n∞, which does not match the usual
embedding of [3] (though it does match Hestenes’ con-
formal split, see Section 5). In fact, all matrices pro-
duced should be interpreted through the interpretation
equation:[

A B
C D

]
� 1

2 (A+ D̂)+ 1
2 (A− D̂)E +B(− 1

2 n∞)+ Ĉno.

(6)
We prove this below, in Section 5.

GraVisMa 2009

73

2.4 Involution, Reversion, Inverse, Dual
In the matrix representation, the sign change operators
of reversion and grade involution are (see [7]):[

A B
C D

]̂
=

[
Â −B̂
−Ĉ D̂

]

and [
A B
C D

]∼
=
[

D̄ B̄
C̄ Ā

]
where ·̄ denotes Clifford conjugation, the grade involu-
tion of the reversion.

The inverse of an invertible versor (including blades)
represented by a Vahlen matrix is largely as expected,
though there are some signs to mind:[

A B
C D

]−1

=
1

AD̃−BC̃

[
D̃ −B̃
−C̃ Ã

]

This is well defined, due to certain conditions that
are placed on the Vahlen matrices. These conditions
adapted to the specific case of a Vahlen matrix over the
geometric algebra of the Euclidean space Rn are:

• A, B, C, D are Euclidean versors (i.e. can be writ-
ten as the products of invertible vectors from Rn) or
zero;

• ÃB, D̃C, BD̃, CÃ are vectors from Rn;

• the determinant AD̃−BC̃ is a (nonzero) scalar.

In this paper we also represent non-versor elements of
the algebra my matrices, and drop the ‘nonzero’ de-
mand from the final condition. We will call matri-
ces satisfying the resulting conditions ‘extended Vahlen
matrices’. Note that the matrices for no and n∞ in eq.(1)
are of this kind, as is x in eq.(5).

For dualization we use the pseudoscalar no ∧ In ∧
n∞ = În E, following [3]. Constructing this dualization
through multiplication by the element representing the
inverse pseudoscalar Î−1

n E, of which the representation
is:

Î−1
n E =

[
Î−1

n 0
0 −I−1

n

]
we find for X∗ = X Î−1

n E:

X∗ �
[

A B
C D

]∗
=
[

(−1)n A? −B?

(−1)n C? −D?

]
,

where ·? denotes Euclidean dualization X? ≡ XI−1
n .

3 CGA ELEMENTS AS MATRICES
3.1 Versors as Vahlen Matrices
The difference between two (normalized) points in
CGA is a vector (dually) representing their midplane.

Using eq.(5) for two points at locations n/2 and −n/2,
we find that this linear construction can be mimicked
in the matrix representation, leading to the matrix of a
plane through the origin with Euclidean normal vector
n as:

n �
[

n 0
0 −n

]
.

This is a Vahlen matrix; it can be used to represent
the conformal transformation of reflecting in this plane.
Applying a translation versor to n by ‘sandwiching’
leads to the general plane, and this can be mimicked
in terms of the Vahlen matrices:

Tp nT−1
p = n+(p ·n)n∞ �[

1 t
0 1

][
n 0
0 −n

][
1 −t
0 1

]
=
[

n −2p ·n
0 −n

]
Combining the planes using the geometric product is
represented as a product of matrices, and gives versors
representing general rigid body motions. For instance,
the matrix representation of the translation over t in
eq.(4) is obtained as the reflection in two planes sep-
arated with unit normal vector n = t/‖t‖ by ‖t‖n/2.
Taking the first reflection in a plane through the origin
(for convenience), this gives:

Tt �
[

n −‖t‖
0 −n

] [
n 0
0 −n

]
=
[

n2 ‖t‖n
0 n2

]
=
[

1 t
0 1

]
, consistent with eq.(4). By also permitting reflections
in spheres we obtain the full set of conformal transfor-
mations. A sphere with center at location c and squared
radius ρ2 is (dually) represented in CGA as c− 1

2 ρ2n∞

(where c is the vector representing the point at location
c). This linear construction is easily transferred to ex-
tended Vahlen matrices, see Table 1.

It is customary to define some transformation primi-
tives by arranging two reflectors in special ways. This
leads to well-known Vahlen matrices for conformal
transformations (naturally extending the classical
Möbius transformations from the complex plane C to
Rn, see [7]). The resulting versors or matrices can
be made as the product of the representations of the
reflectors involved. In CGA, we commonly express the
versors as the exponentials of 2-blades, so we give that
notation as well.

• Translation: reflection in two parallel planes

Tt ≡ e−tn∞/2 = 1− tn∞/2 �
[

1 t
0 1

]
.

• Rotation: reflection in two planes intersecting at the
origin

R = e−Iφ/2 �
[

e−Iφ/2 0
0 e−Iφ/2

]
=
[

R 0
0 R

]
.

GraVisMa 2009

74

• Scaling: reflection in two concentric spheres cen-
tered at the origin

Sexp(γ) ≡ eγE/2 �
[

eγ/2 0
0 e−γ/2

]
.

• Transversion: reflection in two equally large spheres
tangent to each other at the origin

Vv ≡ enov = 1+no v �
[

1 0
v 1

]
.

It is instructive to apply the transversion to a point:[
1 0
v 1

] [
x −x2

1 −x

] [
1 0
−v 1

]
=
[

x+x2v −x2

1+x2v2 +2v ·x −x−x2v

]
= x2(x−1 +v)2

[
(x−1 +v)−1 −(x−1 +v)−2

1 −(x−1 +v)−1

]
,

giving both the location of the result at (x−1 +v)−1, and
the scaling factor for the point weight.

The scaling versor eγE/2 applied to a point yields:[
eγ/2 0

0 e−γ/2

] [
x −x2

1 −x

] [
e−γ/2 0

0 eγ/2

]
=
[

x −x2eγ

e−γ −x

]
= e−γ

[
eγ x −(eγ x)2

1 −eγ x

]
,

showing that the result is an e−γ -weighted point at the
location eγ x.

Using the transcription of the outer product and the
contraction (inner) product to geometric products, we
can easily find the representation of the geometrically
significant blades from CGA in terms of extended
Vahlen matrices (which do not necessarily satisfy the
last Vahlen condition). Some specific examples and a
complete symbolic list of these elements is given in
Table 1.

3.2 Blades: Geometric Primitives
Blades are formed as outer products of vectors. The
basic definition of the outer product of a vector x with a
blade A is:

x∧A = 1
2 (xA+ Âx).

This construction can be applied iteratively to con-
truct blades of ever higher grade, starting from vectors.
Since it is a linear combination of geometric products,
the construction is easily transferred to the (extended)
Vahlen matrices. As an example, we produce the flat
point x∧n∞:

x∧n∞ = 1
2 (xn∞−n∞ x)

� 1
2

([x −x2

1 −x

][
0 −2
0 0

]
−
[

0 −2
0 0

][
x −x2

1 −x

])
= 1

2

([0 −2x
0 −2

]
−
[
−2 2x
0 0

])
=
[

1 −2x
0 −1

]
.

It is often more convenient to use the covariant structure
of CGA, and construct a blade at the origin, moving that
to a general location using the translation versor. That is
why Table 1 lists both the origin form, and the general
form, of the catalogue of all blades.

3.3 Derivatives
The vector derivative is a vector operator; it can also
be represented as a Vahlen-like matrix, with differen-
tiation operators as elements. Denoting differentiation
with repsect to the coefficient xo of no by ∂o ≡ ∂

∂xo
and

to the coefficient x∞ of n∞ by ∂∞ ≡ ∂

∂x∞
(which are both

scalar operators), and differentiation to the Euclidean
components by ∇ (a vector operator), we obtain:

∂ =−n∞∂o−no∂∞ +∇ �
[

∇ 2∂o
−∂∞ −∇

]
.

With the representation of a vector field x = xono +x+
x∞n∞ of Rn+1,1 by the corresponding matrix, we can
obtain results like:

∂x x = n+2 �[
∇ 2∂o
−∂∞ −∇

][
x −2x∞

xo −x

]
=
[

∇x+2∂oxo 0
0 ∇x+2∂∞x∞

]
=
[

n+2 0
0 n+2

]
,

Multivector derivatives may be developed along similar
patterns.

4 CGA MATRIX COMPUTATIONS
We present some examples of computations in the con-
formal model using the matrix representation.

4.1 Euclidean transformations
Among the conformal transformations, the Euclidean
rigid body motions are of particular interest. These are
the conformal versors that preserve the point at infinity.
We relax this condition slightly, permitting preservation
modulo scaling. The general matrix form can then be
derived from this demand:[

0 −2α

0 0

]
=
[

A B
C D

] [
0 −2
0 0

] [
A B
C D

]−1

=
1

AD̃−BC̃

[
−2A ̂̃C −2A ̂̃A
−2C ̂̃C −2C ̂̃A

]
.

We find that C = 0, and the only remaining entry gives

α = D̃−1 ̂̃A. We apply the Vahlen condition that BÃ is a
vector, say BÃ = t(ÂÃ) (with the scalar proportionality
factor chosen to reduce signs later on). Then introduc-
ing the normalized versor U through A =

√
±α U, we

find that the general versor keeping n∞ invariant modulo
scale is of the form:[√
±α U

√
±α t Û

0 Û/
√
±α

]
=
[√
±α 0
0 1/

√
±α

] [
1 t
0 1

] [
U 0
0 Û

]
.

GraVisMa 2009

75

element origin blade matrix CGA blade matrix
class or versor at origin or versor at p at location p

weighted
point αno

[
0 0
α 0

]
α p α

[
p −p2

1 −p

]

dual plane n
[

n 0
0 −n

]
pc(n∧n∞)

[
n −2p ·n
0 −n

]

dual sphere no− 1
2 ρ2n∞

[
0 ρ2

1 0

]
p− 1

2 ρ2n∞

[
p −p2 +ρ2

1 p

]

flat point no∧n∞

[
1 0
0 −1

]
p∧n∞

[
1 −2p
0 −1

]

line no∧u∧n∞

[
−u 0
0 −u

]
p∧u∧n∞

[
−u −2p∧u
0 −u

]

A-flat no∧A∧n∞

[
Â 0
0 −A

]
p∧A∧n∞

[
Â −2p∧A
0 −A

]

dual A-flat D = Â?

[
D 0
0 D̂

]
pc(D∧n∞)

[
D 2pcD̂
0 D̂

]

round
(carrier A) (no + 1

2 ρ2n∞)A
[

0 −ρ2Â
A 0

]
(p+ 1

2 ρ2n∞)(pc(An∞))
[

pA −pAp−ρ2Â
1 −Ap

]
dual round
(carrier D−?) (no− 1

2 ρ2n∞)D
[

0 ρ2D̂
D 0

]
(p− 1

2 ρ2n∞)(pc(Dn∞))
[

pD −pDp+ρ2D̂
1 −Dp

]

tangent
null blade no∧A

[
0 0
A 0

]
−pc(p∧A∧n∞)

[
pA −pAp
A −Ap

]

direction
null blade A∧n∞

[
0 −2A
0 0

]
A∧n∞

[
0 −2A
0 0

]

translation
versor Tt

e−tn∞/2
[

1 t
0 1

]
e−tn∞/2

[
1 t
0 1

]
rotation
versor RIφ

R = e−Iφ/2
[

R 0
0 R

]
−pc(R∧n∞)

[
R 2pcR
0 R

]
scaling
versor Seγ

eγno∧n∞/2
[

eγ/2 0
0 e−γ/2

]
eγ p∧n∞/2

[
eγ/2 −2psinh(γ/2)

0 e−γ/2

]
transversion
versor Vv

enov
[

1 0
v 1

]
e−pc(p∧v∧n∞)

[
1+pv 0

v 1

]

derivative ∂x

[
∇ 2∂o
−∂∞ −∇

]
Table 1: A dictionary of the matrix equivalences of CGA blades and versors. Common specific examples at the
top; general forms of all classes lower down. Bold elements are purely Euclidean.

GraVisMa 2009

76

The simplest such versor is obtained by taking U = 1,
providing a scaled translation. Taking U = n, a unit vec-
tor, we obtain a scaled translated reflection in a plane
through the origin. Taking U = R, a Euclidean rotor,
we find a scaled translated rotation in a plane through
the origin (at least, in 3D, where an origin rotation de-
fines a unique plane).

When we demand exact preservation of the point at
infinity by setting α = 1, we obtain Euclidean trans-
formations and their well-known decomposition into a
rotation followed by a translation. Permitting non-unit
α augments this to Euclidean similarities.

4.2 Eigenlines
With the matrix representation of a general line as indi-
cated in the Table 1, we can ask for the oriented eigen-
lines of the Euclidean transformations, solving for p
and u in[

u 2p∧u
0 u

]
=

=
[

R tR
0 R

] [
u 2p∧u
0 u

] [
R̃ −R̃t
0 R̃

]
=
[

RuR̃ 2t∧ (RuR̃)+2R(p∧u)R̃)
0 RuR̃

]
It follows from the diagonal entries that RuR̃ = u so
that ucR = 0. The geometric meaning of this in 3D
is that u should be perpendicular to the rotation plane,
which determines u (modulo scaling) (and in n-D this
orthogonality demand specifies a (n− 2)-D family of
possible u). If R has no grade-2 part, any u will do;
since such an R is either the identity or a rotation over
2π , this makes sense.) Using RuR̃ = u, the off-diagonal
gives:

0 = (p−RpR̃− t)∧u =
(

2(pcR)R̃− (t∧u)/u
)

u,

where we used that uc
(
(pcR)R̃

)
= 0, which is easily

verified. Therefore the necessary and sufficient condi-
tion for p to be the support vector of an invariant line in
direction u is:

2(pcR)R̃ = (t∧u)/u. (7)

The lhs is a vector in the R-plane (which moreover de-
pends only on the R-plane component of p), so this
equation can only be solved if the rhs is a vector in the
R-plane as well, or zero. Zero obtains for nonzero t iff
when t is parallel to u, so in the specific situation that
tcR = 0, which is not a general rigid body motion. The
non-zero solution for pcR is only guaranteed for gen-
eral t and R if we are dealing with a 3-dimensional Eu-
clidean space (since then tcR 6= 0 in general, but already
in 4D this is not the case). From now on we continue
the computation in 3D, since that is our main interest
anyway.

Using eq.(7), we can rewrite the original 3D rigid
body motion in terms of its axis as:[

R tR
0 R

]
=
[

R ((t ·u)/u+(t∧u)/u)R
0 R

]

=
[

1 (t ·u)/u
0 1

] [
R 2pcR
0 R

]
=
[

1 τu
0 1

] ([
1 p
0 1

] [
R 0
0 R

] [
1 −p
0 1

])
,

with τ = t ·u−1.

4.3 Chasles’ Theorem
Comparing the above to Table 1 shows that a 3D rigid
body motion can be represented as a translated rota-
tion around an axis p∧ u∧ n∞, followed by a transla-
tion in the direction of that axis (or vice versa, because
the two transformations commute due to τuc(pcR) =
−τpc(ucR) = 0). That is Chasles’ theorem.

We can be more specific in computing the param-
eters p and u from the original t and R. Defining
I ≡ 〈R〉2/‖〈R〉2‖ to characterize the rotation plane,
we obtain u = I?, the Euclidean dual of I (or a scalar
multiple). Then define p‖ = (p ∧ u)/u = (pcI)/I
and find 2(pcR)R̃ = (1 − R2)p‖ = (tcI)/I so that
p = (1 − R2)−1(tcI)/I + λ I?. It is customary to
choose λ = 0, obtaing the orthogonal support vector
p = (1−R2)−1(tcI)/I.

4.4 Logarithm of a 3D Rigid Body Motion
Using the above results, we can derive the logarithm of
a rigid body motion. In terms of Vahlen matrices, this
logarithm is a matrix of which the matrix exponential
would equal a given rigid body motion matrix.

To treat this, we first compute the logarithm of a
pure rotation. Focussing on the principal value (denoted
Log) in 3D, this is based on retrieving −Iφ/2 from the
given rotor R = exp(−Iφ/2) = cos(φ/2)− I sin(φ/2).
This takes some straightforward splitting into known
scalar functions and the 2-blade part:

Log(R) = atan(
‖〈R〉2‖
〈R〉0

)
〈R〉2
‖〈R〉2‖

.

This formula is not well-defined when R is scalar. We
augment it by demanding that Log(R) equals 0 when
R = 1, and is not defined when R = −1 (alternatively,
one could select an arbitrary 2-blade I and write it as
R = exp(−Iπ/2)).

For general 3D rigid body motions, we use Chasles’
theorem to split the total problem into manageable sub-
parts:

Log(TtR) = Log
(

Tt‖(Tt⊥RT−t⊥)
)

= Log(Tt‖)+Tt⊥ Log(R)T−t⊥ ,

GraVisMa 2009

77

where geometrically t‖ and t⊥ are the components of
t parallel and perpendicular to the rotation plane, re-
spectively. Algebraically, they satisfy Tt⊥ Log(R) =
Log(R)Tt⊥ and Tt‖ Log(R) = −Log(R)Tt‖ . Substitut-
ing the results for t‖ and t⊥ from our treatment of the
Chasles theorem then gives:

Log
([R tR

0 R

])
=

[
Log(R) (t∧Log(R))/Log(R)+(1−R2)−1(tcLog(R))

0 Log(R)

]
We have thus found the logarithm of a Vahlen matrix for
a rigid body motion by appealing to the CGA method
for computing it from [3].

4.5 Commutation Rules
Using the Vahlen matrices, commutation rules between
versors of various types are easily established. For in-
stance, the familiar TtR = RTR̃tR is immediate:[

1 t
0 1

] [
R 0
0 R

]
=
[

R tR
0 R

]
=
[

R RR̃tR
0 R

]
=
[

R 0
0 R

] [
1 R̃tR
0 1

]
.

Most other commutation rules are of this simple type
where the parametrization of one versor is affected by
the other versor in such a swapping rule, easily obtained
from matrix factorization. They are summarized in Ta-
ble 2.

The only swapping rule that is truly involved is the
commutation rule between transversion and translation,
which also drags in a rotation scaling. It can be based
on the matrix identity:[

1 0
v 1

] [
1 t
0 1

]
=
[

(1+ tv)−1 0
0 1+vt

]
∗[

1 t(1+vt)
0 1

]
∗
[

1 0
(1+vt)−1v 1

]
(where ∗ denotes matrix multiplication) which may be
verified by simply expanding both sides. The last factor
is a transversion by the vector (1+vt)−1v = 1/(t+1/v)
(which is the transversion of the translation vector).
The middle factor is a translation by the vector t + tvt.
The first factor is a rotation/scaling matrix at the origin,
the rotational part is the rotor (1+vt)/‖1+vt‖, and the
scaling factor is 1/‖1 + vt‖2. For the other order (first
transversion, then translation), we have:[

1 t
0 1

] [
1 0
v 1

]
=
[

1+ tv 0
0 (1+vt)−1

]
∗[

1 0
v(1+ tv) 1

]
∗
[

1 (1+ tv)−1t
0 1

]
. I had been trying to derive this particular commuta-
tion relationship within the usual CGA representations

in vain; switching to the Vahlen representation made
it very easy to find and prove. Although we can now
clearly redo the proof in the usual CGA, this is the first
example of a derivation that was helped by the Vahlen
representation.

4.6 Determining a Conformal Transfor-
mation from Data

In [2], the Vahlen matrix representation is used to give
a closed form solution for the conformal transformation
transforming a localized frame and a point to a desired
target, in n-D. It is the only known method that can deal
with the lack of weight information in input data, and
still recover scaling and transversion parts of the con-
formal transformation they have undergone. Though it,
too, can now be rephrased in the usual CGA formula-
tion, working with purely Euclidean elements somehow
made it more easily obtainable.

5 THE CONFORMAL SPLIT
In his original ‘Design’ paper [4], Hestenes proposes a
conformal split in which the elements of the Euclidean
space are treated as trivectors: to embed a vector x he
uses X≡ xE, etc.

We note that the geometric product of vectors is pre-
served:

XY = (xE)(yE) = xy,

and this extends to more general multivectors. Using
this, there is a rather natural definition of the outer prod-
uct:

X∧Y = 1
2 (XY−YX) = x∧y,

which then replaces the troublesome X∧Y = (x∧E)∧
(y∧E) = 0. The inner product is consistent anyway,
but follows the same pattern:

X ·Y = 1
2 (XY+YX) = x ·y.

With this understanding, the geometric algebra of the
trivectors is completely isomorhpic to that of the origi-
nal Euclidean vectors. Even elements get a replacement
of non-caps by caps, and odd elements get an additional
E (left or right does not matter since the Euclidean ele-
ments commute with E).

So why bother? The point is that the commutation re-
lationships between these Euclidean trivectors and the
elements of R1,1 are much simpler than that of Eu-
clidean vectors:

Xno = xE no =−xno E = no xE = no X

and similarly for n∞. Therefore these trivectors com-
mute with the core R1,1. As a consequence, we have no
awkward potential sign changes in applying the inter-
pretation equation eq.(3) to non-scalars.

GraVisMa 2009

78

rotation R scaling S translation T transversion V

R RIφ R=RRR̃IφR RSσ =Sσ R RTt =TRtR̃R RVv = VRvR̃R

S Sσ R=RSσ Sσ Sτ =Sτ Sσ Sσ Tt =Tσ tSσ SσVv = Vv/σ Sσ

T TtR=RTR̃tR TtSσ =Sσ Tt/σ TtTs =TsTt TtVv = A−1Vv(1+tv)T(1+tv)−1t

V VvR=RVR̃vR VvSσ =SσVσv VvTt =ATt(1+vt)V(1+vt)−1v VvVw = VwVv

Table 2: Commutation of even versors in the conformal model. In the entries for V T and TV , A is the rota-
tion/scaling A � diag[(1+ tv)−1,1+vt

]
, see text.

The matrix-to-multivector interpretation[[
A B
C D

]]
� 1

2 (A+D)+ 1
2 (A−D)E +Cno +B(−n∞/2)

is valid for all multivectors, as long as we re-
place the occurrence of the Euclidean vectors in
the multivector by their trivectors (and propagate
this through the algebra).

This insight can in fact be worked into a proof for the
Euclidean vector embedding eq.(6) above. We note that
due to the embedding of the conformal versors, either
{A and D} or {B and C} are simultaneously odd, with
the other pair then being even. In the first case, we write
A = AE,B = B,C = C,D = DE and find

1
2 (A+D)+ 1

2 (A−D)E +Cno +B(−n∞/2) =

= 1
2 (A+D)E + 1

2 (A−D)+C no +B(−n∞/2)

= 1
2 (A+ D̂)+ 1

2 (A− D̂)E +Ĉ no +B(−n∞/2).

In the second case, we write A = A,B = BE,C =
CE,D = D and find

1
2 (A+D)+ 1

2 (A−D)E +Cno +B(−n∞/2) =

= 1
2 (A+D)+ 1

2 (A−D)E +CE no +BE (−n∞/2)

= 1
2 (A+D)+ 1

2 (A−D)E−C no +B(−n∞/2)

= 1
2 (A+ D̂)+ 1

2 (A− D̂)E +Ĉ no +B(−n∞/2).

In both cases, therefore, the interpretation eq.(6) is con-
firmed.

6 CONCLUSION
We have spelled out how conformal geometric algebra
can be represented by matrices – Vahlen matrices for
the versors, and extended Vahlen matrices (with pos-
sibly zero determinant) for the blades. We have found
this representation useful for the derivation of some rea-
sonably advanced but mostly known results.

A caveat: the conformal model is subject to a US
patent [5].

REFERENCES
[1] P. Anglès, Construction de revêtements du

group conform d’un espace vectorial muni d’une
"métrique" de type (p,q). Annales de l’Institut
Henri Poincaré, Section A, Vol. XXXIII:33-51,
1980

[2] C. Cibura, L. Dorst, From Exact Correspondence
Data to Conformal Transformations in Closed
Form Using Vahlen Matrices, Gravisma 2009.

[3] L. Dorst, D. Fontijne, S. Mann, Geometric Al-
gebra for Computer Science, Morgan Kaufmann,
2007.

[4] D. Hestenes, The Design of Linear Algebra
and Geometry, Acta Applicandae Mathematicae,
Kluwer Academic Publishers 23: 65-93, 1991.

[5] D. Hestenes, A. Rockwood, H. Li, System for en-
coding and manipulating models of objects, U.S.
Patent 6,853,964, granted February 8, 2005

[6] D. Hestenes, New tools for Computational Geom-
etry and Rejuvenation of Screw Theory, AGACSE
2008, to be published 2009.

[7] P. Lounesto, Clifford Algebras and Spinors, LM-
SLNS 286,Cambridge University Press, 2001.

GraVisMa 2009

79

Using Geometric Algebra for Navigation in Riemannian
and Hard Disc Space

Werner Benger
Center for Computation &

Technology
Louisiana State University

239 Johnston Hall
Baton Rouge, LA 70803, USA

werner@cct.lsu.edu

Andrew Hamilton
Center for Astrophysics and

Space Astronomy
JILA, University of Colorado

Boulder, CO 80309, USA
Andrew.Hamilton
@colorado.edu

Mike Folk/Quincey Koziol
The HDF Group

1901 So. First St. Suite C-2
Champaign, IL 61820. USA

mfolk@hdfgroup.org

Simon Su
Princeton Institute for

Computational Science and
Engineering

345 Peter B. Lewis Library
Princeton, NJ 08544, USA

simonsu@princeton.edu

Erik Schnetter
Center for Computation &

Technology
Dept. of Physics & Astronomy

Louisiana State University
Baton Rouge, LA 70803, USA

schnetter@cct.lsu.edu

Marcel Ritter/Georg Ritter
Department of Computer

Science
University of Innsbruck
Technikerstrasse 21a

A-6020 Innsbruck, Austria
csab7885@uibk.ac.at

ABSTRACT
A “vector” in 3D computer graphics is commonly under-
stood as a triplet of three floating point numbers, eventually
equipped with a set of functions operating on them. This
hides the fact that there are actually different kinds of vec-
tors, each of them with different algebraic properties and
consequently different sets of functions. Differential Geome-
try (DG) and Geometric Algebra (GA) are the appropriate
mathematical theories to describe these different types of
“vectors”. They consistently define the proper set of opera-
tions attached to each class of “floating point triplet” and al-
low to derive what meta-information is required to uniquely
identify a specific type of vector in addition to its purely
numerical values. We shortly review the various types of
“vectors” in 3D computer graphics, their relations to rota-
tions and quaternions, and connect these to the terminology
of co-vectors and bi-vectors in DG and GA. Not only in
3D, but also in 4D, the elegant formulations of GA yield
to more clarity, which will be demonstrated on behalf of
the use of bi-quaternions in relativity, allowing for instance
a more insightful formulation to determine the Newman-
Penrose pseudo scalars from the Weyl tensor.

1. INTRODUCTION
Geometric Algebra [7] and the sometimes mystified concept
of spinors eases implementation and intuition significantly,
both in computer graphics and in physics [8]. GA provides
means to describe how the metadata information required
per “vector” can be provided in persistent storage. Given
large datasets that are expensively collected or generated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

by simulations requiring millions of CPU hours, it is in-
creasingly important and difficult to be able to share and
correctly interpret such datasets years after their genera-
tion, across different research groups from different fields of
science. A unique, standardized, extensible identification of
the geometric properties of the dataset elements is a nec-
essary pre-requisite for this. similar to the way in which
the IEEE standard for floating point values enables shar-
ing floating point values. The HDF5 library here, a generic
self-describing file format developed for large datasets as
originating in high performance computing, provides use-
ful means: It allows specifying metadata in addition to the
purely numerical data, thereby enabling an abstraction layer
for specifying the mathematical properties on top of the
lower-level binary layout. In this article we describe a how to
use the functionality of this powerful I/O library to express
the semantics of vector quantities as they arise in Geometric
Algebra, as required by complex applications such as general
relativity exemplified by gravitational wave astronomy.

2. VECTOR SPACES
A vector space over a field F (such as R) is a set V together
with two binary operations vector addition + : V × V → V
and scalar multiplication ◦ : F × V → V. The elements
of V are called vectors. A vector space is closed under the
operations + and ◦, i.e., for all elements u, v ∈ V and all el-
ements λ ∈ F there is u+ v ∈ V and λ ◦u ∈ V (vector space
axioms). The vector space axioms allow computing the dif-
ferences of vectors and therefore defining the derivative of a
vector-valued function v(s) : R→ V as

d

ds
v(s) := lim

ds→0

v(s+ ds)− v(s)

ds
. (1)

2.1 Tangential Vectors
In differential geometry, a tangential vector on a manifold
M is the operator d

ds
that computes the derivative along a

curve q(s) : R → M for an arbitrary scalar-valued function

GraVisMa 2009

80

f : M → R:

d

ds
f

∣∣∣∣
q(s)

:=
df (q(s))

ds
. (2)

Tangential vectors fulfill the vector space axioms and can
therefore be expressed as linear combinations of deriva-
tives along the n coordinate functions xµ : M → R with
µ = 0 . . . n− 1, which define a basis of the tangential space
Tq(s)(M) on the n-dimensional manifold M at each point
q(s) ∈M :

d

ds
f =

n−1∑
µ=0

dxµ (q(s))

ds

∂

∂xµ
f =:

n−1∑
µ=0

q̇µ∂µf (3)

where q̇µ are the components of the tangential vector d
ds

in
the chart {xµ} and {∂µ} are the basis vectors of the tangen-
tial space in this chart. We will use the Einstein sum conven-
tion in the following text, which assumes implicit summation
over indices occurring on the same side of an equation. Of-
ten tangential vectors are used synonymous with the term
“vectors” in computer graphics when a direction vector from
point A to point B is meant. A tangential vector on an
n-dimensional manifold is represented by n numbers in a
chart.

2.2 Co-Vectors
The set of operations df : T (M) → R that map tangential
vectors v ∈ T (M) to a scalar value v(f) for any function
f : M → R defines another vector space which is dual to the
tangential vectors. Its elements are called co-vectors.

< df, v >= df(v) := v(f) = vµ∂µf = vµ
∂f

∂xµ
(4)

Co-vectors fulfill the vector space axioms and can be written
as linear combination of co-vector basis functions dxµ:

df =:
∂f

∂xµ
dxµ (5)

with the dual basis vectors fulfilling the duality relation

< dxν , ∂µ >=

{
µ = ν : 1

µ 6= ν : 0
(6)

The space of co-vectors is called the co-tangential space
T ∗p (M). A co-vector on an n-dimensional manifold is repre-
sented by n numbers in a chart, same as a tangential vector.
However, co-vector transforms inverse to tangential vectors
when changing coordinate systems, as is directly obvious
from eq. (6) in the one-dimensional case: As < dx0, ∂0 >= 1
must be sustained under coordinate transformation, dx0

must shrink by the same amount as ∂0 grows when an-
other coordinate scale is used to represent these vectors.
In higher dimensions this is expressed by an inverse trans-
formation matrix, as demonstrated in Fig. 1. In Euclidean
three-dimensional space, a plane is equivalently described by
a “normal vector”, which is orthogonal to the plane. While
“normal vectors” are frequently symbolized via a vector ar-
row, like tangential vectors, they are not the same, rather
they are dual to tangential vectors. It is more appropri-
ate to visually symbolize them as a plane. This visual is
also supported by (5), which can be interpreted as the to-
tal differential of a function f : a co-vector describes how a
scalar function advances in space, which can be visualized
as surfaces of constant function value (“isosurface”). On an
n-dimensional manifold a co-vector is correspondingly sym-
bolized by an (n− 1)-dimensional subspace.

Figure 1: Vector transformation under shrinking the
height coordinate by a factor of two: tangential vec-
tors (differences between two points) shrink in their
height component by a factor two as well, whereas
surface normal vectors (co-vectors) grow by a fac-
tor two in height, see the vertical components of the
vector and co-vector shown on the right hand side
in the figure.

2.3 Tensors
A tensor T lm of rank l×m is a multi-linear map of l vectors
and m co-vectors to a scalar

T lm : T (M)× · · · × T (M)︸ ︷︷ ︸
l

×T ∗(M)× · · · × T ∗(M)︸ ︷︷ ︸
m

→ R .

(7)
Tensors are elements of a vector space themselves and form
the tensor algebra. They are represented relative to a coor-
dinate system by a set of kl+m numbers for a k-dimensional
manifold. The construction of an tensor of higher rank from
lower rank is called the outer product (also known as tensor,
dyadic or Kronecker product), denoted by ⊗:

T ≡ Tµν∂µ ⊗ ∂ν = vµuν∂µ ⊗ ∂ν = vµ∂µ ⊗ uν∂ν = v ⊗ u (8)

Tensors of rank 2 may be represented using matrix notation.
Tensors of type T 0

1 are equivalent to co-vectors and called
co-variant, in matrix notation (relative to a chart) they cor-
respond to rows. Tensors of type T 1

0 are equivalent to a tan-
gential vector and are called contra-variant, corresponding
to columns in matrix notation. The duality relationship be-
tween vectors and co-vectors then corresponds to the matrix
multiplication of a 1× n row with a n× 1 column, yielding
a single number

< a, b >=< aµ∂µ, bµdx
µ > ≡ (a0 . . . an−1)

 b0

. . .
bn−1

 . (9)

By virtue of the duality relationship (6) the contraction of
lower and upper indices is defined as the interior product ι
of tensors, which reduces the dimensionality of the tensor:

ι : Tmn × T lk → Tm−kn−l : (u, v) 7→ ιuv (10)

GraVisMa 2009

81

The interior product can be understood (visually) as a gen-
eralization of some“projection”of a tensor onto another one.

Of special importance are symmetric tensors of rank two
g ∈ T 0

2 with g : T (M)× T (M)→ R : u, v 7→ g(u, v) ≡ u · v ,
g(u, v) = g(v, u), as they can be used to define a metric on
the tangential vectors, also called the inner product or dot
product. Its inverse, defined by operating on the co-vectors,
is called the co-metric. A metric, same as the co-metric, is
represented as a symmetric n × n matrix in a chart for a
n-dimensional manifold.

Given a metric tensor, one can define equivalence relation-
ships between tangential vectors and co-vectors, which allow
to map one into each other. These maps are called the “mu-
sical isomorphisms”, [and], as they raise or lower an index
in the coordinate representation:

[: T (M)→ T ∗(M) : vµ∂µ 7→ vµgµνdx
ν (11)

] : T ∗(M)→ T (M) : Vµdx
µ 7→ Vµg

µν∂ν (12)

As an example application, the “gradient” of a scalar func-
tion is given by ∇f =]df using this notation. In Euclidean
space, the metric is represented by the identity matrix and
the components of vectors are identical to the components
of co-vectors. As computer graphics usually is considered
in Euclidean space, this justifies the usual negligence of dis-
tinction among vectors and co-vectors; consequently graph-
ics software only knows about one type of vectors which is
uniquely identified by its number of components. However,
when dealing with coordinate transformations or curvilinear
mesh types then distinguishing between tangential vectors
and co-vectors is unavoidable. Treating them both as the
same type within a computer program leads to confusions
and is not safe. Section 4 will address this issue.

2.4 Exterior Product
The exterior product ∧ : V × V → Λ2(V) (also known as
wedge product, Grassmann product, or alternating product)
generates vector space elements of higher dimensions from
elements of a vector space V by taking the antisymmetric
part of the outer product (eq. 8) as

u ∧ v =
1

2
(u⊗ v − v ⊗ u) (13)

The new vector space is denoted Λ2(V). With the exterior
product, v ∧ u = −u ∧ v ∀u, v ∈ V , which consequently
results in v ∧ v = 0 ∀ v ∈ V. The exterior product defines
an algebra on its elements, the exterior algebra (or Grass-
man algebra) [2]. It is a sub-algebra of the Tensor algebra
consisting on the anti-symmetric tensors. The exterior al-
gebra is defined intrinsically by the vector space and does
not require a metric. For a given n-dimensional vector space
V, there can at most be n-th power of an exterior product,
consisting of n different basis vectors. The n + 1-th power
must vanish, because at least one basis vector would occur
twice, and there is exactly one basis vector for Λn(V).

Elements v ∈ Λk(V) are called k-vectors, whereby 2-vectors
are also called bi-vectors and 3-vectors trivectors. The num-
ber of components of an k-vector of an n-dimensional vector
space is given by the binomial coefficient

(
n
k

)
. For n = 2

there are two 1-vectors and one bi-vector, for n = 3 there are
three 1-vectors, three bi-vectors and one tri-vector. These
relationships are depicted by the Pascal’s triangle, with the

Figure 2: Graphical representation of the 1+3+3+1
structure of components that build a 3D multivec-
tor: three tangential vectors, three oriented planes,
one scalar and one (oriented) volume element.

row representing the dimensionality of the underlying base
space and the column the vector type:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

(14)

As can be easily read off, for a four-dimensional vector space
there will be four 1-vectors, six bi-vectors, four tri-vectors
and one 4-vector. The n-vector of a n-dimensional vector
space is also called a pseudo-scalar, the (n − 1) vector a
pseudo-vector.

2.5 Visualizing Exterior Products
An exterior algebra is defined on both the tangential vectors
and co-vectors on a manifold. A bi-vector v formed from
tangential vectors {∂µ} and a bi-covector U formed from
co-vectors {dxµ} are written in a chart as

v = vµν∂µ ∧ ∂ν , U = Uµνdx
µ ∧ dxν . (15)

They both have
(
n
2

)
independent components, due to vµν =

−vνµ and Uµν = −Uνµ (three components in 3D, six com-
ponents in 4D). A bi-tangential vector can be understood
visually as an (oriented, i.e., signed) plane that is spun by
the two defining tangential vectors, independently of the di-
mensionality of the underlying base space. A bi-co-vector
corresponds to the subspace of an n-dimensional hyperspace
where a plane is “cut out”. In three dimensions these visual-
izations overlap: both a bi-tangential vector and a co-vector
correspond to a plane, and both a tangential vector and a bi-
co-vector correspond to one-dimensional direction (“arrow”).
In four dimensions, these visuals are more distinct but still
overlap: a co-vector corresponds to a three-dimensional vol-
ume, but a bi-tangential vector is represented by a plane sim-
ilar to a bi-co-vector, since cutting out a 2D plane from four-
dimensional space yields a 2D plane again. Only in higher
dimensions these symbolic representations become unique.

However, in any case a co-vector and a pseudo-vector will
have the same appearance as an n − 1 dimensional hyper-
space, same as a tangential vector corresponds to an pseudo-

GraVisMa 2009

82

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Tangential Vectors
∂x

Co-Vectors /
Pseudo-Vectors

dxBi-Co-Vectors
dx^dy Bi-Vectors

∂x ^ ∂y

0D

1D

2D

3D

4D

5D

Figure 3: Pascal’s triangle showing the location
of tangential vectors, bi-vectors, co-vectors and bi-
covectors in the various subspaces in different di-
mensions. Especially in three dimensions there are
many overlaps, indicating ambiguities where differ-
ent quantities are all represented by “just three
numbers”. Similar situations occur in 4D, only in
5D all vector types become unambiguous.

co-vector:

Vµdx
µ ⇔ vα0α1...αn−1 ∂α0 ∧ ∂α1 ∧ . . . ∂αn−1 (16)

vµ∂µ ⇔ Vα0α1...αn−1 dx
α0 ∧ dxα1 ∧ . . . dxαn−1 (17)

A tangential vector – lhs of (17) – can be understood as
one specific direction, but equivalently as well as “cutting
off” all but one n − 1-dimensional hyperspaces from an n-
dimensional hyperspace – rhs of (17). This equivalence is
expressed via the interior product of a tangential vector v
with an pseudo-co-scalar Ω yielding a pseudo-co-vector V
(18), similarly the interior product of a pseudo-vector with
an pseudo-co-scalar yielding a tangential vector (18):

ιΩ : T (M) → (T ∗)n−1(M) : V 7→ ιΩv (18)

ιΩ : Tn−1(M) → T ∗(M) : V 7→ ιΩv (19)

Pseudo-scalars and pseudo-co-scalars will always be scalar
multiples of the basis vectors ∂α0 ∧ ∂α1 ∧ . . . ∂αn and
dxα0 ∧ dxα1 ∧ . . . dxαn . However, under when inversing a
coordinate xµ → −xµ they flip sign, whereas a “true” scalar
does not. An example known from Euclidean vector algebra
is the allegedly scalar value constructed from the dot and
cross product of three vectors V (u, v, w) = u· (v×w) which
is the negative of when its arguments are flipped:

V (u, v, w) = −V (−u,−v,−w) = −u· (−v ×−w) . (20)

This property is obvious when written as exterior product:

V (u, v, w) = u ∧ v ∧ w = V ∂0 ∧ ∂1 ∧ ∂2 (21)

This expression actually describes a multiple of a volume
element spun by the basis tangential vectors ∂µ - any vol-
ume must be a scalar multiple of this basis volume element,
but can flip sign if another convention on the basis vectors
is used. This convention - right-handed versus left-handed
coordinate system - is expressed by the orientation tensor
Ω = ±∂0 ∧ ∂1 ∧ ∂2. In computer graphics both conventions
occur, which often causes confusion.

By combining (19) and (12) – requiring a metric – we get a
map from pseudo-vectors to vectors and reverse. This map
is known as the Hodge star operator “?”:

? : Tn−1(M)→ T (M) : V 7−→]ιΩV (22)

The same operation can be applied to the co-vectors accord-
ingly, and generalized to all vector elements of the exterior
algebra on a vector space, establishing a correspondence be-
tween k−vectors and n−k-vectors. The Hodge star operator
allows to identify vectors and pseudo-vectors, similarly to
how a metric allows to identify vectors and co-vectors. The
Hodge star operator requires a metric and an orientation Ω.

2.6 Geometric Algebra
Geometric Algebra postulates a product on elements of a
vector space u, v, w ∈ V that is associative, (uv)w = u(vw),
left-distributive u(v + w) = uv + uw, right-distributive
(u + v)w = uw + vw, and reduces to the inner product
as defined by the metric v2 = g(v, v). It can be shown that
the sum of the exterior product (which is also called “outer
product” within GA, but should not be confused with the
outer product⊗ on tensors from eq. 8) and the inner product
fulfill these requirements; this defines the geometric product :

uv := u ∧ v + u · v . (23)

Since u∧ v and u · v are of different dimensionality (
(
n
2

)
and(

n
0

)
, respectively), the result must be in a higher dimensional

vector space of dimensionality
(
n
2

)
+
(
n
0

)
. This space, called

Λ(V), is formed by the linear combination of k-vectors:

Λ(V) =

n⊕
k=0

Λk(V) . (24)

Its elements are called multivectors. The dimensionality of
Λ(V) is

∑n
k=0

(
n
k

)
≡ 2n.

For instance, in two dimensions the dimension of the space
of multivectors is 22 = 4. A multivector V , constructed from
tangential-vectors on a 2D manifold, is written as

V = V 0 + V 1∂0 + V 2∂1 + V 3∂0 ∧ ∂1 (25)

with V µ the four components of the multivector in a chart.
For a three-dimensional manifold a multivector on its tan-
gential space has 23 = 8 components and is written as

V =V 0+

V 1∂0 + V 2∂1 + V 2∂2+

V 4∂0 ∧ ∂1 + V 5∂1 ∧ ∂2 + V 6∂2 ∧ ∂0+

V 7∂0 ∧ ∂1 ∧ ∂2

(26)

with V µ the eight components of the multivector in a chart.
The components of a multivector have a direct visual in-
terpretation, which is one of the key features of geometric
algebra. In 3D, a multivector is the sum of a scalar value,
three directions, three planes and one volume. These basis
elements span the entire space of multivectors.

3. NEWMAN-PENROSE FORMALISM
General relativity predicts the existence of gravitational
waves. There is a huge effort to detect gravitational waves
expected for example from merging pairs of black holes.To
date no gravitational waves have been detected directly.
There is however indirect evidence for their existence from

GraVisMa 2009

83

Figure 4: The two linear polarizations of gravita-
tional waves. The + polarization (top) has a cos 2χ
shape about the direction of propagation (into the
paper), while the × polarization (bottom) has a
sin 2χ shape. A gravitational wave causes a system
of freely falling test masses to oscillate relative to a
grid of points a fixed proper distance apart.

the gradual decrease in orbital period of the binary pulsar1,
which is quantitatively consistent with the general relativis-
tic prediction of energy loss by quadrupole emission of grav-
itational waves.

It is conventional to characterize gravitational waves in
terms of their Newman-Penrose (1962) (NP) components [9,
11]. The purpose of this section is to give an idea of how this
works, and how the geometric algebra offers insight into the
NP formalism. The traditional derivation of the NP com-
ponents of gravitational waves is magical, and shrouded in
unnecessary and misleading notation. As Held (1974) [6]
politely puts it, the NP formalism presents “a formidable
notational barrier to the uninitiate”.

The notion of a gravitational wave can be perplexing. A
passing gravitational wave causes the distance between two
freeling-falling masses to oscillate. But if gravity affects the
very measurement of length itself, how can the distance be-
tween the masses be measured? The answer is that, despite
the fact that in general relativity spacetime has no absolute
existence, in the sense that the choice of coordinate system
is arbitrary, nevertheless the metric asserts that there is a
unique proper distance along a given path (or affine distance,
along a null path) between any two points in spacetime (such
as the path followed by a beam of laser light). The presence
of gravity, or curvature, is expressed by the presence of a

1http://nobelprize.org/nobel_prizes/physics/
laureates/1993/illpres/discovery.html

gravitational force between two points a fixed proper dis-
tance apart. A gravitational wave causes an oscillation in
the differential gravitational force, or tidal force, between
two points a fixed distance apart.

Figure 4 illustrates gravitational waves, in their two possi-
ble linear polarizations, + and ×. The grid represents a lo-
cally inertial system of points a fixed proper distance apart.
The superposed ellipses represent a system of freely-falling
test masses whose positions, initially on a circle, are be-
ing perturbed by a gravitational wave moving in a direction
perpendicular to the paper. The proper distance between
freely-falling test masses oscillates. That oscillation can be
measured for example by the change in the number of wave-
lengths along a laser beam between the masses.

3.1 Newman-Penrose tetrad
The Newman-Penrose (NP) formalism is particularly well
adapted to treating waves that travel at the speed of light,
which includes electromagnetic and gravitational waves.
The NP formalism starts with the rest frame of an observer,
and applies two tricks to it. The axes, or tetrad, of the ob-
server’s locally inertial frame form an orthonormal basis of
vectors in the geometric algebra {γt,γx,γy,γz} , with the
metric in Minkowski signature of the form

γm · γn =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (27)

with indices m, n running over t, x, y, z. The NP formalism
chooses one axis, typically the z-axis, to be the direction of
propagation of the wave.

The first NP trick is to replace the transverse axes γx and
γy by spinor axes γ+ and γ− defined by

γ+ ≡
1√
2

(γx + Iγy) , γ− ≡
1√
2

(γx − Iγy) . (28)

This is the same trick used to define the spinor components
L± of the angular momentum operator L in quantum me-
chanics.

The second NP trick is to replace the time t and propaga-
tion z axes with outgoing and ingoing null axes γv and γu,
defined by

γv ≡
1√
2

(γt + γz) , γu ≡
1√
2

(γt − γz) . (29)

The resulting outgoing, ingoing, and spinor axes form a NP
null tetrad

{γv,γu,γ+,γ−} , (30)

with NP metric

γm · γn =


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (31)

with indices m, n running over v, u,+,−. The NP met-
ric (31) has zeros down the diagonal. This means that each
of the four NP axes γm is null: the scalar product of each

GraVisMa 2009

84

http://nobelprize.org/nobel_prizes/physics/laureates/1993/illpres/discovery.html
http://nobelprize.org/nobel_prizes/physics/laureates/1993/illpres/discovery.html

axis with itself is zero. In a profound sense, the null, or light-
like, character of each the four NP axes explains why the NP
formalism is well adapted to treating fields that propagate
at the speed of light.

Three kinds of transformation, considered further below,
take a particularly simple form in the NP tetrad:

I Reflections through the transverse axis y;
II Rotations about the propagation axis z;

III Boosts along the propagation axis z.

3.1.1 Reflections
Under transformation I, a reflection through the y-axis, the
spinor axes swap:

γ+ ↔ γ− , (32)

which may also be accomplished by complex conjugation.
Reflection through the y-axis, or equivalently complex con-
jugation, changes the sign of all spinor indices of a tensor
component

+↔ − . (33)

In short, complex conjugation flips spin, a pretty feature of
the NP formalism.

3.1.2 Rotations
Under transformation II, a right-handed rotation by angle
χ about the direction z of propagation, the transverse axes
γx and γy transform as

γx → cosχ γx − sinχ γy ,

γy → sinχ γx + cosχ γy . (34)

It follows that the spinor axes γ+ and γ− transform under
a right-handed rotation by angle χ as

γ± → e±Iχ γ± . (35)

The transformation (35) identifies the spinor axes γ+ and
γ− as having spin +1 and −1 respectively. More generally,
an object can be defined as having spin s if it varies by

esIχ (36)

under a rotation by angle χ about the direction of propaga-
tion. The NP components of a tensor inherit spin properties
from that of the spinor basis. The general rule is that the
spin s of any tensor component is equal to the number of +
covariant indices minus the number of − covariant indices:

spin s = number of + minus − covariant indices . (37)

3.1.3 Boosts
The final transformation III, a boost along the z-axis, multi-
plies the outgoing and ingoing axes γv and γu by a blueshift
factor ε and its reciprocal

γv → εγv ,

γu → (1/ε)γu . (38)

If the observer boosts by velocity v in the z-direction away
from the source, then the blueshift factor is the special rel-
ativistic Doppler shift factor

ε =

(
1− v
1 + v

)1/2

. (39)

The exponent n of the power εn by which an object changes
under a boost along the z-axis is called its boost weight.
Thus γv has boost weight +1, and γu has boost weight −1.
The NP components of a tensor inherit their boost weight
properties from those of the NP basis. The general rule is
that the boost weight n of any tensor component is equal
to the number of v covariant indices minus the number of u
covariant indices:

boost weight n = number of v minus u covariant indices .
(40)

3.2 Electromagnetic waves
The properties of gravitational waves are in many ways sim-
ilar to those of electromagnetic waves. Both kinds of waves
are massless, traveling at the speed of light. A crucial dif-
ference is that gravitational waves are spin-2 (tensor) waves,
whereas electromagnetic waves are spin-1 (vector) waves.

Recall the nature of electromagnetic waves. Electromag-
netic waves are characterized by the electromagnetic field
Fij , which is an antisymmetric tensor, or bivector, with 6
distinct components. The 6 components are commonly col-
lected into two 3-dimensional vectors, the electric and mag-
netic fields E and B. The geometric algebra gives the insight
that the electromagnetic field tensor, being a bivector, has
a natural complex structure, in which the electric and mag-
netic fields together form a complex 3-vector E + IB.

With respect to a NP null tetrad (30), the electromagnetic
bivector has 3 complex components, of spin respectively −1,
0, and +1, in accordance with the rule (37):

− 1 : Fu−

0 :
1

2
(Fuv + F+−)

+1 : Fv+ . (41)

The complex conjugates of the 3 components are:

− 1∗ : Fu+

0∗ :
1

2
(Fuv − F+−)

+1∗ : Fv− , (42)

whose spins have the opposite sign. Conventionally (Chan-
drasekhar 1983), the 3 complex spin components of the elec-
tromagnetic field bivector in the NP formalism are denoted

− 1 : φ2 ,

0 : φ1 ,

+1 : φ0 . (43)

For outgoing electromagnetic waves, only the spin −1
component propagates, carrying electromagnetic energy far
away from a source:

− 1 : propagating, outgoing . (44)

This propagating, outgoing −1 component has spin −1, but
its complex conjugate has spin +1, so effectively both spin
components, or helicities, of an outgoing wave are embodied
in the single complex component. The remaining 2 complex
NP components (spins 0 and 1) of an outgoing wave are short
range, describing the electromagnetic field near the source.
Similarly, for ingoing waves, only the spin +1 component
propagates. The isolation of each propagating mode into a

GraVisMa 2009

85

single complex NP mode, incorporating both helicities, is
simpler than the standard picture of oscillating orthogonal
electric and magnetic fields.

3.3 Gravitational waves
In electromagnetism, the electromagnetic field tensor is de-
fined by the commutator of the gauge-covariant derivative.
In general relativity, the analogous commutator of the co-
variant derivative is the Riemann curvature tensor Rklmn.
The Riemann curvature tensor has symmetries which can be
designated shorthandly

R([kl][mn]) . (45)

Here [] denotes antisymmetry, and () symmetry. The desig-
nation (45) thus signifies that the Riemann curvature tensor
Rklmn is antisymmetric in its first two indices kl, antisym-
metric in its last two indices mn, and symmetric under ex-
change of the first and last pairs of indices, kl ↔ mn. In
addition to the symmetries (45), the Riemann curvature ten-
sor has the totally antisymmetric symmetry

Rklmn +Rkmnl +Rknlm = 0 . (46)

The symmetries (45) imply that that the Riemann curva-
ture tensor is a symmetric matrix of antisymmetric tensors,
which is to say, a 6 × 6 symmetric matrix of bivectors. A
6×6 symmetric matrix has 21 independent components. The
additional condition (46) eliminates one degree of freedom,
leaving the Riemann curvature tensor with 20 independent
components.

In spacetime algebra any bivector U (6 component) can be
written as complex sum U = (E + IB)γt of two spatial 3-
vectors E = Exγx +Eyγy +Bzγz and B = Bxγx +Byγy +
Bzγz, due to the identity Iγxγt ≡ γyγz etc. In analogy to
electromagnetism, Eγt is called the electric bivector, Bγt
the magnetic bivector. The Riemann tensor, a multilinear
multimap on bivectors, can then be organized into a 2 × 2
matrix of 3 × 3 blocks with bivector indices, yielding the
structure (

REE REB
RBE RBB

)
. (47)

The condition of being symmetric implies that REE and
RBB are symmetric, while RBE = (REB)>. The condi-
tion (46) states that the 3×3 block REB (and likewise RBE)
is traceless.

The natural complex structure of bivectors in the geomet-
ric algebra suggests recasting the 6 × 6 Riemann curvature
matrix (47) into a 3× 3 complex matrix, which would have
the structure (RE + IRB)(RE + IRB), or equivalently

REE −RBB + I(REB +RBE) , (48)

which is a complex linear combination of the four 3×3 blocks
of the Riemann matrix (47). However, it turns out that the
complex symmetric 3×3 matrix (48) encodes only part of the
Riemann curvature tensor, namely the Weyl tensor. More
specifically, the Riemann curvature tensor decomposes into
a trace part, the Ricci tensor Rkm, and a totally traceless
part, the Weyl tensor Cklmn. The Ricci tensor, which is sym-
metric, has 10 independent components. The Weyl tensor,
which inherits the symmetries (45) and (46) of the Rieman
tensor, and in addition vanishes on contraction of any pair

of indices, also has 10 independent components. Together,
the Ricci and Weyl tensors account for the 20 components
of the Riemann tensor. The components of the Ricci and
Weyl tensors, though algebraically independent, are related
by the differential Bianchi identities.

The end result is that the Weyl tensor, the traceless part
of the Riemann curvature tensor, can be written as a 3× 3
complex traceless symmetric matrix (48). Such a matrix has
5 distinct complex components.

In empty space (vanishing energy-momentum tensor), the
Ricci tensor vanishes identically. Thus the properties of the
gravitational field in empty space are specified entirely by
the Weyl tensor. In particular, gravitational waves are spec-
ified entirely by the Weyl tensor.

When the 5 complex components of the Weyl tensor are
expressed in a NP null tetrad (30), the result is 5 complex
components, of spins respectively −2, −1, 0, +1, and +2:

− 2 : Cu−u−

−1 : Cuvu−

0 :
1

2
(Cvuvu + Cvu−+)

+1 : Cvuv+ (49)

+2 : Cv+v+ . (50)

It can be shown that these 5 complex components exhaust
the degrees of freedom of the Weyl tensor.

For outgoing gravitational waves, only the spin −2 com-
ponent propagates, carrying gravitational waves to far dis-
tances:

− 2 : propagating, outgoing . (51)

This propagating, outgoing −2 component has spin −2, but
its complex conjugate has spin +2, so effectively both spin
components, or helicities, or polarizations, of an outgoing
wave gravitational wave are embodied in the single com-
plex component. The remaining 4 complex NP components
(spins −1 to 2) of an outgoing gravitational waves are short
range, describing the gravitational field near the source.

Conventionally (Chandrasekhar 1983), the 5 complex spin
components of the Weyl tensor in the NP formalism are
impenetrably denoted

− 2 : ψ4 ,

−1 : ψ3 ,

0 : ψ2 ,

+1 : ψ1

+2 : ψ0 . (52)

Thus the component ψ4 represents propagating, outgoing
gravitational waves. The real part of ψ4 represents the
cos(2χ), or +, polarization of the propagating gravita-
tional wave, while (minus) its imaginary part represents the
sin(2χ), or ×, polarization, Figure 4. Next time you see
an illustration of gravitational waves where the caption says
that ψ4 is plotted, that’s what it is (see figure 5). We con-
sider the formulation of the NP scalars as presented here
much easier to understand than the usual approach, such as
e.g. [11].

GraVisMa 2009

86

Figure 5: Volume rendering of the gravitational ra-
diation during a binary black hole merger, repre-
sented by the real part of Weyl scalar r · ψ4.

4. IMPLEMENTING VECTORS IN C++
As demonstrated in section 2, denoting a vector by just
its dimensionality n is insufficient to completely identify
its algebraic properties including coordinate transformation
rules. Additional information is needed, such as the number
of covariant and contra-variance indices.

4.1 Class Hierarchy
Let us denote an array of fixed size N over some type T as
FixedArray<T,N>, using C++ template notation. No alge-
braic operation shall be defined on this type, it just serves
as a container for numbers, forming an N -tupel of T ’s. This
definition serves as a base class for a type Vector<T,N>,
which does not add new data members but only adds oper-
ators for addition of Vector<T,N>’s and multiplication with
scalar values, yielding objects of type Vector<T,N> again.

FixedArray<T,N>→ Vector<T,N> (53)

The resulting class Vector<T,N> is a vector in the algebraic
sense. It is convenient to make use of matrix algebra in many
cases, and since matrices have vector space properties, to
express such by deriving the Matrix class from the general
Vector class:

Vector<T,N*M>→ Matrix<T,N,M> (54)

The matrix class will add the concept of a matrix prod-
uct to the general vector space elements. A convenient,
though not required, intermediate definition is to define rows
and columns – they are rather type definitions than derived
classes:

Matrix<T,1,M> → Row<T,M> (55)

Matrix<T,N,1> → Column<T,N> (56)

These definitions provide the basis for vector types to be
used on the tangential space of a manifold. For a given N ,T
the following classes are derived:

FixedArray<T,N> → point (57)

Row<T,N> → covector (58)

Column<T,N> → tvector (59)

Vector < T, N2 − N(N + 1)/2 > → bivector (60)

Vector < T, 1 + N
2 − N(N + 1)/2 > → rotor (61)

Vector < T, 2N > → mulvector(62)

The definition of (58) and (59) directly implements the du-
ality relationship (6) in a type-safe way. Tangential vectors
and co-vectors both have vector space properties by virtue
of (54), but are different types, yet with the property that
their product (inherited from the matrix product) yields a
scalar. A point (57) by itself has no algebraic properties,
it only provides coordinates. However, the difference be-
tween two points is to be defined to yield a tangential vector
(59). On tvectors and covectors usual matrix operations
are inherently defined, so existing algorithms – that are usu-
ally provided using matrix algebra – can still be applied to
them. However, objects that directly implement operations
from Geometric Algebra such as bivector, rotor and mul-

tivector are safe from being used as parameters to matrix
algebra, yet they inherit vector space properties. We can
not show the actual implementation of the operations here
due to space limitations; it is sufficient to emphasize that,
by using C++ operator overloading, the API can be made
very close to the mathematical notation. In addition it is
convenient to overload the function call operator “()” for
rotor objects to denote them to be applied to a vector ob-
ject, meaning “R(v)” := RvR−1. This operator will be used
in the following code excerpts.

4.2 Camera Navigation using GA
A“camera” in the Vish [1] visualization framework is defined
through an observer’s location P , a point that is looked at L,
and an horizontal view plane, which is given as a bi-vector
U corresponding to the “upwards” direction. The difference
t = L− P gives the view direction, a tangential vector.

One algorithm for camera navigation is to rotate the camera
by an angle ϕ horizontally around the point of interest L
and by an angle ϑ “upwards” along the line of sight. This
algorithm is easily expressed in terms of geometric algebra.
First we define the view plane V as

V := t ∧ ?U (63)

and then construct a horizontal and a vertical rotor:

RH := eU/|U| ϕ , RV := e V/|V | ϑ . (64)

Now the camera motion is achieved by computing the new
observer location by adding the rotated view direction to
the point of interest:

Pnew = L+ (RHRV) (t) (65)

Finally, the horizontal view plane needs to be adjusted as
well by the vertical rotation

Unew = RV U (66)

Another algorithm will rotate the camera around the view
direction. This is trivial to implement, since we just need
the rotor Rt that corresponds to the view direction, which
is given by the exponential of the “sight vector’s” dual ,

Rt = eϕ ?(P−L)/|P−L| , (67)

and apply this to the camera’s Up-bivector to rotate it. This
formulation is considered to be much simpler than an equiv-
alent formulation using matrices and objects like “axial vec-
tors”. Using the operations and involved objects is very
intuitive once their meaning in the Geometric Algebra has
become clear.

GraVisMa 2009

87

Figure 6: Three frames from a 3000-frame general relativistic volume-rendering with the BHFS of a general
relativistic magnetohydrodynamic supercomputer simulation of a disk and jet around a black hole (John
Hawley, 2007, private communication). The three frames show, from left to right, (a) outside the black
hole, (b) passing through the black hole’s outer horizon, (c) hitting the black hole’s inner horizon, where
the infinite blueshift and energy density triggers the mass inflation instability (Poisson & Israel 1990). The
background texture was created from a 3D model of the Milky Way by Donna Cox’s team at NCSA. The
sequence was prepared for “Monster Black Hole”, an episode of National Geographic’s Naked Science series.

4.3 Relativistic observers in the BHFS
4.3.1 The BHFS

The Black Hole Flight Simulator (BHFS) is general rela-
tivistic software that can be used to visualize black holes.
The BHFS remains work in progress, but has already been
used in a number of productions, including the large-format
high-resolution dome show “Black Holes: The Other Side
of Infinity” (2006, Denver Museum of Nature and Science),
and the TV documentaries “Monster of the Milky Way”
(2006, NOVA-PBS), and“Monster Black Hole”(2008, Naked
Science series, National Geographic). Figure 6 illustrates
three frames from a sequence rendered for the National Ge-
ographic documentary.

The BHFS provides a complete implementation of the
Reissner-Nordström geometry of a charged black hole, in-
cluding its analytic connections inside the horizon to worm-
holes, white holes, and other universes. Real astronomical
black holes probably have little charge, but they probably
do rotate rapidly. A charged black hole is often taken as a
surrogate for a rotating black hole, since the interior struc-
ture of a spherical charged black hole resembles that of a
rotating black hole, but is much easier to model.

The Reissner-Nordström geometry, like its rotating counter-
part the Kerr-Newman geometry, is subject to the relativis-
tic counter-streaming instability at the inner horizon first
pointed out by Poisson & Israel (1990) [10], and called by
them “mass inflation” (see Hamilton & Avelino 2009 [5] for a
review). The inflationary instability is expected to eliminate
the wormhole and white hole connections inside realistic (as-
tronomical) black holes.

4.3.2 Lorentz rotors in the BHFS
In addition to volume-rendering, the BHFS implements
quasi-rigid objects, called “Ships”, which by default move
along geodesics in the black hole geometry. The camera
(observer) is attached to one of the Ships. The orientation
and motion of the camera are defined by a Lorentz transfor-

mation (which includes both a spatial rotation and a Lorentz
boost), or equivalently, by a Lorentz rotor.

A Lorentz rotor R is a unimodular member of the even el-
ements of the spacetime algebra. A Lorentz rotor can be
written

R = eθ (68)

where θ is a bivector in the spacetime algebra. The corre-
sponding inverse Lorentz rotor is the reverse R̄

R̄ = e−θ . (69)

The condition of being unimodular means R̄R = 1.

The even spacetime algebra is isomorphic to the algebra of
complex quaternions, also called biquaternions. A complex
quaternion can be written

q = qR + IqI (70)

where qR and qI are two real quaternions comprising the
real and imaginary parts of the complex quaternion q

qR = ixR+jyR+kzR+wR , qI = ixI+jyI+kzI+wI . (71)

The imaginary I is the pseudoscalar of the spacetime alge-
bra. It commutes with the quaternionic imaginaries i, j, k.
The quaternionic imaginaries themselves satisfy

i2 = j2 = k2 = −1 , ijk = 1 , (72)

from which it follows that the quaternionic imaginaries an-
ticommute between each other, for example ij = −k = ji.
The convention ijk = 1, equation (72), agrees with the
convention for quaternions in OpenGL, but is opposite
to William Rowan Hamilton’s carved-in-stone convention
ijk = −1. In OpenGL, rotations accumulate to the right: a
rotation R = R1R2 means rotation R1 followed by rotation
R2.

The BHFS stores a complex quaternion q as an 8-component

GraVisMa 2009

88

object

q =

(
xR yR zR wR
xI yI zI wI

)
. (73)

The reverse q̄ of the complex quaternion q is its quaternionic
conjugate

q̄ =

(
−xR −yR −zR wR
−xI −yI −zI wI

)
. (74)

The group of Lorentz transformations, or Lorentz rotors,
corresponds to complex quaternions of unit modulus. The
unimodular condition R̄R = 1, a complex condition, re-
moves 2 degrees of freedom from the 8 degrees of freedom
of complex quaternions, leaving the Lorentz group with 6
degrees of freedom, which is as it should be.

Spatial rotations correspond to real unimodular quater-
nions, and account for 3 of the 6 degrees of freedom of
Lorentz transformations. A spatial rotation by angle θ right-
handedly about the x-axis is the real Lorentz rotor

R = cos(θ/2) + i sin(θ/2) , (75)

or, stored as a complex quaternion,

R =

(
sin(θ/2) 0 0 cos(θ/2)

0 0 0 0

)
. (76)

Lorentz boosts account for the remaining 3 of the 6 degrees
of freedom of Lorentz transformations. A Lorentz boost by
velocity v, or equivalently by boost angle θ = atanh(v),
along the x-axis is the complex Lorentz rotor

R = cosh(θ/2) + Ii sinh(θ/2) , (77)

or, stored as a complex quaternion,

R =

(
0 0 0 cosh(θ/2)

sinh(θ/2) 0 0 0

)
. (78)

4.3.3 Simplicity of Lorentz rotors
The advantages of quaternions for implementing spatial ro-
tations are well-known to 3D game programmers. Compared
to standard rotation matrices, quaternions offer increased
speed and require less storage, and their algebraic proper-
ties simplify interpolation and splining.

Complex quaternions retain similar advantages for imple-
menting Lorentz transformations. They are fast, compact,
and straightforward to interpolate or spline.

Under a spacetime rotation by Lorentz rotor R, a general
multivector a in the spacetime algebra transforms as

a→ R̄aR . (79)

A general such multivector in the spacetime algebra is a
16-component object, with 8 even components, and 8 odd
components.

As remarked earlier, the 8-component even spacetime subal-
gebra is isormorphic to the algebra of complex quaternions.
As an example, the electromagnetic field constitutes a 6-
component bivector, an even element of the spacetime al-
gebra. The electric and magnetic fields E and B can be
encoded as the complex quaternion

F =

(
Ex Ey Ez 0
Bx By Bz 0

)
. (80)

The transformation (79) then becomes

F → R̄FR , (81)

which is a powerful and elegant way to Lorentz transform
the electromagnetic field. The electromagnetic field F in the
transformation (81) is the complex quaternion (80), and the
rotor R is another complex quaternion, so the Lorentz trans-
formation (81) amounts to multiplying 3 complex quater-
nions.

The most common need in the BHFS is to Lorentz transform
odd multivectors, not even multivectors. For example, every
point on a scene that an observer sees is represented by
the energy-momentum 4-vector of a photon emitted by the
point and observed by the observer. Each such 4-vector
a = amγm is an odd multivector in the spacetime algebra.
A general odd multivector is a sum of a vector part a and a
pseudovector part Ib. The odd multivector can be written
as a product of γt (the time basis element of the spacetime
algebra) and an even multivector q

a+ Ib = γtq (82)

where q is the even multivector, or complex quaternion,

q =

(
−bx −by −bz at

ax ay az bt

)
. (83)

The Lorentz transformation (79) implies γtq → R̄γtqR =
γtR̄

∗qR, where ∗ denotes complex conjugation with respect
to the peudoscalar imaginary I. It follows that the complex
quaternion q, equation (83), transforms as

q → R̄∗qR . (84)

The transformation (84) of the complex quaternion (83) pro-
vides a simple and elegant way to Lorentz transform a 4-
vector am and 4-pseudovector Ibm. Since bm (without the
I factor) is just another 4-vector, the transformation (84)
effectively transforms two 4-vectors, am and bm, simultane-
ously. The transformation (84) amounts to multiplying 3
complex quaternions.

5. VECTORS ON THE HARD DISK
5.1 Meta-Data on Vector Types
Storing a specific vector on hard disk, entails storing its nu-
merical representation in a chosen coordinate system. How-
ever, when reading an unknown object from disk, informa-
tion merely about its numerical representation is insufficient
to determine the type vector (co-vector, bi-vector, . . .). We
need some meta-data, additional information about the data
itself, that tells what properties the object on disk has.

C++ type trait templates proof useful here. Type traits
are C++ templates that are specialized for known types
to provide information on these types without the need to
modify the type itself. An example of a type trait definition
is given in the following code excerpt:

template <class Type> struct MetaInfo;

template <> struct MetaInfo<double>
{ enum { SIZE = 1 } };

template <int N> struct MetaInfo<FixedArray<N, double> >
{ enum { SIZE = N } };

GraVisMa 2009

89

The type trait MetaInfo associates an integer value SIZE
with an arbitrary type Type. This information is available
at compile-time, and can be reduced to an usual integer in
a template class at any time, such as in:

template <class Type> int NumberOfElements(const Type&T)
{ return MetaInfo<T>::SIZE; }

Note that a type trait class may also specify default values
(by specifying a non-specialized definition) and can be func-
tions on template types itself (as demonstrated in the sec-
ond specialization). This mechanism allows to equip exist-
ing types, e.g. as provided by external libraries, with meta-
information as required for our framework.

The objective is to specify complete meta-information about
a “vector space element” as required to uniquely identify it.
As introduced in section 2, such information includes a ref-
erence to the metric (or metric field) and the orientation
form ι. This information can be provided via a “coordi-
nate system”, which can be a global type definition – not
more than providing the implicit knowledge on how to per-
form these operations, such as in Euclidean space. In such
a case, no memory or computational resources are implied,
but another type definition could require explicit formulae
for expressions that are implicit in Euclidean space. Such a
chart object may be expressed via a convention on how the
coordinate functions are named, for instance {x, y, z} for
Cartesian coordinates versus {r, ϑ, ϕ} for polar coordinates.
While this is yet work in progress, the following quantities
have been found to be required for at least basic distinction
and identification of vector types:

I multiplicity : an integer value expressing the number of
components of this type.

II rank : the power k = a+ b of the vector space in terms
of the tangential space T a(M)× (T ∗)b(M); it is the di-
mensionality of the index space when considering the
vector type as an array: zero indicates a scalar type,
one is a one-dimensional vectorial type (tangential vec-
tor, co-vector, pseudo-vector, pseudo-covector), two are
objects representable as matrix, etc.

III grade: for quantities from geometric algebra, specifies
the grade k of the k-vector; the default is zero, for in-
stance for symmetric tensor fields. For example, a bi-
vector in 3D will have a grade of 2 whereas its rank is
1.

IV dimensions: the dimensionality n of the n-dimensional
manifold on which this vector type is attached.

V coordinatename(i): textual functions specifying the
naming convention for each of the n coordinate func-
tions.

VI covariance(i): for each index, a flag specifying whether
the index is an upper index or lower index. It can be
implemented via some function that returns true or false
for each index; this function may be evaluated fully at
compile-time (a template function that is known) or via
lookup into some static array.

VII symmetries(n): often, tensors have symmetric or anti-
symmetric index pairs. For efficiency reasons it is then
important to calculate and store only a minimum subset
of the components. This can be implemented via two
lookup tables: one table lists those components which
are actually stored, the other table contains the pre-
scription for obtaining each tensor component. In a
simple scheme, each tensor component is either stored,
or is the negative of a stored component, or is zero. (See
tables 1 and 2 for examples.) More complex schemes
also allow cyclic symmetries, where tensor components
can be linear combinations of stored components.

VIII coordinate systems(i): tensor components are only de-
fined with respect to a particular coordinate system. It
is necessary to store (for each index) the name of the
associated coordinate system. There are objects, such
as basis systems or operators that transform between
different coordinate systems, where different tensor in-
dices correspond to different coordinate systems.

These properties have been chosen such that some opera-
tions on the given types can also succeed with partial knowl-
edge, since certain algorithms do not require full knowledge
of the entire algebraic operations of all types.

List of stored components mapping the component name to
each storage index:

[0] [1] [2] [3] [4] [5]
gxx gxy gxz gyy gyz gzz

Obtaining tensor components from stored components via
prescription for each entry:

gxx gxy gxz gyx gyy gyz gzx gzy gzz
+[0] +[1] +[2] +[1] +[3] +[4] +[2] +[4] +[5]

Table 1: Storing a symmetric 3×3 tensor: The com-
ponent table works like a pointer to the stored com-
ponents.

List of stored components, mapping the component name to
each storage index:

[0] [1] [2]
Bxy Bxz Byz

Obtaining tensor components from stored components via
prescription for each entry:

Bxx Bxy Bxz Byx Byy Byz Bzx Bzy Bzz
0 +[0] +[1] −[0] 0 +[2] −[1] −[2] 0

Table 2: Storing an antisymmetric 3× 3 tensor: The
component table defines also signs during derefer-
encing, or in general, a polynomial expression of
components.

This list of “vector properties” is not claimed to be complete;
it is an early attempt to find a comprehensive scheme to

GraVisMa 2009

90

cover all geometric and algebraic quantities that occur when
performing numerical computations on manifolds. Special
attention must also be given to the case of non-tensorial
quantities such as Christoffel symbols, which do not yet fit
into this ontology.

The Cactus framework [4, 13] currently uses a scheme that
is simpler than the above; it is based on tensor algebra only
and does not support grades. However, it does offer sup-
port for tensor densities (by associating a weight with each
quantity), and it handles also certain special non-tensorial
objects, such as logarithms of scalar densities and Christof-
fel symbols. These special cases are handled as exceptions;
there is no generic scheme for them. This scheme is mostly
used for symmetry conditions, which require either reflect-
ing (mirroring) or rotating tensors. These operations require
only the symmetry information above.

5.2 Storing Vector Types in HDF5
HDF5[12] is a generic scientific data format with support-
ing software, primarily an API provided in C. An HDF5
file can be viewed as a container, in which data objects are
organized in ways that are meaningful and convenient to
an application. HDF5 can be seen as a framework, rather
than a specific format itself, allowing adaption to the vari-
ous needs of diverse scientific domains [3]. The basic HDF5
object model is relatively simple, yet extremely versatile in
terms of the types of data that it can store. The model con-
tains two primary objects: groups, and datasets. Groups
provide the organizing structures, and datasets are the ba-
sic storage structures. HDF5 groups and datasets may also
have associated attributes, which are small data objects for
storing metadata defined by applications.

HDF5 allows the specification of user-defined types that
shall be stored in a file via its H5T API2. For instance, a
struct in C/C++ of the form

struct CartesianVector { double x,y,z; };

can be expressed in the H5T API as compound type:

hid_t id = H5Tcreate(H5T_COMPOUND,
sizeof(CartesianVector));

H5Tinsert(id, "x", 0, H5T_DOUBLE);
H5Tinsert(id, "y", sizeof(double), H5T_DOUBLE);
H5Tinsert(id, "z", 2*sizeof(double), H5T_DOUBLE);

This code fragment creates an HDF5 identifier id that repre-
sents a type of the memory layout as in the aforementioned
structure definition. This functionality provides an imple-
mentation of the component storage indices as used in table
1 and 2. More details can be found in the HDF5 reference
manual.

When writing or reading a dataset to disk, the HDF5 API
requires a type identifier to be specified with a void*. This
tells the HDF5 library how to interpret some chunk of mem-
ory. Various generic tools exist to investigate the contents
of an HDF5 file, which has a structure of a file system it-
self. “Datasets” play the role of a file, “Groups” the role

2http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html

of a directory. The tool h5ls – part of the HDF5 dis-
tribution – lists the contents of an HDF5 file in the fash-
ion of the Unix tool ls, enhanced with additional informa-
tion about the type of a dataset. The following example
shows how a three-dimensional dataset CartesianVector
data[5][13][9]; appears in this file listing (shortened as
compared with actual output):

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes
Type: struct {

"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:
(0,0,0) {0.210951, -0.0406732, 0.0611351},

{0.208286, -0.0525892, 0.0610958},
...

By virtue of HDF5, we can easily attach names to the purely
numerical values in the data field. Hereby the HDF5 library
offers various features that are very useful in practice, such
as not only taking care of conversions between big-endian
and little-endian platforms, but also conversions from double
to float component types as well as transformations between
different layouts such as {x, y, z} ⇔ {z, x, y}.

The availability of a naming scheme attached to numerical
values is already sufficient to identify a coordinate system
that is supposed to be “attached” to these numbers, in spirit
of 5.1, V. Knowing the coordinate system relative to which
the numbers are stored, in addition we need to specify the
various attributes defining the algebraic properties of this
vector type HDF5 allows to attach attributes with a dataset,
group or “named data type”. A named data type is a type id
that was created by the H5Tcreate() call but saved to disk.
It needs to be associated with a group in the file. Attributes
attached to such a named data type are shared among all
data sets of this type – the data type acts like a pointer to
a common location of a set of attributes. We now need to
define an HDF5 type for each of the vector types as defined
from the meta-information about a specific data type. The
following HDF5 listing shows the created named type, stored
in a group /Charts/Cartesian3D, as it is named“Point”and
equipped with an integer telling this data type refers to a
manifold of dimension three. This data type “Point” is then
later used to declare a dataset of points (shown with two
attributes denoting the name of the associated chart and
the dimension of the related manifold):

/Charts/Cartesian3D/Point Type
Attribute: ChartDomain scalar

Type: null-terminated ASCII string
Data: "Cartesian3D"

Attribute: Dimensions scalar
Type: native int
Data: 3

Type: shared-1:13328 struct {
"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes

/Block00001 Dataset {5/5, 13/13, 9/9}
Location: 1:15768
Links: 1
Storage: 7020 allocated bytes

GraVisMa 2009

91

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5T.html

Type: { shared-1:13328} struct {
"x" +0 native float
"y" +4 native float
"z" +8 native float

} 12 bytes
Data:

This scheme allows to identify the dataset named “Blocks”
as representing Cartesian coordinates of point locations. Ac-
cessing the dataset “Blocks” during reading, the software
application can easily check for the attributes of the dataset
to retrieve its algebraic properties. However, doing so is
optional. Many applications might not implement the full
set of tensor algebra, but might still provide a set of use-
ful operations – such as displaying a dataset numerical as a
spreadsheet etc. The information that a dataset consists of
three floating point numbers, (the only information required
for a generic operation such as displaying as spreadsheet) is
available immediately. More complex properties require fur-
ther lookup.

5.3 Storing Multi-Vector Types in HDF5
Multivectors are linear combinations of vectors of differ-
ent basis elements, thereby forming an higher-dimensional
space. A similar functionality is achieved using HDF5 by
creating compound types from the basic vector types. For
instance, given a bivector type in 3D, created by HDF5 API
calls of the form

hid_t bivector3D_id =
H5Tcreate(H5T_COMPOUND, 3*sizeof(double));

H5Tinsert(bivector3D_id, "yz", 0, H5T_NATIVE_DOUBLE);
H5Tinsert(bivector3D_id, "zx", 8, H5T_NATIVE_DOUBLE);
H5Tinsert(bivector3D_id, "xy", 16, H5T_NATIVE_DOUBLE);

we may create a rotor in the following as compound contain-
ing the bivector, and adding a scalar:

hid_t rotor3D_id = H5Tcreate(H5T_COMPOUND, 32);

H5Tinsert(rotor3D_id, "cos", 0, H5T_NATIVE_DOUBLE);
H5Tinsert(rotor3D_id, "sin", 8, bivector3D_id);

We name the scalar and bivector component “cos” and “sin”
here, inspired by the construction of a rotor. What naming
scheme to use here in general, will yet need to be explored. It
is now a nice feature of HDF5 that different storage schemes
are automatically mapped, i.e. datasets stored as the fol-
lowing type

hid_t antirotor3D_id =
H5Tcreate(H5T_COMPOUND, 4*sizeof(double));
H5Tinsert(antirotor3D_id, "sin", 0 , bivector3D_id);
H5Tinsert(antirotor3D_id, "cos", 24, H5T_NATIVE_DOUBLE);

can be directly read without further specific treatment as
a rotor3D_id dataset. This way HDF5 easily provides the
notion of a+ c∧ b ≡ c∧ b+ a, i.e., commutativity of the “+”
operator. One can also define a type which only retrieves
the bivector component of a dataset of rotors, or the scalar
component. This functionality is already provided by HDF5.

6. CONCLUSION
In this article we have reviewed the various types of what is
usually called a “vector” in the context of differential geom-
etry and geometric algebra. Various algebraic types have
been identified, which are all represented numerically by
three floating point numbers in three dimensions: tangen-
tial vectors, co-vectors, bi-vectors and bi-co-vectors. Yet
these four different types have distinct algebraic properties
and should be distinguished. We demonstrated the appli-
cation of diverse vector types in four dimensions, leading to
an easier formulation of the Newmann-Penrose formalism by
virtue of Geometric Algebra. The clarity of the diverse alge-
braic types as achieved via GA thereby eases “navigation” in
Riemann space, computer graphic applications (where two
examples are given), and identification of quantities stored
in files.

7. REFERENCES
[1] W. Benger, G. Ritter, and R. Heinzl. The Concepts of

VISH. In 4th High-End Visualization Workshop,
Obergurgl, Tyrol, Austria, June 18-21, 2007, pages
26–39. Berlin, Lehmanns Media-LOB.de, 2007.

[2] A. Bossavit. Differential geometry for the student of
numerical methods in electromagnetism. Technical
report, Tampere University of Technology, 1991. URL
http://butler.cc.tut.fi/~bossavit/.

[3] M. T. Dougherty, M. J. Folk, E. Zadok, H. J.
Bernstein, F. C. Bernstein, K. W. Eliceiri, W. Benger,
and C. Best. Unifying biological image formats with
hdf5. Communications of the ACM (CACM),
52(10):42–47, October 2009.

[4] T. Goodale, G. Allen, G. Lanfermann, J. Massó,
T. Radke, E. Seidel, and J. Shalf. The Cactus
framework and toolkit: Design and applications. In
Vector and Parallel Processing – VECPAR’2002, 5th
International Conference, Lecture Notes in Computer
Science, Berlin, 2003. Springer.

[5] A. J. S. Hamilton and P. P. Avelino. The physics of
the relativistic counter-streaming instability that
drives mass inflation inside black holes. Physics
Reports, accepted, 2009. gr-qc/0811.1926.

[6] A. Held. A formalism for the investigation of
algebraically special metrics. i. Commun. Math. Phys.,
37:311–26, 1974.

[7] D. Hestenes. New Foundations for Classical
Mechanics, 2nd ed. Springer Verlag., 1999.

[8] D. Hestenes. Oersted medal lecture 2002: Reforming
the mathematical language of physics. American
Journal of Physics, 71(2):104–121, 2003. URL
http://link.aip.org/link/?AJP/71/104/1.

[9] E. T. Newman and R. Penrose. An approach to
gravitational radiation by a method of spin
coefficients. J. Math. Phys., 3:566–79, 1962.

[10] E. Poisson and W. Israel. Inner-horizon instability and
mass inflation in black holes. Phys. Rev.,
D41:1796–1809, 1990.

[11] E. (Ted) Newman and R. Penrose. Spin-coefficient
formalism. Scholarpedia, 4(6):7445, 2009.

[12] The HDF Group. Hierarchical data format version 5.
http://www.hdfgroup.org/HDF5, 2000-2009.

[13] C. C. Toolkit. Cactus Computational Toolkit home
page, URL http://www.cactuscode.org/.

GraVisMa 2009

92

http://butler.cc.tut.fi/~bossavit/
http://link.aip.org/link/?AJP/71/104/1
http://www.hdfgroup.org/HDF5
http://www.cactuscode.org/

Inertial Navigation using Geometric Algebra

Liam Candy
Department of Engineering

University of Cambridge, CB2 1PZ, UK
and CSIR, Pretoria, South Africa

lpc28@cam.ac.uk

Joan Lasenby
Department of Engineering

University of Cambridge, CB2 1PZ, UK
jl221@cam.ac.uk

Keywords: Inertial Navigation, Bortz Equation, Geometric Algebra, Conformal Algebra.

EXTENDED ABSTRACT

1 INTRODUCTION
In strapdown inertial navigation systems (SDINS) the
angular velocity measured in a body frame is used to
update a rotation generator that relates the orientation of
the body frame to some reference frame. Because the
angular velocity measurements are made in the body
frame, which changes its orientation relative to the
reference frame, direct integration of the conventional
direction cosine differential equation is an unsuitable
method for tracking attitude. Bortz [Bor71] derived a
method of accounting for this effect by representing the
actual finite rotation by an orientation vector φ(t) and
obtaining an expression for φ̇(t). Bortz showed that φ̇

could be split into two parts, ω(t) and σ̇(t). ω(t) is the
angular rate vector and σ̇(t) is a term arising due to the
change in the body coordinate system.

φ̇ in terms of φ and ω is known as the Bortz Equa-
tion – updating the quantity φ given the measurements
and then extracting the attitude, is known to be more
accurate than direct integration of the dynamical equa-
tions. In this paper we will use geometric algebra (GA)
to show how the Bortz equation arises almost trivially
from the dynamical equations.

Recent contributions in the SDINS literature have
used dual quaternions, a concise representation for both
rotations and translations, to extend the Bortz equation
to the more general case of simultaneously updating
both attitude and position [YWL05]. The claim is that
there is an equivalent Bortz equation which allows more
accurate updating. Here we use the conformal geomet-
ric algebra (CGA) [HS84] to investigate what a con-
formal Bortz equation would look like and whether the
claims made for dual quaternions are valid.

The 3D and 5D Bortz equations
If the angular velocity of the body wrt the reference
frame is written as a bivector in the body frame, Ωb,
and the rotor which takes the reference frame to the
body frame at time t as R(t), the dynamical equation
is Ṙ = − 1

2 RΩb

We define Φ as Φ = αB, where B is a unit bivector
and R = e−Φ/2, ie a rotation of α in the plane of B.
Since Φ̇ = αḂ + α̇B, and using expressions for α̇ and
Ḃ obtained by equating scalar and bivector parts of the

dynamical equation, we are able to write Φ̇ as a bivector
equation (where Ωb is written as Ω for conciseness):

Φ̇ = Ω+
(

|Φ|
2

cot
|Φ|
2

−1
)[

Ω+
(Ω·Φ)Φ
|Φ|2

]
− 〈ΦΩ〉2

2
(1)

This is effectively the dual of the conventional Bortz
equation.

Using the CGA framework we know that we can ex-
press both rotations and translations as rotors – thus
we are able to define a new Φ in our 5D space as
Φ = αB + tn, where αB gives the spatial rotation as
before and t is related to the spatial translation. It is not
hard to show that R = e−Φ/2 represents a rotation of α

in the plane of B followed by a translation of s which
is a function of both t and the spatial rotation. We then
also show that the equivalent 5D angular velocity bivec-
tor, Ω is given by Ω = Ω3 + nR̃α ṡRα , where Ω3 is the
3D angular velocity bivector.

The 5D dynamical equation is again Ṙ = − 1
2 RΩ.

Equating scalar and spatial bivector parts gives expres-
sions for α̇ and Ḃ (indeed those obtained in the 3D
case). Equating non-spatial bivector and 4-vector parts
simply gives identities, thus confirming consistency.

We then form Φ̇ = α̇B+αḂ+ ṫn in terms of Φ and Ω.
However, the resulting equation is not as simple in form
as the 3D equation, ie it is not simply a matter of re-
placing φ and ω with their 5D counterparts. This there-
fore calls into question the process of substituting a dual
quaternion generator into the Bortz equation form and
updating the dual quaternion components. The paper
will discuss the differences and investigate the discrep-
ancies via simulations.

REFERENCES
[Bor71] J.E Bortz. A new mathematical formulation for strapdown

inertial navigation. IEEE Transactions on Aerospace and
Electronic Systems, AES-7, no. 1:61–66, 1971.

[HS84] D Hestenes and G Sobczyk. Clifford Algebra to Geo-
metric Calculus: A unified language for mathematics and
physics. 1984.

[YWL05] D. Hu T. Li Y. Wu, X. Hu and J. Lian. Strapdown inertial
navigation system algorithms based on dual quaternions.
IEEE Transactions on Aerospace and Electronic Systems,
41-4:110–132, 2005.

GraVisMa 2009

93

Clifford (Geometric) Algebra Wavelet Transform

Eckhard Hitzer, Department of Applied Physics, University of Fukui, 910-8507 Japan

January 22, 2010

Abstract

While the Clifford (geometric) algebra Fourier Transform (CFT) is global, we introduce here the local
Clifford (geometric) algebra (GA) wavelet concept. We show how for n = 2, 3(mod 4) continuous Cln-
valued admissible wavelets can be constructed using the similitude group SIM(n). We strictly aim for real
geometric interpretation, and replace the imaginary unit i ∈ C therefore with a GA blade squaring to −1.
Consequences due to non-commutativity arise. We express the admissibility condition in terms of a Cln
CFT and then derive a set of important properties such as dilation, translation and rotation covariance,
a reproducing kernel, and show how to invert the Clifford wavelet transform. As an explicit example, we
introduce Clifford Gabor wavelets. We further invent a generalized Clifford wavelet uncertainty principle.
Extensions of CFTs and Clifford wavelets to Cl0,n′ , n

′ = 1, 2(mod 4) appear straight forward.

Keywords: Clifford geometric algebra, Clifford wavelet transform, multidimensional wavelets, con-
tinuous wavelets, similitude group.

AMS Subj. Class.: 15A66, 42C40, 94A12.

1 Introduction

The meaning and importance of wavelets is clearly
seen in a biographical note on J. P. Morlet: Fol-
lowing in the footsteps of Denis Gabor (father of
holography), Morlet was disconcerted by the poor
results he [Gabor] obtained; but, being inquisitive
and persistent, he asked himself, ”Why?” and
immediately provided the answer. Gabor paved
the time-frequency plane in uniform cells and
associated each cell with a wave shape of invariant
envelope with a carrier of variable frequency. Morlet
kept the constraint resulting from the uncertainty
principle applied to time and frequency, but he
perceived that it was the wave shape that must be
invariant to give uniform resolution in the entire
plane. For this he adapted the sampling rate to the

Permission to make digital or hard copies of all or
part of this work for personal or classroom use is
granted without fee provided that copies are not
made or distributed for profit or commercial ad-
vantage and that copies bear this notice and the
full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or
a fee.

frequency, thereby creating, in effect, a changing
time scale producing a stretching of the wave shape.
Today the wavelet transform is also called the
”time-scale analysis” approach, which is comparable
to the conventional time-frequency analysis. . . . It
has been rediscovered as a very useful tool, partic-
ularly in data compression where it can produce
significant savings in storage and transmission
costs but also in mathematics, data processing,
communications, image analysis, and many other
engineering problems.[1]

In order to favorably combine wavelet techniques
with Clifford (geometric) algebra, which provides a
complete algebra of a vector space and all its sub-
spaces, several efforts have been undertaken. They
include Clifford multi resolution analysis (MRA)
[2], quaternion MRA [4], Clifford wavelet net-
works, quaternion wavelet transforms (QWT) ap-
plied to image analysis (using the QWT phase
concept), image processing and motion estimation
[5], quaternion-valued admissible wavelets, Clifford
algebra-valued admissible (continuous) wavelets us-
ing complex Fourier transforms for the spectral
representation [6], monogenic wavelets over the
unit ball [7], Clifford continuous wavelet transforms
(ContWT) in L0,2, L0,3, wavelets on the 3D sphere

GraVisMa 2009

94

with Cauchy kernel in Clifford analysis (2009), dif-
fusion wavelets [8], ContWT in Clifford analysis,
wavelet frames on the sphere, benchmarking of 3D
Clifford wavelet functions, metric dependent Clif-
ford analysis, new multivariable polynomials and as-
sociated ContWT: Clifford versions of Hermite, Her-
mitean Clifford-Hermite, bi-axial Clifford-Hermite,
Jacobi, Gegenbauer, Laguerre, and Bessel polyno-
mials [3].

Fourier transformations have been successfully
developed in the framework of real Clifford (geo-
metric) algebra (GA), replacing the imaginary unit
i ∈ C by a geometric (GA) square root of −1
[9]. These Clifford Fourier transformations (CFT)
[10–12] have already found interesting applications
in vector field analysis and pattern matching [17].
A special case are the socalled quaternion Fourier
transforms (QFT) [13–15].

We now use the spectral CFT representation in
order to develop real Clifford GA wavelets in di-
mensions n = 2, 3(mod 4). We dimensionally ex-
tend [16] and elaborate the short summary given in
[18] by adding proofs and generalizations.

In Section 2 Clifford (geometric) algebra is in-
troduced including multivector signal functions, the
Clifford Fourier transform, and the similitude group
of dilations, rotations and translations. Section 3
defines Clifford mother and daughter wavelets, spec-
tral representation, discusses admissibility, the Clif-
ford wavelet transformation and its spectral CFT
representation. This is followed by a detailed dis-
cussion of Clifford wavelet properties, i.e. linearity,
covariance w.r.t. dilation, rotation and translation,
inner product and norm relations, the inverse Clif-
ford wavelet transform, a reproducing kernel and a
Clifford wavelet uncertainty principle. Finally the
example of Clifford Gabor wavelets is given.

2 Clifford (geometric) algebra
and multivector signals

2.1 Clifford (geometric) algebra

Clifford (geometric) algebra is based on the geomet-
ric product of vectors a , b ∈ Rp,q, p+ q = n

ab = a · b + a ∧ b, (1)

and the associative algebra Clp,q thus generated
with R and Rp,q as subspaces of Clp,q. a · b is
the symmetric inner product of vectors and a ∧ b is

Grassmann’s outer product of vectors representing
the oriented parallelogram area spanned by a , b.

As an example we take the Clifford geometric al-
gebra Cl3 = Cl3,0 of three-dimensional (3D) Eu-
clidean space R3 = R3,0. R3 has an orthonormal
basis {e1, e2, e3}. Cl3 then has an eight-dimensional
basis of

{1, e1, e2, e3︸ ︷︷ ︸
vectors

, e2e3, e3e1, e1e2︸ ︷︷ ︸
area bivectors

, i = e1e2e3︸ ︷︷ ︸
volume trivector

}. (2)

Here i denotes the unit trivector, i.e. the oriented
volume of a unit cube, with i2 = −1. The even
grade subalgebra Cl+3 is isomorphic to Hamilton’s
quaternions H. Therefore elements of Cl+3 are also
called rotors (rotation operators), rotating vectors
and multivectors of Cl3.

In general Clp,q, p+q = n is composed of so-called
r-vector subspaces spanned by the induced bases

{ek1ek2 . . . ekr | 1 ≤ k1 < k2 < . . . < kr ≤ n}, (3)

each with dimension
(
r
n

)
. The total dimension of

the Clp,q therefore becomes
∑n
r=0

(
r
n

)
= 2n.

General elements called multivectors M ∈
Clp,q, p + q = n, have k-vector parts (0 ≤ k ≤ n):
scalar part Sc(M) = 〈M〉 = 〈M〉0 = M0 ∈ R, vec-
tor part 〈M〉1 ∈ Rp,q, bi-vector part 〈M〉2, . . . , and
pseudoscalar part 〈M〉n ∈

∧n Rp,q

M =
2n∑
A=1

MAeA = 〈M〉+〈M〉1+〈M〉2+. . .+〈M〉n .

(4)
The reverse of M ∈ Clp,q defined as

M̃ =
n∑
k=0

(−1)
k(k−1)

2 〈M〉k, (5)

often replaces complex conjugation and quaternion
conjugation. Taking the reverse is equivalent to re-
versing the order of products ob basis vectors in the
basis blades of (3). The scalar product of two mul-
tivectors M, Ñ ∈ Clp,q is defined as

M ∗ Ñ = 〈MÑ〉 = 〈MÑ〉0. (6)

For M, Ñ ∈ Cln = Cln,0 we get M ∗ Ñ =∑
AMANA. The modulus |M | of a multivector M ∈

Cln is defined as

|M |2 = M ∗ M̃ =
∑
A

M2
A. (7)

GraVisMa 2009

95

For n = 2(mod 4) and n = 3(mod 4) the pseu-
doscalar is in = e1e2 . . . en with (also valid for1

Cl0,n′ , n
′ = 1, 2(mod 4))

i2n = −1. (8)

A blade Bk = b1 ∧ b2 ∧ . . . ∧ bk, b l ∈ Rp,q, 1 ≤
l ≤ k ≤ n = p + q describes a k-dimensional vector
subspace

VB = {x ∈ Rp,q|x ∧B = 0}. (9)

Its dual blade
B∗ = Bi−1

n (10)

describes the complimentary (n − k)-dimensional
vector subspace V ⊥B . The pseudoscalar in ∈ Cln
is central for n = 3(mod 4)

inM = M in, ∀M ∈ Cln. (11)

But for even n we get due to non-commutativity [11]
of the pseudoscalar in ∈ Cln for all M ∈ Cln, λ ∈ R

inM = Meven in −Modd in , (12)

einλM = Meven e
inλ +Modd e

−inλ. (13)

2.2 Multivector signal functions

A multivector valued function f : Rp,q → Clp,q, p+
q = n, has 2n blade components (fA : Rp,q → R)

f(x) =
∑
A

fA(x)eA. (14)

We define the inner product of Rn → Cln functions
f, g by

(f, g) =
∫

Rn
f(x)g̃(x) dnx (15)

=
∑
A,B

eAẽB

∫
Rn
fA(x)gB(x) dnx , (16)

and the L2(Rn;Cln)-norm

‖f‖2 = 〈(f, f)〉 =
∫

Rn
|f(x)|2dnx

=
∑
A

∫
Rn
f2
A(x) dnx , (17)

L2(Rn;Cln) = {f : Rn → Cln | ‖f‖ <∞}. (18)

1For an extension of the current real Clifford (geometric)
algebra wavelet approach to Clifford algebras Cl0,n′ the defi-
nition of reversion has to be modified to include sign changes
of negative definite basis vectors ek → ẽk = −ek, 1 ≤ k ≤ n′.

For the Clifford geometric algebra Fourier trans-
formation (CFT) [11] the complex unit i ∈ C is
replaced by some geometric (square) root of −1,
e.g. pseudoscalars in, n = 2, 3(mod 4). Complex
functions f are replaced by multivector functions
f ∈ L2(Rn;Cln).

Definition 1 (Clifford geometric algebra Fourier
transformation (CFT)). The Clifford GA Fourier
transform2 F{f}: Rn → Cln, n = 2, 3(mod 4) is
given by

F{f}(ω) = f̂(ω) =
∫

Rn
f(x) e−inω·x dnx, (19)

for multivector functions f : Rn → Cln.

The CFT (19) is inverted by

f(x) = F−1[F{f}(ω)]

=
1

(2π)n

∫
Rn
F{f}(ω) einω·x dnω. (20)

The similitude group G = SIM(n) of dilations,
rotations and translations is a subgroup of the affine
group of Rn

G = R+ × SO(n) o Rn

= {(a, rθ, b)|a ∈ R+, rθ ∈ SO(n), b ∈ Rn}. (21)

The left Haar measure on G is given by

dλ = dλ(a,θ, b) = dµ(a,θ)dnb, (22)

dµ = dµ(a,θ) =
dadθ

an+1
, (23)

where dθ is the Haar measure on SO(n). For exam-
ple

dθ =

{
dθ
2π , n = 2
1

8π2 sin θ1dθ1dθ2dθ3, n = 3
. (24)

We define the inner product of f, g : G → Cln by

(f, g) =
∫
G
f(a,θ, b) ˜g(a,θ, b) dλ(a,θ, b), (25)

and the L2(G;Cln)-norm

‖f‖2 = 〈(f, f)〉 =
∫
G
|f(a,θ, b)|2dλ, (26)

L2(G;Cln) = {f : G → Cln | ‖f‖ <∞}. (27)

2The CFT can be defined analogously for Cl0,n′ , n′ =
1, 2(mod 4).

GraVisMa 2009

96

The variations of a multivector signal f ∈
L2(Rn;Cln) in position x ∈ Rn and frequency
ω ∈ Rn are related by the CFT uncertainty prin-
ciple [11, 19–21]

‖xf‖2L2(Rn;Cln) ‖ωf̂ ‖
2
L2(Rn;Cln)

≥ n (2π)n

4
‖f‖4L2(Rn;Cln). (28)

3 Clifford GA wavelets

3.1 Real admissible continuous Clif-
ford GA wavelets

We represent the transformation group G =
SIM(n) by applying translations, scaling and ro-
tations to a so-called Clifford mother wavelet ψ :
Rn → Cln

ψ(x) 7−→ ψa,θ,b (x) =
1

an/2
ψ(r−1

θ (
x − b

a
)). (29)

The family of wavelets ψa,θ,b are so-called Clifford
daughter wavelets.

Lemma 1 (Norm identity). The factor a−n/2 in
ψa,θ,b ensures (independent of a,θ, b) that

‖ψa,θ,b‖L2(Rn;Cln) = ‖ψ‖L2(Rn;Cln). (30)

Proof.

‖ψa,θ,b‖
2
L2(Rn;Cln)

=
∫

Rn

∑
A

1
an
ψ2
A(rθ−1(

x − b

a
)︸ ︷︷ ︸

= z

) dnx

=
1
an

∫
Rn

∑
A

ψ2
A(z)an det(rθ) dnz

=
∫

Rn

∑
A

ψ2
A(z) dnz = ‖ψ‖L2(Rn;Cln,0). (31)

The spectral CFT representation of Clifford
daughter wavelets is

F{ψa,θ,b}(ω) = a
n
2 ψ̂(ar−1

θ (ω))e−inb·ω . (32)

In the proof of (32) the CFT properties of scaling,
x -shift and rotation are applied. A Clifford mother
wavelet ψ ∈ L2(Rn;Cln) is admissible if

Cψ =
∫

R+

∫
S0(n)

an{ψ̂(ar−1
θ (ω))}∼ψ̂(ar−1

θ (ω)) dµ

=
∫

Rn

˜̂
ψ(ω)ψ̂(ω)
|ω|n

dnω, (33)

is an invertible multivector constant and finite at
a.e. ω ∈ Rn. We must therefore have ψ̂(ω = 0) = 0

ψ̂(0) =
∫

Rn
ψ(x)ein0·x dnx =

∫
Rn
ψ(x) dnx

=
∑
A

∫
Rn
ψA(x) dnx eA = 0, (34)

and therefore for all 2n Clifford mother wavelet com-
ponents ∫

Rn
ψA(x) dnx = 0. (35)

By construction Cψ = C̃ψ. Hence for n =
2, 3(mod 4)

Cψ = 〈Cψ〉0 + 〈Cψ〉1 + 〈Cψ〉4 + 〈Cψ〉5 + . . .

=
[n/4]∑
k=0

(〈Cψ〉4k + 〈Cψ〉4k+1), (36)

and

〈Cψ〉0 =
∫

Rn
〈{ψ̂(ξ)}∼ψ̂(ξ)〉0

1
|ξ|n

dξn

=
∫

Rn

|ψ̂(ξ)|2

|ξ|n
dξn > 0. (37)

The invertibility of Cψ depends on its grade content,
e.g. for n = 2, 3, Cψ is invertible, if and only if
〈Cψ〉21 6= 〈Cψ〉20 :

C−1
ψ =

〈Cψ〉0 − 〈Cψ〉1
〈Cψ〉20 − 〈Cψ〉21

. (38)

Definition 2 (Clifford GA wavelet transformation
(CWT)). For an admissible GA mother wavelet
ψ ∈ L2(Rn;Cln) and a multivector signal function
f ∈ L2(Rn;Cln)

Tψ : L2(Rn;Cln)→ L2(G;Cln), (39)

f 7→ Tψf(a,θ, b) =
∫

Rn
f(x) ˜ψa,θ,b(x) dnx. (40)

• Because of (12) we need to restrict the mother
wavelet ψ for n = 2(mod 4) to even or odd
grades: Either we have a spinor wavelet ψ ∈
L2(Rn;Cl+n) with ε = 1, or we have an odd
parity wavelet ψ ∈ L2(Rn;Cl−n) with ε = −1.

• For n = 3(mod 4), no grade restrictions exist.
We then always have ε = 1.

GraVisMa 2009

97

NB: The admissibility constant Cψ is always scalar
for n = 2, for the spinor wavelet as well as for the
odd parity vector wavelet.

The spectral (CFT) representation of the Clifford
wavelet transform is

Tψf(a,θ, b) (41)

=
1

(2π)n

∫
Rn
f̂(ω) a

n
2 {ψ̂(ar−1

θ (ω))}∼eεinb·ω dnω.

Proof.

Tψf(a,θ, b) IP= (f, ψa,θ,b)L2(Rn;Cln,0) (42)

PT=
1

(2π)n
(f̂ , ψ̂a,θ,b)L2(Rn;Cln,0)

=
1

(2π)n

∫
Rn
f̂(ω)

[
ψ̂a,θ,b (ω)

]∼
dnω

FT=
1

(2π)n

∫
Rn
f̂(ω) einb·ωa

n
2

[
ψ̂(ar−1

θ (ω))
]∼

dnω

=
1

(2π)n

∫
Rn
f̂(ω) a

n
2

[
ψ̂(ar−1

θ (ω))
]∼

eεinb·ωdnω,

with IP = inner product (15), PT = CFT
Plancherel theorem [11], and FT = F{ψa,θ,b} of
(32).

NB: The CFT for n = 2(mod 4) preserves even
and odd grades.

3.2 Properties of real Clifford GA
wavelets

We immediately see from Definition 2 that the Clif-
ford GA wavelet transform is left linear with respect
to multivector constants λ1, λ2 ∈ Cln.

We further have the following set of properties.
Translation covariance: If the argument of Tψf(x)
is translated by a constant x 0 ∈ Rn then

[Tψf(· − x 0)](a,θ, b) = Tψf(a,θ, b − x 0) . (43)

Proof. By definition

[Tψf(· − x0)](a,θ, b)

=
∫

Rn
f(x− x0) ˜ψa,θ,b (x) dnx

=
∫

Rn
f(x− x0︸ ︷︷ ︸

=y

)
1
a
n
2

[
ψ(r−1

θ (
x− b
a

)
]∼

dnx

=
∫

Rn
f(y)

1
a
n
2

[
ψ

(
r−1
θ (

y − (b− x0)
a

)
)]∼

dny

= Tψf(a,θ, b− x0). (44)

Dilation covariance: If 0 < c ∈ R then

[Tψf(c ·)](a,θ, b) =
1
c
n
2
Tψf(ca,θ, cb) . (45)

Proof. By definition

[Tψf(c ·)](a,θ, b)

=
∫

Rn
f(cx)

1
a
n
2

[
ψ(r−1

θ (
x− b
a

))
]∼

dnx

y = cx
=

∫
Rn
f(y)

1
a
n
2

1
cn

[
ψ

(
r−1
θ (

y
c − b

a
)

)]∼
dny

=
1
c
n
2

∫
Rn
f(y)

1
(ac)

n
2

[
ψ

(
r−1
θ (

y − bc
ac

)
)]∼

dny

=
1
c
n
2
Tψf(ac,θ, bc). (46)

Rotation covariance: If r = rθ, r0 = rθ0 and
r′ = rθ′ = r0r = rθ0rθ are rotations, then

[Tψf(rθ0 ·)](a,θ, b) = Tψf(a,θ′, rθ0b) . (47)

Proof. By definition and with substitution y = r0x

[Tψf(r0·)](a,θ, b)

=
∫

Rn
f(r0x) ˜ψa,θ,b (x) dnx

=
∫

Rn
f(r0x)

[
ψ(r−1(

x − b

a
))
]∼

dnx

=
∫

Rn
f(y)

[
ψ

(
r−1(

r−1
0 y − b

a
)
)]∼

det−1(r) dny

=
∫

Rn
f(y)

[
ψ

(
r−1r−1

0 (
y − r0b

a
)
)]∼

dny

=
∫

Rn
f(y)

[
ψ

(
(r0r)−1(

y − r0b
a

)
)]∼

dny

= Tψf(a,θ′, r0b). (48)

Now we will see some differences from the classical
wavelet transforms.

The next property is an inner product relation:
Let f, g ∈ L2(Rn;Cln) arbitrary. Then we have

(Tψf, Tψg)L2(G;Cln) = (fCψ, g)L2(Rn;Cln)(49)

In the following proof of (49) we will use the ab-
breviations

Fa,θ(ω) = a
n
2 f̂(ω){ψ̂(ar−1

θ (ω))}∼, (50)

Ga,θ(ω′) = a
n
2 ĝ(ω′){ψ̂(ar−1

θ (ω′))}∼ , (51)

GraVisMa 2009

98

and the spectral representations (41)

Tψf(a,θ, b) =
F{Fa,θ}(−εb)

(2π)n
, (52)

Tψg(a,θ, b) =
F{Ga,θ}(−εb)

(2π)n
. (53)

Proof. Using the abbreviations (50), (51) and spec-
tral representations (52), (53) we get

(Tψf, Tψg)L2(G;Cl3,0)

=
1

(2π)2n

∫
R+

∫
S0(n)

(∫
Rn
F{Fa,θ}(−εb)

{F{Ga,θ}(−εb)}∼ dnb
)
dµ

PT=
∫

R+

∫
S0(n)

1
(2π)n

(∫
Rn
Fa,θ(ξ)G̃a,θ(ξ) dnξ

)
dµ

=
1

(2π)n

∫
Rn

(∫
R+
an
∫
S0(n)

f̂(ξ){ψ̂(ar−1
θ (ξ))}∼

ψ̂(ar−1
θ (ξ))˜̂g(ξ)dnξ

)
dµ

=
1

(2π)n

∫
Rn
f̂(ξ)

(∫
R+

∫
S0(n)

an{ψ̂(ar−1
θ (ξ))}∼

ψ̂(ar−1
θ (ξ))dµ

)
=Cψ̃

ĝ(ξ) dnξ

=
1

(2π)n

∫
Rn
f̂(ξ)Cψ ˜̂g(ξ) dnξ

PT=
∫

Rn
f(x)Cψ g̃(x) dnx = (fCψ, g)L2(Rn;Cln,0),

(54)

where PT denotes the CFT Plancherel theorem.
For the second equality we have also used the fact,
that a substitution b ′ = −εb, ε = ±1, as in∫

Rn h(−εb) dnb =
∫

Rn h(b ′)dnb ′, does not change
the overall sign.

As a corollary we get the following norm relation:

‖Tψf‖2L2(G;Cln) = Sc(fCψ, f)L2(Rn;Cln) (55)

= Cψ ∗ (f, f)L2(Rn;Cln) . (56)

We can further derive the

Theorem 1 (Inverse Clifford Cln wavelet trans-
form). Any f ∈ L2(Rn;Cln) can be decomposed with
respect to an admissible Clifford GA wavelet as

f(x) =
∫
G
Tψf(a,θ, b)ψa,θ,b C

−1
ψ dµdnb (57)

=
∫
G

(f, ψa,θ,b)L2(Rn;Cln)ψa,θ,bC
−1
ψ dµdnb,

the integral converging in the weak sense.

Proof. For any g ∈ L2(Rn;Cln,0)

(Tψf, Tψg)L2(G;Cln,0)

=
∫
G
Tψf(a,θ, b){Tψg(a,θ, b)}∼ dµdnb

=
∫
G

∫
Rn
Tψf(a,θ, b)ψa,θ,b (x)g̃(x) dnxdµdnb

=
∫

Rn

∫
G
Tψf(a,θ, b)ψa,θ,b (x) dµdnb g̃(x) dnx

=
(∫
G
Tψf(a,θ, b)ψa,θ,b dµd

nb , g

)
L2(Rn;Cln,0)

IPR= (fCψ , g)L2(Rn;Cln,0), (58)

where IPR denotes the inner product relation (49).
Because (58) holds for any g ∈ L2(Rn;Cln,0) we get

f(x)Cψ =
∫
G
Tψf(a, b,θ)ψa,θ,b (x) dµdnb, (59)

or equivalently the inverse CWT

f(x) =
∫
G
Tψf(a, b,θ)ψa,θ,b (x)C−1

ψ dµdnb. (60)

Next is the reproducing kernel : We define for an
admissible Clifford mother wavelet ψ ∈ L2(Rn;Cln)

Kψ(a,θ, b; a′,θ′, b ′)

=
(
ψa,θ,bC

−1
ψ , ψa′,θ′,b ′

)
L2(Rn;Cln)

. (61)

Then Kψ(a,θ, b; a′,θ′, b ′) is a reproducing kernel in
L2(G, dλ), i.e,

Tψf(a′,θ′, b ′)

=
∫
G
Tψf(a,θ, b)Kψ(a,θ, b; a′,θ′, b ′)dλ . (62)

Proof. By inserting for f(x) the inverse CWT (57)
into the definition of the CWT we obtain

Tψf(a′,θ′, b′)

=
∫

Rn

(∫
G
Tψf(a,θ, b) ψa,θ,b (x) dλ C−1

ψ

)
{ψa′,θ′,b ′(x)}∼ dnx

=
∫
G
Tψf(a,θ, b)(∫

Rn
ψa,θ,b (x)C−1

ψ {ψa′,θ′,b ′(x)}∼ dnx
)

=Kψ
dλ

=
∫
G
Tψf(a, b,θ)Kψ(a,θ, b; a′,θ′, b′) dλ. (63)

GraVisMa 2009

99

Theorem 2 (Generalized Clifford GA wavelet un-
certainty principle). Let ψ be an admissible Clif-
ford algebra mother wavelet. Then for every f ∈
L2(Rn;Cln), the following inequality holds

‖bTψf(a,θ, b)‖2L2(G;Cln)Cψ ∗ (ω̃f̂ , ω̃f̂)L2(Rn;Cln)

≥ n(2π)n

4
[
Cψ ∗ (f, f)L2(Rn;Cln)

]2
. (64)

NB: The integrated variance∫
R+

∫
SO(n)

‖ωF{Tψf(a,θ, .)}‖2L2(Rn;Cln)dµ (65)

is independent of the wavelet parity ε. Otherwise
the proof is similar to the one for n = 3 in [16]. For
scalar admissibility constant this reduces to

Corollary 1 (Uncertainty principle for Clifford GA
wavelet). Let ψ be a Clifford algebra wavelet with
scalar admissibility constant Cψ ∈ Rn. Then for ev-
ery f ∈ L2(Rn;Cln), the following inequality holds

‖bTψf(a,θ, b)‖2L2(G;Cln) ‖ωf̂‖
2
L2(Rn;Cln)

≥ nCψ
(2π)n

4
‖f‖4L2(Rn;Cln). (66)

• This shows indeed, that Theorem 2 represents
a multivector generalization of the uncertainty
principle for Clifford wavelets with scalar ad-
missibility constant.

• Compare with the (direction independent) un-
certainty principle (28) for the CFT.

3.3 Example of Clifford GA Gabor
wavelets

Finally Clifford (geometric) algebra Gabor Wavelets
are defined as (variances σk, 1 ≤ k ≤ n, for n =
2(mod 4) : A ∈ Cl+n or A ∈ Cl−n)

ψc(x) =
A e
− 1

2

∑
k

x2k
σ2
k

(2π)
n
2
∏n
k=1 σk

(einω0·x − e− 1
2

∑n
k=1 σ

2
kω

2
0,k︸ ︷︷ ︸

constant
),

x ,ω0 ∈ Rn, constant A ∈ Cln . (67)

The spectral (CFT) representation of the Clifford
Gabor wavelets (67) is

F{ψc}(ω) = ψ̂c(ω) (68)

= A(e−
1
2

∑
k σ

2
k(ωk−ω0,k)

2
− e− 1

2

∑
k σ

2
k(ω

2
k+ω

2
0,k)︸ ︷︷ ︸

=φ(ω)∈R

) .

It follows with (33) that the Clifford Gabor wavelet
admissibility constant

Cψc =
∫

Rn

{ψ̂c(ξ)}∼ψ̂c(ξ)
|ξ|n

dnξ

= ÃA

∫
Rn

φ(ξ)2

|ξ|n
dnξ . (69)

If e.g. A is a vector or a product of vectors (versor),
then Cψc will be scalar.

4 Conclusion

We have introduced real Clifford (geometric) algebra
wavelets for multivector signals taking values in Cln.
Real means that we completely avoid to use the field
of complex numbers C. This also applies to the use
of a real Clifford (geometric) algebra Fourier trans-
form for the spectral representation. An extension
to Cl0,n′ , n′ = 1, 2(mod 4) appears straight forward.

Acknowledgments

Soli deo gloria. I do thank my dear family, B.
Mawardi, G. Scheuermann, D. Hildenbrand and V.
Skala.

References

[1] P. Goupillaud, Biography of Jean P. Morlet,
http://www.mssu.edu/seg-vm/bio_jean_p_
_morlet.html

[2] M. Mitrea, Clifford Wavelets, Singular Integrals
and Hardy Spaces. Lect. Notes in Math. 1575,
Springer, New York, 1994.

[3] Brackx et al., Ghent Clifford Analysis Wavelet
Publications (2001-2007), http://cage.
ugent.be/crg/cliffordpublicaties.PDF

[4] L. Traversoni, Quaternion Wavelet Problems.
Proc. of 8th Int. Symp. on Approx. The-
ory, Texas A&M University, Jan. 1995. Im-
age Analysis Using Quaternion Wavelets. in E.
Bayro-Corrochano, G. Sobczyk (eds.), Proc. of
AGACSE 1999, Birkhäuser, Basel, 2001.

[5] E. Bayro-Corrochano, List of Publica-
tions, http://www.gdl.cinvestav.mx/
edb/publications.html

GraVisMa 2009

100

[6] J. Zhao, and L. Peng. Quaternion-valued Ad-
missible Wavelets Associated with the 2D Eu-
clidean Group with Dilations. J. of Nat. Geom.,
2001; J. Zhao. Clifford algebra-valued Ad-
missible Wavelets Associated with Admissi-
ble Group. Acta Sci. Nat. Univ. Pek., 41(5),
(2005).

[7] Kähler et al. Monogenic Wavelets over Unit
Ball. ZAA, 24, 813–824 (2005) .

[8] S. Bernstein, T.E. Simos et al. (eds.). Clifford
Continuous Wavelet Transforms in L0,2 and
L0,3. AIP Proc. of ICNAAM 2008, 1048, 634–
637 (2008); S. Bernstein and S. Ebert, Spherical
Wavelets, Kernels and Symmetries. AIP Proc.
of ICNAAM 2009, 1168, 761–764 (2009); S.
Bernstein, S. Ebert and R.S. Krausshar, Dif-
fusion Wavelets on Conformally Flat Cylin-
ders and Tori. AIP Proc. of ICNAAM 2009,
1168, 773–776 (2009); S. Bernstein, Spheri-
cal Singular Integrals, Monogenic Kernels and
Wavelets on the 3D Sphere. AACA, 19(2), 173–
189 (2009).

[9] E. Hitzer and R. Ab lamowicz, Geometric Roots
of −1 in Clifford Algebras Cl(p, q) with p +
q ≤ 4. Submitted to Adv. App. Cliff. Alg.,
May 2009. Preprint version: Technical Report
2009-3, Department of Mathematics, Tennessee
Technological University, Tennessee, USA, May
2009. Also available as: arXiv:0905.3019v1
[math.RA]

[10] B. Mawardi and E. Hitzer, Clifford Fourier
Transformation and Uncertainty Principle for
the Clifford Geometric Algebra Cl(3, 0). Adv.
App. Cliff. Alg., 16(1), 41–61 (2006).

[11] E. Hitzer and B. Mawardi, Clifford Fourier
Transform on Multivector Fields and Uncer-
tainty Principles for Dimensions n = 2 (mod 4)
and n = 3 (mod 4). Adv. App. Cliff. Alg. Vol.
18(S3,4), 715–736 (2008).

[12] B. Mawardi, E. Hitzer and S. Adji, Two-
Dimensional Clifford Windowed Fourier Trans-
form. acc. for G. Scheuermann, E. Bayro-
Corrochano (eds.), Appl. Geom. Algs. in Comp.
Sc. and Engineering, Springer, New York, 2010.

[13] T. A. Ell, Quaterion-Fourier Transform for
Analysis of Two-dimensional Linear Time-
Invariant Partial Differential Systems. Proc.

32nd IEEE Conf. on Decision and Control,
Dec. 1993, 1830–1841.

[14] E. Hitzer, Quaternion Fourier Transform on
Quaternion Fields and Generalizations. Adv.
App. Cliff. Alg., 17(3), 497–517 (2007); E.
Hitzer, Directional Uncertainty Principle for
Quaternion Fourier Transforms. Adv. App.
Cliff. Alg., Online First, 14 pp. (2009).

[15] B. Mawardi, E. Hitzer, R. Ashino and R. Vail-
lancourt, Windowed Fourier transform of two-
dimensional quaternionic signals. Submitted to
Appl. Math. and Comp., March 2009.

[16] B. Mawardi and E. Hitzer, Clifford Algebra
Cl3,0-valued Wavelet Transformation, Clifford
Wavelet Uncertainty Inequality and Clifford
Gabor Wavelets. Int. J. of Wavelets, Multires.
and Inf. Proces., 5(6), 997–1019 (2007).

[17] J. Ebling and G. Scheuermann, Clifford Fourier
Transform on Vector Fields. IEEE Trans. on
Vis. and Comp. Graph., 11(4), (July/Aug.
2005); Clifford Convolution And Pattern
Matching On Vector Fields. Proc. 14th IEEE
Vis. 2003 (VIS’03), p. 26, (Oct. 22-24, 2003).

[18] E. Hitzer, T.E. Simos et al. (eds.). Real Clifford
Algebra Cln,0, n = 2, 3(mod 4) Wavelet Trans-
form. AIP Proc. of ICNAAM 2009, 1168, 781–
784 (2009).

[19] E. Hitzer and B. Mawardi, Uncertainty Princi-
ple for the Clifford Geometric Algebra Cl(3, 0)
based on Clifford Fourier Transform. in TE.
Simos, G. Sihoyios, C. Tsitouras (eds.), Proc. of
ICNAAM 2005, Wiley-VCH, Weinheim, 922–
925 (2005).

[20] E. Hitzer and B. Mawardi, Uncertainty Princi-
ple for Clifford Geometric Algebras Cln,0, n =
3(mod 4) based on Clifford Fourier Transform.
in T. Qian, M.I. Vai, X. Yusheng (eds.),
Wavelet Analysis and Applications, Springer
(SCI) Book Series Applied and Numerical Har-
monic Analysis, Springer, 45–54 (2006).

[21] B. Mawardi, E. Hitzer, A. Hayashi and R.
Ashino, An Uncertainty Principle for Quater-
nion Fourier Transform, Comp. & Math. with
Appl., 56, 2398–2410 (2008).

GraVisMa 2009

101

A Study of 3-D Surface Registration Using

Distance Map and 3-D Radon Transform

Makoto Hasegawa

Faculty of Engineering, Kinki University
1 Takayaumenobe, Higashihiroshima, Hiroshima, 739-2116 Japan

hasegawa@hiro.kindai.ac.jp

ABSTRACT
A three-dimensional surface model registration using distance map and three-dimensional Radon transform is

proposed. Phase-only matched filter can be applied to the three-dimensional surface model registration just like

conventional two-dimensional image registration. Our registration procedure is described, and we execute

simulations.

Keywords
Surface model registration, distance map, Radon transform, R-transform, phase-only matched filter

1. INTRODUCTION
Three-dimensional surface model registration is an

important and fundamental topic in computer

graphics. The surface model registration means

location matching between a template surface model

and a target surface model described many polygons

and vertices. Various registration methods are

proposed. Chen and Medioni propose the iterative

closest point algorithm [Che91]. In their algorithm,

the combination of common vertex between target

and template surface model is assumed the closest

pair. The target surface model is displaced by the

minimizing the location gap between the

corresponded vertex pair. Such a process is iterated

until the location gap becomes small. It is supposed

that much iteration lead high computational

complexity. Because the solution is oscillated, the

stable registration can not be obtained in the iteration.

By the way, two-dimensional image registrations

are obviously different. Phase-only matched filter

proposed by Kuglin and Hines is a conventional

method for the two-dimensional image recognition

[Kug75]. We can use the phase-only matched filter

for the two-dimensional image registration. The

phase-only matched filter uses Fourier transform, and

the object location gap in the images is detected. We

translate the objects by the detected location gap. By

the way, when the objects are not only translated but

also rotated, the ordinary phase-only matched filter is

not available. Then, Chen and his co-workers propose

a method using the phase-only matched filter and

Fourier-Mellin transform, which is effective for the

rotation registration [Che94], where the Fourier-

Mellin transform is proposed by Sheng and Duvernoy

[She86]. In addition, we proposed a two-dimensional

image registration using the phase-only matched filter

and Radon transform [Has07, Has09]. The phase-

only matched filter doesn’t execute iteration process,

and we can get the solution directly. In addition, the

sub-pixel level registration is possible. However, we

can not apply the phase-only matched filter to the

three-dimensional surface model registration.

Because, polygon vertices don’t align regularly like a

lattice structure, the Fourier transform is impossible.

Therefore, the phase-only matched filter is not

available for the three-dimensional surface model

registration.

We propose a novel three-dimensional surface

model registration using the phase-only matched filter

without the iteration process. We define a distance

map in our method. First, we consider a three-

dimensional space include the surface model. On

each pixel in the space, we calculate the distance with

the closest vertex of the surface model. Each pixel is

attached the inverse value of the distance. The

distance map is such the three-dimensional space,

which is a three-dimensional volume data. Because

the distance map has a lattice structure, the Fourier

transform is available. Actually, we create two-

dimensional projection images (x-y projection image

and z-y projection image). Then, we can execute the

two-dimensional Fourier transform to the projection

images. Therefore, a general two-dimensional phase-

only matched filter can be applied into our three-

dimensional surface model registration just like

conventional two-dimensional image registration.

When the surface model is rotated, we have to

execute registration for the rotation. We apply R-

transform proposed by Tabbone and his do-workers

[Tab06]. In their method, they deal with the two-

dimensional image recognition. First, they convert a

two-dimensional image using Radon transform. The

GraVisMa 2009

102

result of Radon transform is expressed using the polar

coordinate system. They calculate square integration

along radius on each argument, and a one-

dimensional R-transform signal is obtained. When the

object is rotated in the image, the R-transform signal

is shifted according to the rotation angle. Therefore,

the rotation registration can be executed by the R-

transform signal comparison.

By the way, our registration is for the three-

dimensional surface models. We convert the distance

maps of template and target surface model using

three-dimensional Radon transform, and we obtain a

three-dimensional Radon volume data. After that, we

execute the R-transform to the three-dimensional

Radon volume data, and we obtain the two-

dimensional R-transform images. When the surface

models are rotated, the R-transform images are

changed according to the rotation angle. We rotated

the surface models so that the R-transform images

become equal. After the rotation registration, we

execute the translation registration using the phase-

only matched filter.

In the following section, we define our distance

map. The three-dimensional Radon transform and R-

transform are explained in Section 3. We describe our

registration procedure in Section 4. The result of a

simulation of our registration is shown in Section 5.

2. DISTANCE MAP
A coordinate in the three-dimensional space is

represented as),,(zyx=x . We define a distance

map)(xf as

)(min

1
)(

iSvi

xf
vx −

=
∈

, (1)

where S is a surface model, iv is a polygon vertex

of the surface model S , iv is a coordinate of the

polygon vertex iv , and
222

zyx ++=x .

Hence, each pixel value of the distance map)(xf is

the inverse value of the distance to the closest vertex

of the surface model S .

(a)

(b)

Figure 1: Surface model. (a) “Stanford Bunny,”

(b) “Rotated and transformed surface model

(Bunny2).”

(a)

(b)

Figure 2: Distance map of “Stanford Bunny.”

(a) x-y projection image and (b) z-y projection

image.

GraVisMa 2009

103

The surface model “Stanford Bunny” is shown in

Figure 1 (a). It has 34834 vertices in the surface

model. The surface model “Bunny2” shown in Figure

1 (b) is a rotated and translated of “Stanford Bunny.”

The distance maps of “Stanford Bunny” and

“Bunny2” are shown in Figure 2 and Figure 3,

respectively. The volume data of the distance maps is

composed by 256256256 ×× pixels. Because the

distance map has a lattice structure, the Fourier

transform is available. Therefore, the phase-only

matched filter can be applied into our three-

dimensional surface model registration.

In addition, to improve the processing speed, we

deal with the two-dimensional projection images. The

x-y plain projection images are shown in Figure 2 (a)

and Figure 3 (a), and the z-y plain projection images

are shown in Figure 2 (b) and Figure 3 (b). We can

execute the two-dimensional general phase-only

matched filter to the projection images for three-

dimensional surface model registration.

3. 3-D RADON TRANSFORM AND R-

TRANSFORM
When the surface model is rotated, we have to

execute the registration for the rotation. We apply

three-dimensional Radon transform and R-transform.

We convert the distance map)(xf using three-

dimensional Radon transform. The three-dimensional

Radon transform is defined as

xxx dfT T

f)()(),,(ρξδρθφ −= ∫ , (2)

where)cos,cossin,sin(cos θθφθφξ = . The

range of the argument φ is πφ <≤0 , and the

range of the argument θ is πθ <≤0 . The three-

dimensional Radon transform means plane

integration in the three-dimensional volume data as

Figure 4. The integration path is a two-dimensional

plane which is orthogonal with the vector ξ , and

the distance from the origin is ρ .

We convert the three-dimensional Radon volume

data using R-transform. The R-transform is defined as

ρρθφθφ dTR ff ∫=),,(),(2
. (3)

The result of the R-transform is expressed using the

arguments φ and θ in an orthogonal coordinates

system. Therefore, we obtain two-dimensional R-

transform images.

The R-transform image of “Stanford Bunny” and

“Bunny2” are shown in Figure 5 (a) and (b),

respectively. When the surface model is translated,

the R-transform image does not change. However,

(a)

(b)

Figure 3: Distance map of “Bunny2”: (a) x-y

projection image and (b) z-y projection image.

Figure 4: Three-dimensional Radon transform.

GraVisMa 2009

104

when the surface model is rotated, the R-transform

image changes according to the rotation angle. In the

case of rotation centering on Z axis (only φ degree

rotation), the R-transform image is translated

horizontally. When the surface model is rotated like

that the North Pole shifts from z axis (θ degree

rotation), the R-transform image changes relatively

complexly. Then, we rotated the surface models so

that the R-transform images become equal.

4. REGISTRATION PROCEDURE
Our registration procedure is shown as follows. The

target surface model is described as f , and the

template model is described as g .

 [Step 1] Create distance map of the two surface

model f and g . The f ’s distance map is)(xf , and

the g ’s distance map is)(xg .

[Step 2] Convert the distance map using three-

dimensional Radon transform. We obtain a Radon

volume data),,(θφρfT and),,(θφρgT .

[Step 3] Convert the Radon volume data using R-

transform. We obtain an R-transform

image),(θφfR and),(θφgR . These images are

shown in Figure 5 (a) and Figure 5 (b), respectively.

[Step 4] Rotate the surface models so that the

minimum position in the R-transform image

become)0,0(),(=θφ . The minimum position is

moved to the North Pole in Figure 4 (at the same time,

the minimum position is moved to the South Pole).

1) We look for the minimum position),(ff θφ in

the R-transform image),(θφfR .

2) We rotate the surface model f anti-clockwise

by fφ degrees centering on Z axis, so that the

minimum position in the R-transform image

),(θφfR becomes),0(fθ .

3) We rotate the surface model f anti-clockwise

by fθ degrees centering on Y axis, so that the

minimum position in the R-transform image

),(θφfR becomes)0,0(.

We also rotate the surface model g in a similar way.

Consequently, the R-transform images),(θφfR and

),(θφgR become equal excluding the rotation gap

centering on Z axis (φ rotation).

[Step 5] Calculate the correlation between

),(θφfR and),(θφgR . The correlation),(θφC is

defined as,

(a)

(b)

Figure 5: R-transform image: (a) “Stanford

Bunny” and “Bunny2.”

GraVisMa 2009

105

.),(ˆ),(ˆ
)2(

1

),(

,),(),(ˆ

)(

2

)(

∫∫

∫∫

+

+−

=

=

dudvevuRvuR

C

ddeRvuR

vui

gf

vui

ff

θφ

θφ

π

θφ

θφθφ

(4)

Find the maximum position),(cc θφ in the

correlation),(θφC . Rotate the surface model f

anti-clockwise by cφ degrees centering on Z axis.

Therefore, the R-transform images),(θφfR and

),(θφgR become equal. The two surface models'

mis-registration becomes only a translation gap.

[Step 6] Re-create the distance maps)(xf and)(xg .

Create x-y and y-z projection

images),(yxf xy ,),(yzf zy ,),(yxg xy ,

and),(yzg zy .

[Step 7] Execute the Phase-only matched filter to the

projection images),(yxf xy and),(yxg xy in order

to detect the translation gap between two surface

models f and g . The result of the phase-only

matched filter),(yxPOC is defined as,

.),(ˆ),(ˆ
)2(

1

),(

,),(),(ˆ

)(

2

)(

dudvevugvuf

yxPOC

dxdyeyxfvuf

vyuxi

xyxy

vyuxi

xyxy

+

+−

∫∫

∫∫

=

=

π

(5)

The phase-only correlation),(yxPOC has a sharp

peak. The peak position shows the translation gap for

X axis and Y axis. Similarly, we execute the Phase-

only matched filter to the projection images

),(yzf zy and),(yzg zy . We also detect translation

(a)

(b)

Figure 6: Rotation correlation. (a) “Stanford

Bunny,” (b) “Bunny2.”

(a)

(b)

Figure 7: Rotation correlation of the R-

transform image: (a) “Stanford Bunny” and

“Bunny2.”

GraVisMa 2009

106

gap for Z axis. We translate the target surface

model f , and our registration is competed.

5. EXPERIMETAL RESULTS
We execute a simulation for our surface model

registration. The template model is “Stanford Bunny”

and the target model is “Bunny2.” These surface

models are shown in Figure 1 (a) and (b),

respectively. We rotate “Bunny2” anti-clockwise by

30 degrees centering on Z axis; rotate anti-clockwise

by 45 degrees centering on Y axis; translate 10, 20,

and -10 pixels for X, Y, and Z axis, respectively.

Then, we can get the target model “Bunny2.”

First, we create distance maps of “Stanford Bunny”

and “Bunny2.” The x-y projection images of

“Stanford Bunny” and “Bunny2” are shown in Figure

2 (a) and Figure 3 (a); and the z-y projection images

are shown in Figure 2 (b) and Figure 3 (b),

respectively.

Next, we convert the distance maps using three-

dimensional Radon transform and R-transform. We

obtain two R-transform images of “Stanford Bunny”

and “Bunny2,” shown in Figure 5 (a) and (b),

respectively. The minimum position),(θφ of the R-

transform image of “Stanford Bunny” is (47, 101).

Then, we rotate the surface model “Stanford Bunny”

anti-clockwise by 47 degrees centering on Z axis;

rotate anti-clockwise by 101 degrees centering on Y

axis. Therefore, the surface model “Stanford Bunny”

become as Figure 6 (a), and the R-transform image

become as Figure 7 (a). Similarly, the minimum

position),(θφ of the R-transform image for

“Bunny2” is (91, 105). Then, we rotate the surface

model “Bunny2” anti-clockwise by 91 degrees

centering on Z axis; rotate anti-clockwise by 105

degrees centering on Y axis. Therefore, the surface

model “Bunny2” become as Figure 6 (b), and the R-

transform image become as Figure 7 (b).

Consequently, the two R-transform images of

“Stanford Bunny” and “Bunny2” are equal excluding

the rotation gap for the argumentφ . We execute the

Figure 8: Re-rotated “Bunny2.”

Figure 9: R-transform image of the re-rotated

“Bunny2.”

(a)

(b)

Figure 10: Distance map of the rotation

correlated”Stanford Bunny”: (a) x-y projection

image and (b) z-y projection image.

GraVisMa 2009

107

phase-only matched filter to these R-transform

images, and we detect the rotation gap which is 46

degree for the argument φ . We rotate the surface

model “Bunny2” anti-clockwise by 46 degrees

centering on Z axis. Therefore, the surface model

“Bunny2” become as Figure 8. The surface model

“Stanford Bunny” and “Bunny2” become equal

excluding the translation gap. In addition, the R-

transform images for “Stanford Bunny” and

“Bunny2” become equal as Figure 7 (a) and Figure 9.

We re-create the distance maps for “Stanford

Bunny” and “Bunny2.” The x-y projection images of

“Stanford Bunny” and “Bunny2” are shown in Figure

10 (a) and Figure 11 (a); and the z-y projection

images are shown in Figure 10 (b) and Figure 11 (b),

respectively. We execute the phase-only matched

filter to the x-y projection images as Figure 10 (a)

and Figure 11 (a), and we obtain a phase-only

correlation image as Figure 12 (a). In the correlation

image of Figure 12 (a), we have a sharp peak which is

located at (52, 43). The peak location means the

translation gap as 52 pixels for X axis and 43 pixels

for Y axis. We translate the surface model “Bunny2”

to 52 pixels for X axis, 43 pixels for Y axis. Similarly,

we execute the phase-only matched filter to the z-y

projection images Figure 10 (b) and Figure 11 (b),

and we obtain a phase-only correlation image as

Figure 12 (b). In the correlation image of Figure 12

(b), we have a sharp peak which is located at (-3, 43).

The peak location means the translation gap as -3

pixels for Z axis. We translate the surface model

“Bunny2” to -3 pixels for Z axis.

The rotation and translation registration between

“Stanford Bunny” and “Bunny” is completed.

We show the matching scores which are values

from the phase-only matched filter in Step 7 as Table

1. The surface models “Dragon” and “Happy

Buddha” are used in the experiment. It is possible to

use our approach for object identification.

(a)

(b)

Figure 11: Distance map of the re-rotation

correlated”Stanford Bunny”: (a) x-y projection

image and (b) z-y projection image.

(a)

(b)

Figure 12: Translation correlation using phase-

only matched filter: (a) x-y projection and (b) z-y

projection.

GraVisMa 2009

108

6. CONCLUSION
A method of surface model registration using

distance map, three-dimensional Radon transform,

and R-transform is proposed. We define the distance

map which each pixel are attached an inverse value of

the distance with the nearest polygon vertex. Because

our distance space has a lattice structure, the Fourier

transform is available. Therefore, the phase-only

matched filter can be applied into our three-

dimensional surface model registration just like

conventional two-dimensional image registration. In

addition, we create two-dimensional projection

images (x-y projection, and z-y projection) from the

three-dimensional distance map. We can apply two-

dimensional phase-only matched filter to the

projection images for the three-dimensional surface

model registration.

For the rotation registration, we apply three-

dimensional Radon transform and R-transform. We

convert the distance space using three-dimensional

Radon transform. After that, we convert using the R-

transform, and we obtain a two-dimensional R-

transform image. We rotated the target surface model

so that the R-transform images of surface models

become equal.

We executed a simulation using a surface model

“Stanford Bunny”, and the possibility of our

registration method was shown. In our future works,

our registration accuracy and the computational

complexity will be discussed. We will compare with

other methods like the iterative closest point

algorithm.

ACKNOWLEDGEMENTS

This research was supported by Takahashi Industrial

and Economic Research Foundation.

REFERENCES

[Che91] Y. Chen and G. Medioni, “Object modeling

by registration of multiple range images,” IEEE

Int. Conference on Robotics and Automation,

vol. 3, pp. 2724-2729, 1991.

[Kug75] C. Kuglin and D. Hines, “The pase

correlation image alignment method,” Proc. Int.

Conf. on Cybernetics and Society, pp.163-165,

1975.

[Che94] Q. Chen, M. Defrise, and F. Deconinck,

“Symmetric phase-only matched filtering of

Fourier-Mellin transform for image registration

and recognition,” IEEE Trans. PAMI, vol. 16, no.

12, pp. 1156-1168, Dec. 1994.

[She86] Y. Shen and J. Duvernoy, “Circular-Fourier-

radial-Mellin transform discriptors for pattern

recogmition,” J. Opt. Soc.AM. A, vol. 3, no. 6,

June 1986.

 [Has07] M. Hasegawa, “Propasal of pattern

matching using log-autocorrelation on Radon

transform,” Proc. of International Symposium on

Communications and Information Technologies

2007 (ISCIT2007), Oct. 2007.

[Has09] M. Hasegawa, "Proposal of Amplitude only

Logarithmic Radon Transform for Pattern

Matching - Relation with Fourier-Mellin

Transform -," Proc. of International Symposium

on Intelligent Signal Processing and

Communication Systems (ISPACS2008), Feb.

2009.

[Tab06] S. Tabbone, L. Wendling, and J. –P. Salmon,

“A new shape descriptor defined the Radon

transform,” Computer Vision and Image

understanding, 102, pp.42-51, 2006.

Table 1: Matching Score

 Stanford

Bunny

Dragon Happy

Buddha

Stanford

Bunny

1.0000 0.0282 0.0323

Bunny2

0.2358 0.0273 0.0328

Dragon

 1.0000 0.0311

Happy

Buddha

 1.0000

GraVisMa 2009

109

GraVisMa 2009

110

Geometric Algebra Computing on the CUDA Platform

Christian Schwinn
TU Darmstadt, Germany

Department of Computer Science
schwinn@rbg.informatik.tu-

darmstadt.de

Andreas Görlitz
TU Darmstadt, Germany

Department of Computer Science
A.Goerlitz@stud.tu-darmstadt.de

Dietmar Hildenbrand
TU Darmstadt, Germany

Department of Computer Science
dhilden@gris.informatik.tu-

darmstadt.de

ABSTRACT

Geometric Algebra (GA) is a mathematical framework that allows a compact, geometrically intuitive description of
geometric relationships and algorithms. These algorithms require significant computational power because of the
intrinsically high dimensionality of geometric algebras. Algorithms in an n-dimensional GA require 2n elements to
be computed for each multivector. GA is not restricted to a maximum of dimensions, so arbitrary geometric alge-
bras can be constructed over a vector space Vn. Since computations in GA can be highly parallelized, the benefits
of a parallel computing architecture can lead to a significant speed-up compared to standard CPU implementations,
where elements of the algebra have to be calculated sequentially. An upcoming approach of coping with parallel
computing is to use general-purpose computation on graphics processing units (GPGPU). In this paper, we focus
on the Compute Unified Device Architecture (CUDA) from NVIDIA [9]. We present a code generator that takes
as input the description of an arbitrary geometric algebra and produces an implementation of geometric products
for the underlying algebra on the CUDA platform.

Keywords: Geometric Algebra, Geometric Computing, GPU, CUDA.

1 INTRODUCTION

Geometric Algebra (GA) has become more and more
popular in different fields of research. Using GA makes
it possible to develop very compact algorithms while
keeping them geometrically intuitive. One major draw-
back is the reduced performance when executing GA
algorithms without further processing. But recent re-
search has shown that it is possible to speed up GA al-
gorithms drastically by means of static code optimiza-
tion and switching to parallel computing architectures
like field-programmable gate arrays (FPGA), for in-
stance. Moreover, this can lead to performance im-
provements compared to standard implementations [8].

Applications written in GA require a very large num-
ber of calculations to be processed, e.g. feature extrac-
tion algorithms [11]. In many cases it is necessary to
define highly customized non-standard algebras in or-
der to fit the problem statement. What these problems
have in common is a remarkable amount of paralleliza-
tion required to fulfill the constraints of reduction. In
theory, it is possible to decrease the order of time com-
plexity for certain applications which, in turn, requires
virtually infinite operations to be executed in parallel.

In this paper, we investigate the potential of executing
GA operations on parallel architectures. As a very first
approach we focus on the implementation of arbitrary
geometric products on the CUDA platform as a means
for evaluating the performance of parallel computing in
GA compared to standard implementations. We imple-
ment the calculation of the geometric product without
any restrictions to the underlying algebra and associated

metric and signature. We exploit the property that ele-
ments of the result multivector can be easily computed
in parallel, e.g. each one in a separate (parallel) thread
on a CUDA-enabled GPU. Therefore, we implement a
code generator producing parallel CUDA code calculat-
ing the geometric product of the related algebra. This
code can be used to speed up algorithms.

Our approach takes as input the description of an
n-dimensional algebra in terms of a metric or signa-
ture and calculates a data structure describing the el-
ementary product of all possible combinations of ba-
sis blades. This can be seen as a lookup table that
is first optimized according to GA simplifications and
then used to generate expressions for the individual re-
sult multivector components that only depend on the
coefficients of the input multivectors to be multiplied.
This corresponds to a table based compilation process
as described in [5]. Finally, these expressions are trans-
lated into parallel CUDA code that calculates the result
multivector and can be used for efficient calculation of
the geometric product.

As a result, we evaluate the performance of the par-
allelized geometric product to get an estimation on the
impact of parallel computing on problems in GA.

2 CONTRIBUTION
We present a code generator which translates the de-
scription of an arbitrary geometric algebra with associ-
ated signature and metric into CUDA code that imple-
ments the geometric product for the specified algebra.
This code is a building block that can be used in GA
algorithms to calculate the geometric product with the

GraVisMa 2009

111 Communication papers

help of a NVIDIA GPU. The code generator is written
in Java, allowing the integration into a future versions
of the Gaalop [6] optimizer.

Our approach consists of the steps outlined below:

1. Input description of signature and metric for the ge-
ometric algebra to be optimized.

2. Computation and optimization of a lookup data
structure representing elementary products of basis
blades for the given algebra.

3. Calculation of expressions for each component of
the result multivector.

4. Code generation for optimized output code imple-
menting the geometric product.

2.1 Specification of Algebra
We support arbitrary geometric products to be opti-
mized by our compiler. Therefore, it must be possible
to specify an arbitrary n-dimensional geometric algebra
by means of a signature and metric description. From
this information we derive a n×n matrix describing the
geometric product of basis vectors with eij = eiej .

2.2 Computation of Data Structure
Using the information from the previous step, we calcu-
late a lookup data structure that describes the geomet-
ric product of all possible basis blades that can be con-
structed over the n basis vectors from the algebra. This
data structure has the form of a matrix with 2n × 2n

entries. Note that an arbitrary geometric algebra is non-
euclidean, i.e. its metric is not diagonal. So, in general,
a single entry of the lookup matrix consists not only of
a simple product of basis vectors but rather of a sum of
expressions. In the 5D conformal algebra, for example,
e0e∞ = −1+ e0∧ e∞. The maximum number of sum-
mands in this algebra is 2, namely the scalar -1 and the
2-blade e0 ∧ e∞.

Each entry in the lookup data structure can be viewed
as a list of references to basis blades named E1 to EN

with N = 2n. For a three-dimensional algebra, for
example, the basis blades are named as shown in the
following table.

E1 1
E2 e1
E3 e2
E4 e3
E5 e1 ∧ e2
E6 e1 ∧ e3
E7 e2 ∧ e3
E8 e1 ∧ e2 ∧ e3

Table 1: Naming of basis blades.

The internal representation can be made very com-
pact using a bitwise encoding for "active" basis vectors
in a blade, e.g. 101 for E6 = e1∧ e3 as used in Gaigen
[4], for instance. We assume a canonical ordering of
blades, starting with scalars, 1-blades, 2-blades and so
on, labeled with E1, E2, ...EN .

Exploiting geometric algebra properties such as anti-
commutativity (ei ∧ ej = −ej ∧ ei) and the knowledge
of the inner product of basis vectors from the first step,
it is possible to simplify the entries in the lookup matrix.
The goal is to have only very few references to signed
(+/-) basic blades. This applies to euclidean algebras,
for instance, where the metric is diagonal and each
entry consists of a single blade. The following table
gives an example for the optimized lookup table of a 2-
dimensional euclidean algebra. More details about the
table-based approach of implementing and optimizing
geometric algebra operations like the geometric prod-
uct can be found in [5].

b E1 E2 E3 E4

a 1 e1 e2 e12

E1 1 E1 E2 E3 E4

E2 e1 E2 E1 E4 E3

E3 e2 E3 -E4 E1 -E2

E4 e12 E4 -E3 E2 -E1

Table 2: Example of a lookup table.

We calculate the lookup table using the freely avail-
able reference implementation of Gaigen [3], which is
implemented in Java and provides basic functionality
without performance considerations but serves our pur-
poses. After the calculation of the lookup table, we get
a list of basis blades for each entry of the table con-
taining only non-zero references to the basis blades Ei.
Each entry represents a part of the expression that con-
tributes to the coefficient of the result multivector. For
each reference to basis blades Ei in the entry, the in-
put coefficients associated with the row and column of
the position in the lookup table contribute to the final
coefficient of blade Ei in the result multivector.

2.3 Multivector Components
From the information stored in the lookup table, expres-
sions for each component of the result multivector can
be determined. Each multivector consists of a combi-
nation of 2n basis blades and associated coefficients,
where the i-th coefficient is multiplied by Ei. Since
only coefficients of the input multivectors are of inter-
est, the references to basis blades found in the lookup
table have to be translated. For each multivector com-
ponent i, the references to the Ei are looked up in the
table.

Let a, b be the input multivectors with coefficients
a1, a2, . . . aN and b1, b2, . . . bN . Then for an entry Ei in

GraVisMa 2009

112 Communication papers

the lookup table the coefficients are selected according
to the column and row where the entry has been found.
So, for the first occurrence of E1 in the example from
Table 2, which is placed in the first column and first row,
indices a1 and b1 have to be selected. We will associate
the row index with multivector a and the column index
with multivector b, as indicated by Table 2. The sign to
be used corresponds directly to the sign of the reference
to the basis blade found in the table.

The final expressions for the coefficients of the result
multivector c from the above example are shown below.

c1 = a1b1 + a2b2 + a3b3 − a4b4

c2 = a1b2 + a2b1 − a3b4 + a4b3

c3 = a1b3 + a2b4 + a3b1 − a4b2

c4 = a1b4 + a2b3 − a3b2 + a4b1.

Note that these expressions only consist of a sum of
products of coefficients. The GPU which will finally
calculate these coefficients and therefore does not re-
quire any knowledge about geometric algebra opera-
tions like outer or inner product, for example.

2.4 Code generation
The last step in the code generation process is creat-
ing the CUDA output. We parallelize the calculation of
each multivector component, so each component is cal-
culated in a separate thread. This is possible since each
thread only depends on the input coefficients of multi-
vectors a and b. For an n-dimensional algebra there will
be 2n threads executed in parallel. In practice, the ac-
tual number of parallel threads depends on the amount
of processing units on the target platform.

In fact, the parallelization scheme is application-
dependent. For a single application calculating a single
geometric product at a time, the above principle is
sufficient. But for applications which might have a
large number of geometric products to be calculated in
parallel at the same time, this principle might be inap-
propriate. In this case, other concepts like streaming,
working queues or warp-level parallelization should
be more useful. As a first attempt of a GPU-based
implementation in this paper, we stick to the first
method for parallelization, calculating one coefficient
per thread.

Expressions for different multivector components
differ as well in the coefficients to be multiplied as in
the structure. Depending on the underlying algebra,
some multivector components could be always zero
while others consist of a large expression with multiple
additions and subtractions. In order to distribute
parallel threads calculating different components, it
is therefore necessary to find a generic representation
of such an expression, since parallel threads have to

execute the same code1. To cope with differences in
the length and structure of these expressions, we define
a meta data structure which will be used in the CUDA
code produced by the code generator. From this data
structure, parallel threads can look up which elements
of the input multivectors have to be multiplied and
added or subtracted to the current result.

The meta data structure consists of two parts. The
first one represents a single summand in the expression
for a multivector component, e.g. a1b3. Since these
summands can also be counted negatively, there is an
additional sign field. This structure is modeled as a C
struct Summand keeping track of the indices of the in-
put multivectors and the sign. To minimize the memory
footprint, the code generator generates summand struc-
tures only for summands that actually will be used in
the calculations. All the summands are finally stored
sequentially in an array. A thread calculating the i-th
multivector component must know which summands to
select from this array. Therefore, the second part of
the meta data structure keeps track of which summands
correspond to which expression. This is modeled in an-
other C struct Info which stores the offset to the rel-
evant summands. This requires the code generator to
store summands in the correct order. For each multivec-
tor component there is exactly one info object, so each
thread selects the info object according to its thread in-
dex. The number of summand objects to be involved in
the calculation is determined by the current offset and
the offset of the next component or the maximum num-
ber of summand objects in the case of the last index.

Calculation of the meta data structure can be done
before the actual calculation of the geometric product
since the related information is static and not depen-
dent on concrete coefficients of the input multivectors.
Finally, each thread needs references to

• input multivectors a, b,

• result multivector c,

• array of summands and

• the array of info objects.

From this information each thread selects the info ob-
ject of the multivector component to be calculated, from
which it gets offset and length of the summand objects
to involve. Then for each summand object the coeffi-
cients of a and b are multiplied according to the index
in the summand info and signed accordingly. This tem-
porary result is aggregated until all relevant summand
objects have been processed. The final result is written
to the result multivector c. The calculation of a multi-
vector coefficient ci is illustrated in Figure 1.

1 This is in fact a shortcoming of CUDA-based applications: It is not
possible to access the GPU’s parallel processing units to be used for
different tasks at the same time.

GraVisMa 2009

113 Communication papers

b
1
 b

2
 b

3
 b

4
 b

5
 … b

N

a
1

a
2

a
3

a
4

a
5

…

a
N

+/-

*

*

*

Figure 1: Calculation scheme for coefficient ci

2.5 Implementation details
When generating CUDA code, it is important to con-
sider the structure of the underlying hardware. The
main aspect to be concerned is the memory hierarchy.
Depending on the amount of data and the way data
is accessed, it is very important to specify which data
should be stored in which parts of the device memory.
For details on the memory hierarchy, please refer to the
CUDA Programming Guide [9].

Listing 1 shows an exemplary CUDA code which is
executed by each thread. Variables a and b are vec-
tors containing the input coefficients, c is used to store
the results. The offset to the array of summand ob-
jects is obtained by the current thread index. Accord-
ing to the index and current offset, the number of sum-
mands to be used is determined. Then, for each rele-
vant summand, the indices to the input multivectors are
retrieved, and the corresponding coefficients are multi-
plied and signed. The final result is written into c.

_ _ g l o b a l _ _ void C a l c u l a t e (f l o a t ∗ a ,
f l o a t ∗ b ,
f l o a t ∗ c) {

i n t i = blockDim . x∗ b l o c k I d x . x+ t h r e a d I d x . x ;
f l o a t r e s = 0 . 0 ;
i n t o f f s e t = o f f s e t s [i] ;
i n t l e n g t h ;
i f (i == N−1) {

l e n g t h = num_summands−o f f s e t ;
} e l s e {

l e n g t h = o f f s e t s [i +1]− o f f s e t ;
}
f o r (i n t j = 0 ; j < l e n g t h ; j ++)
{

Summand s = summands [o f f s e t + j] ;
i f (s . s i g n) {

r e s += a [s . i n d e x _ a]∗ b [s . i ndex_b] ;
} e l s e {

r e s −= a [s . i n d e x _ a]∗ b [s . i ndex_b] ;
}

}
c [i] = r e s ;

}

Listing 1: Kernel code executed by each thread

This way it is possible that each kernel executes the
same code although the expressions for different multi-
vector components are variable.

The formal parameters to the kernel function, a, b and
c, reside in the shared device memory automatically.
Since they have to be passed from host side each time a
geometric product should be calculated, this is already
the place as close to the multiprocessor as possible.

Since the meta data structure consisting of the sum-
mand array and the offset objects has to be used in each
thread, it is necessary to keep this data in the global de-
vice memory. Here, it is important to know that the
meta data becomes very large, dependent on the di-
mension of the algebra. So, for algebras with dimen-
sions larger than 6, other portions of the device memory
like shared memory or constant memory are too small.
Passing the meta data each time on a kernel call would
place the data in the shared memory, which is restricted
in size on the one hand and available only for a set of
threads from one block on the other hand. Constant
memory is cached, so there is in general a performance
benefit over global device memory. But constant mem-
ory is restricted to 64 KB, which is far too less for large
algebras. Details on memory and time consumption
will be shown in section 3.

Another problem related to the meta data is the setup
procedure, which has to be done before the actual com-
putation can begin. This step is required only once, af-
terwards an arbitrary number of geometric products can
be calculated without the overhead of setting up the data
structure again. For each multivector component, there
is a variable number of summands to be included in the
calculation. Each summand object, which consists of
the indices to the input multivectors and the correspond-
ing sign, has to be added to the array of summands.
Since in the worst case there are 2n ∗ 2n summands in
total, 22n objects have to be created and added to the
array. This is a considerable amount of code to be pro-
duced, because an exponential number of lines of code
has to be processed. If the dimension were too high,
the produced code would be so large that most compil-
ers would have problems compiling this code. It can
therefore be necessary to swap this information out of
the program source code, i.e. in a separate file which
has to be read at runtime. Doing this leads to a constant
size of the actual source code, whereas the size of the
input file to be read during the setup increases exponen-
tially with the number of dimensions.

3 EVALUATION
The approach presented in this paper is to be seen as
a very first attempt to implement geometric algebra on
a multiprocessor platform like GPUs. As a proof of
concept, no optimizations have been applied at all. So,
allowing to implement the geometric product of an ar-
bitrary algebra requires to assume worst case scenarios

GraVisMa 2009

114 Communication papers

2 3 4 5 6 7 8 9

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2 3 4 5 6 7 8 9

0,00

50,00

100,00

150,00

200,00

250,00

300,00

2 3 4 5 6 7 8 9

0,00

500,00

1000,00

1500,00

2000,00

2500,00

Figure 2: Comparison of time consumption (y-axis) for 10 (left), 100 (middle) and 1000 (right) geometric products.
Times are measured in milliseconds. Values on the x-axis specify the dimension of the algebra.

where multivectors all have non-zero coefficients and
lookup tables are fully occupied with no entries being
zero. Consequently, a euclidean geometric algebra of
dimension n is expected to have a lookup table with
exactly 2n ∗ 2n = 22n elements, each one represent-
ing one summand in the different sum-of-product ex-
pressions for every coefficient of the result multivector
component. Due to this exponential growth and the as-
sumption that multivectors have non-zero coefficients,
the meta data required to represent these expressions
becomes very large, even for small dimensions.

Performance considerations
Memory

Restricting the maximum dimension of the algebra to
15 allows to encode a summand of some coefficient into
a single integer value in the following way2:

• 1 bit for sign (e.g. 0 for positive, 1 for negative),

• 15 bits for the index to the first multivector,

• 15 bits for the index to the second multivector and

• 1 unused bit for padding.

Consequently, for an algebra of dimension 15, there
would be 215 multivector elements, requiring 215 in-
dices. A summand object, consisting of two indices and
the sign would therefore occupy 31 bits of a 32-bit in-
teger variable. As argued above, this would mean to
create 22∗15 = 230 summand objects, each one requir-
ing the space of a single integer, i.e. 4 bytes. The total
amount of memory would therefore be 230 ∗ 22 = 232

bytes = 4 Gbyte.
Obviously, the memory footprint is the limiting factor

in this approach. Without optimizations, high dimen-
sions are not feasible at all, because more time would

2 Note that otherwise the meta data would be about three times larger,
making the application infeasible due to the memory overhead.

be spent copying the data back and forth from and to the
device memory while losing the advantages of parallel
processing.

Time

Figure 2 shows three graphs plotting the time to cal-
culate 10, 100 and 1000 geometric products over the
dimension of the algebra. For dimensions ≤ 7 with
moderate memory footprint, time rises linearly with the
number of dimensions. Since memory consumption
rises exponentially, higher dimensions have a lot more
influence on the computation time, as indicated in the
plots. Comparing the plots with respect to the number
of geometric products shows that increasing the num-
ber of products by factor 10 results in an increase in
time consumption by approximately factor 10, too.

These results give a hint that the time required to cal-
culate a number of products is influenced by the mem-
ory needed to store the structure of expressions for the
different multivector components, which itself depends
on the dimension.

Comparison to CPU-based Calculation

The main disadvantage of a GPU-based approach is the
necessity to copy data back and forth to and from the
device, because the GPU has its own set of memory,
registers and caches. Besides copying the meta data re-
quired to represent the instructions required to calculate
a result coefficient, which has to be done only once per
application lifetime, it is necessary to copy the vectors
representing the input coefficients onto the device and
output coefficients from the device. As opposed to the
static meta data, this information changes in each call
to the kernel function, so copying has to be performed
on each calculation. The effort for copying input and
output data is directly related to the dimension of the
algebra, due to the fact that each vector of input and
output coefficients has 2n elements, i.e. 2n times the

GraVisMa 2009

115 Communication papers

size of the data type, e.g. 2n ∗ 4 bytes in the case of
floats. As an example, calculating the product in an 8-
dimensional algebra, 3 ∗ 28∗sizeof(float)= 3 KB of in-
put and output data have to be copied for each product.
This is a significant amount which has to be considered
when measuring the performance of the implementa-
tion. In our benchmarks, the time spent for I/O oper-
ations between host and device took up to 25% of the
overall computation time.

Gaigen [4] is a CPU-based implementation generator
for geometric algebra. Gaigen uses advanced optimiza-
tion techniques and uses specializations that tell the tool
where further optimizations can be made, according to
the type of multivector. As a CPU-only application,
Gaigen does not suffer from memory overhead which is
inevitable on parallel platforms as GPUs, for instance.
This is why Gaigen is about factor 10 faster than our
approach without any optimizations. In turn, Gaigen
suffers from a similar problem as outlined in section
2.5, what makes Gaigen unusable for dimensions larger
than 6 because the generated code becomes too large so
compilers have problems compiling it.

Without considering the memory overhead, our ap-
proach is slightly faster than Gaigen, even without ap-
plying further optimizations on the structure of multi-
vectors. With a certain knowledge about the types of
multivectors which are about to be multiplied, a lot of
computation time can be saved by removing parts from
the meta data that are actually zero. For example, let the
second half of both multivectors be always zero. Then
75% of the lookup table are zero and meta data shrinks
to 25% of the worst case, which finally leads to better
overall performance. For details, please refer to [5].

Moreover, our approach targets applications using
high-dimensional geometric algebras. Only in cases
where the dimension is high enough, memory overhead
can be compensated by exploiting the parallel architec-
ture, i.e. keeping the device fully loaded.

4 CONCLUSION
We have shown a very first approach of implement-
ing geometric algebra on the GPGPU platform CUDA.
We implemented a code generator producing an imple-
mentation of the geometric product on the CUDA plat-
form. Applications running CUDA-enabled hardware
are therefore able to use this implementation to make
use of the computational power of modern GPUs. With-
out optimizations it is currently theoretically possible
to calculate geometric products in algebras of dimen-
sion up to 15 without exceeding device memory restric-
tions3. In practice, this is not usable, since there would
be too much memory overhead for this number of di-
mensions.

3 For dimensions > 10 it is necessary to put input and output multivec-
tors in global memory since shared memory where kernel parameters
reside is limited to 16 KB.

Supporting arbitrary algebras while always consider-
ing the worst case of full multivectors with non-zero co-
efficients is too limiting. For most applications, e.g. us-
ing the 5D conformal geometric algebra, more than half
of the multivector coefficients are usually zero. This is
important to know in advance, because multiplication
tables as mentioned in section 2.2 can be reduced to a
large extent. This is a nice property which has to be ex-
ploited as much as possible. Otherwise, there is far too
much "infrastructure" required to manage the calcula-
tion for different multivector components, as outlined in
the previous sections. Since time consumption depends
directly on the number of dimensions and the related
amount of meta data required for calculation, reducing
the lookup data and related memory consumption on
the device to the minimum possible value is the most
important step to achieve reasonable performance while
supporting high-dimensional algebras. Of course, this
requires the knowledge of multivectors to be multiplied.
One solution is to tell the code generator which special-
izations of multivectors will be used. This is done in
Gaigen, for instance. But creating specializations re-
quires the user to know the structure of multivectors in
advance. In complex algorithms, there might be situ-
ations where it is hard to decide which parts of multi-
vectors might always be zero. It is therefore desirable
to have a tool that optimizes parts of algorithms auto-
matically like Gaalop [6]. This is why the integration
of a code generator for parallel platforms into Gaalop is
planned for future releases.

5 FUTURE WORK
Our next step will be to investigate the potential for
minimization of memory needed to store and process
multiplication tables. This can be done automatically
by using the algorithm optimizer tool Gaalop, which
optimizes algorithms written in the interactive visual-
ization and calculation tool CLUCalc [10] and produces
different output formats like C++, for instance. With
the help of Gaalop, it will be possible to detect the
structure of multivectors and to optimize multiplication
tables according to the automatically detected special-
izations as described in [5].

Gaalop [6] makes it possible to optimize algorithms
in GA rather than single calculations. Therefore, the
code generator for parallel architectures will be inte-
grated into the Gaalop optimizer software.

Furthermore, we will study existing libraries for ge-
ometric computing like described in [1] to find new
methods how to generate optimized code for arbitrary
algebras and dimensions.

A new standard for parallel computing, OpenCL [7],
has recently been released. Using OpenCL makes it
possible to address multiple computing devices like
CPUs, GPUs or cell processors to be used for general-
purpose computing. This standard generalizes vendor-

GraVisMa 2009

116 Communication papers

specific GPGPU approaches like CUDA or ATI Stream
[2], for example. We see this as an important step
for future developments of general-purpose computing.
Since as from now OpenCL drivers are officially re-
leased by NVIDIA and OpenCL is supported in the
latest version 10.6 of the Mac OS operating system,
we will extend our code generator to produce OpenCL
code in order to support different hardware platforms
automatically.

REFERENCES
[1] John Browne. The GrassmannAlgebra Book Home Page.

Available at http://grassmannalgebra.info/
grassmannalgebra/book/, 2002.

[2] AMD Corp. The ATI Stream Technology home
page. http://www.amd.com/US/PRODUCTS/
TECHNOLOGIES/STREAM-TECHNOLOGY/Pages/
stream-technology.aspx, 2009.

[3] Leo Dorst and Daniel Fontijne. Geometric Algebra for Com-
puter Science. http://www.geometricalgebra.net/
reference_impl.html, 2009.

[4] Daniel Fontijne. Gaigen 2: A Geometric Algebra Implementa-
tion Generator. In GPCE’06. ACM, 2006.

[5] Dietmar Hildenbrand. Geometric Algebra Computers. submit-
ted to the proceedings of the GraVisMa workshop, Plzen, 2009.

[6] Dietmar Hildenbrand and Joachim Pitt. The Gaalop home page.
http://www.gaalop.de, 2008.

[7] Khronos-Group. The OpenCL home page. http://www.
khronos.org/opencl/, 2009.

[8] H. Lange, F. Stock, D. Hildenbrand, and A. Koch. Acceleration
and Energy Efficiency of a Geometric Algebra Computation us-
ing Reconfigurable Computers and GPUs. FCCM, 2009.

[9] NVIDIA. The CUDA home page. http://www.nvidia.
com/object/cuda_home.html, 2009.

[10] Christian Perwass. The CLU home page. HTML document
http://www.clucalc.info, 2008.

[11] M. T. Pham, K. Tachibana, E. M. S. Hitzer, T. Yoshikawa, and
T. Furuhashi. Classification and Clustering of Spatial Patterns
with Geometric Algebra. AGACSE, 2008.

GraVisMa 2009

117 Communication papers

Creating Editable 3D CAD Models from
Point Cloud Slices

Antonis Protopsaltou

University of Ioannina
Department of Computer Science

GR45110 Ioannina, Greece

antonis@cs.uoi.gr

Ioannis Fudos

University of Ioannina
Department of Computer Science

GR45110 Ioannina, Greece

fudos@cs.uoi.gr

ABSTRACT
We introduce a novel approach to reconstructing 3D objects from cross sections of point clouds acquired by
laser scanning. Cross sections are almost planar clusters of 3D points. We first thin each cluster to obtain an
ordered one dimensional set of points. We then partition the point set to subsets that can be approximated
adequately by piecewise quadratic or cubic rational Bezier curves using an optimal fitting method. For each
curve we select a number of representative points that lie on the fitting curves which are then used for
reconstructing the object surface. Inter-cross section and intra-cross section constraints are imposed to support
parameterization and editing of the derived model. Shape and topological differences between adjacent object
contours cause severe difficulties in the 3D reconstruction process. By using the contour skeleton information
we create intermediate slices representing places where ramifications occur to achieve robust covering
(meshing) of adjacent slices.

Keywords
Mesh reconstruction, slicing, thinning, cross sections, reverse engineering, curve fitting.

1. INTRODUCTION
Reverse Engineering is a complex process that is
central to industry, arts, archaeology and
architecture. In this paper we focus on re-engineering
solid objects for which we have acquired the point
cloud of their boundary. Subsequently we wish to
obtain a 3D CAD model which is editable and
manufacturable. Most previous approaches have
dealt with this problem considering only mechanical
parts and employing feature-based knowledge to
detect and represent holes, chamfers, extrusions or
protrusions. It is important to provide means for
editing 3D objects that respect object morphology
and topology.
Various authors have considered creating reverse
engineered 3D models. Some researchers have dealt
with the tedious task of making their model editable.
This is often accomplished by incorporating local
and global geometric constraints in the CAD model.
In plain solid reconstruction a geometric models is
captured directly from the geometry of the point
cloud acquired by 3D laser scanning. This method is
commonly used in modeling sculptures in arts. These
techniques are quite accurate but do not support large

scale modifications, additions or other high level
operations to the extracted model.
Ko et al. [Ko94] discuss a method that uses a set of
points to model a human face. The discussion
focuses on the reorganization of the points, facet
modeling and tool path generation. Ma and He
[Ma98] present an approach to shape a single B-
spline surface by a cloud of points. The discussion
concentrates on the parameterization of these
unorganized points.
Au et. Al [Au99] propose a feature-based reverse
engineering method for mannequin in garment
design. It is an automated reverse engineering
approach for human torsos that creates accurate
parameterized models. A key concept in their method
is creating a generic mannequin model of a human
torso appropriately aligned with the 3D point cloud
of the desired human torso model.
Thompson et al [Tho96] have focused on creating
high accuracy models of manufactured mechanical
parts. The feature based system called REFAB
(Reverse Engineering FeAture Based) uses
manufacturing features as geometric primitives. The
system supports constraints such as parallelism,
concentricity, perpendicularity and symmetry
depending upon user intervention to extract and
accept such features.
Chen and Hoffman [Che95a], define semantics for
the creation of generated features. This work is
based on a neutral, high-level design representation,

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2009

118 Communication papers

called Erep (editable representation), which allows
design modifications based on a general design
paradigm. This framework considers generated
features based on a planar profile and then revolved,
swept and extruded in 3D shape.
Dobson et al [Dob95] discuss the fitting of a non-
uniform rational B-spline curve to a set of co-planar
points. The fitting process uses characteristic points
and is demonstrated by fitting a facial 2D profile.
Langbein et al [Lan04] analyze the type of
symmetries and shape regularities that may be
observed in a Brep model and efficiently apply them
in a reverse engineering process to create accurate
and aesthetically robust models.
Sato et al [Sat83] propose a laser projection system
and an image processor which are used for
determining a fixed set of horizontal cross sections of
the recognized object which is placed on a turntable
in a stable vertical orientation. For each horizontal
cross section they compute the Fourier shape
descriptors of the boundary. Constraints between
two cross sections may be defined such as horizontal
strain, section shape, torsion, and displacement.
Werghi et al [Wer99], suggest a general incremental
framework whereby constraints may be added and
integrated in the model reconstruction process.
Hoppe et al. [Hop92] propose a method for surface
fitting based on polygonal meshes. They produce a
surface that approximates the original object surface
based considering data points in close.

Figure 1: Process Steps

In this paper, we present a novel computer aided
reengineering paradigm based on careful slicing of a
3D point cloud and sophisticated post processing of
all resulting cross sections. Post processing aims to
eliminate noise and partition the point set to point
sequences that correspond to low degree curve
segments. The curve segments are then
approximated using quadratic rational Bezier curves.
We then subdivide the curve segments in equilength
chord segments and use the corresponding points to
perform 3D skeleton-driven mesh reconstruction.
Figure 1 illustrates the overall process.

2. CROSS SECTION SELECTION AND
PROCESSING
Our reconstruction process starts by slicing the point
cloud data, obtained by a 3D laser scanner, into a

number of cross sections along a user-specified
slicing direction. Most of data points may not be
exactly located on a certain cutting plane. Slicing is
accomplished by means of a virtual parallelepiped
knife with a specified thickness. Slice thickness is
controlled by a user defined thickness threshold
value that specifies the maximum allowable width of
a projected point set. The data points in each slice
are projected onto a cutting plane in the middle of the
parallelepiped knife perpendicular to the slicing
direction. The thickness threshold value is adapted
iteratively until it falls under the user specified
levels. Slice selection may be controlled by a user
defined parameter called slicing distance. Slicing
distance specifies the fixed distance between two
adjacent slices. There may be cases where the slicing
distance is too large for a certain object. As a
consequence, the exact geometry of the object is not
recorded accurately. The slicing distance parameter
should be set according to the object particular
features.
In many cases we obtain adjacent slices that are very
similar. This might happen when the sliced object
feature has symmetric shape such as a cylinder or
parallelepiped part. Many of these slices may be
eliminated from the entire process of reconstruction.
If three adjacent slices are of similar shape, then the
middle slice may be eliminated. Similarity of slices
may is detected using principal component analysis
and skeleton extraction so as to achieve rotational
and translational invariability. The analysis of the
method is omitted due to space requirements.
Depending on the data acquirement and slicing
process a cross-section may contain points that form
a shape with thick border. Thinning is the process
that identifies the specific points from the data set
that are essential to form the actual 2D shape of the
cross-section. We call the outcome of this thinning
process a thin data set.
The Medial Axis, is a well defined process for
extracting a skeleton, but does not always produce a
skeleton for the purposes of thinning due to the
complexity of the result. Most thinning algorithms
available are iterative. The edge pixels are examined
against a set of criteria to decide whether they are
essential skeleton pixels or not. A common
disadvantage of many thinning algorithms is the
deformation in the shape of the skeleton at corner
and cross regions. Single pixel irregularities may
yield gross changes in an otherwise simple skeleton.
Furthermore, the extraction of the skeleton does not
often preserve the connectivity of the shape.
Necking, tailing and spurious projection (line fuzz)
are some more defeats of many thinning methods.
The Forced Based thinning algorithm [Par94] is
based on the idea that the boundary should be used to

GraVisMa 2009

119 Communication papers

locate the skeletal pixels by exerting a force to the
inner pixels. In that way, the skeleton of the shape is
located at pixels where the forces acting have
opposite directions.
All thinning algorithms need as input a 2D array of
pixels. In order to convert our unordered set of
points to a 2D array of pixels we define a virtual grid
of size Gx by Gy where Gx and Gy are the x and y
resolution of the grid. Each grid cell would map a
certain area in the cross-section. Therefore, every
grid cell would contain a number of points that
happen to fall in the area specified by

max min max min
min min(,)

x y

x x y yx y
G G
− −

+ +

max min max min

(,)y yx x p Gp GG
x x y y

⋅⎢ ⎥ ⎢ ⎥⋅
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

where xmin, xmax, ymin, and ymax are the minimum and
maximum coordinates in the original point set.
Consequently, for each point P(px, py) we add a
weight to the grid cell
Each grid cell will play the role of a pixel that is
either on or off. We define a grid cell to be on if its
weight is greater than the mean weight of all cells in
the grid. Figure 2a shows an example grid and the
pixels that are on and off.

(a) (b)

Figure 2: (a) Virtual grid (b) Thinning
Depending on grid resolution, the above procedure
may produce a grid with many not connected pixels.
For this kind of cases an anti-aliasing of the grid may
be performed in order to fill the gaps between
disconnected pixels. The anti-aliasing defines the
weight of a cell to be a function of its own weight but
also of its 8 neighbors. Each neighbor cell will affect
the anti-aliased weight of the cell by its weight
multiplied by a coefficient. The following formula
computes the anti-aliased weight of a cell:

Each grid cell that is characterized on must be
mapped with a 2D point. Each grid cell that contains
points from the original data set it may be mapped
with the centroid of these points. In the case that the
cell does not contain any points it may be mapped by
the centroid of the points in the 8 neighbor cells. The
result may be given as input to the thinning process.
Figure 2: (a) Virtual grid (b) Thinning depicts an

example of a thick cross-section and the result of
quantization and thinning.

3. POINT SET PARTITIONING
In this section we describe the process of detecting
the end points of the piecewise Bezier curves.

3.1 Normal Vector Computation
Let two successive points Pi(xi,yi) and Pi+1(xi+1,yi+1).
The unit normal vector of the line segment that
connects the two points is

1 1
1

1 1

(,)i i i i
i

i i

y y x xU
D D

+ +
+

+ +

− −JJJG , 2 2
1 1 1() ()i i i i iD y y x x+ + += − + −

Di+1 is the magnitude of the Ni+1 vector.
Consequently, each point Pi in the point set P will
have two unit normal vectors Ui and Ui+1 derived
from the two adjacent segments Pi-1Pi , PiPi+1 and
therefore we need to calculate the average normal
vector which is computed as follows:

1

1

i i i
i

i i i

R U UU R
R U U

+

+

+
= =

+

JJJG JJG JJJGJJJG
JJG JJJG

The above equations do not hold for the cases of the
first and last points of the point set S where there is
only one unit vector component.

3.2 Concavity Change Detection
After computing the unit normal vectors for each
point Pi in S we will proceed to the next step of our
method which detects inflection points of the final
curve. An inflection point is a point on a curve at
which the curvature changes sign which actually
means that the curve changes from being convex to
concave or vice versa.
The algorithm is based on the fact that on a concave
curve segment the point unit normal vectors URi turn
clockwise while on a convex curve segment the point
unit normal vectors URi turn counterclockwise.
Finally on a line segment, the point unit normal
vector URi is constant. To determine the relative
rotation of URi+1 with respect to URi we use the cross
product of the two vectors. The cross product is
defined as follows:

1
1 1 1

1

det i i
i i i i i i

i i

URx URx
UR UR URx URy URx URy

URy URy
+

+ + +
+

⎛ ⎞
× = = ⋅ − ⋅⎜ ⎟

⎝ ⎠

JJJG JJJJJG

Then, in case
•

1 0i iUR UR +× >
JJJG JJJJJG , URi+1 has been rotated
counterclockwise with respect to URi

•
1 0i iUR UR +× <

JJJG JJJJJG , URi+1 has been rotated clockwise
with respect to URi

•
1 0i iUR UR +×

JJJG JJJJJG
� , URi+1, URi are almost collinear

either in the same direction or in the opposite.

11
,

,
1 1

16
, 8

4

ji
m r

i j
m i r j

m i AND r j
W

AW m i XOR r j
m i AND r j

++

= − = −

≠ ≠⎧ ⎫
⎪ ⎪= Φ = = =⎨ ⎬Φ ⎪ ⎪= =⎩ ⎭

∑ ∑

GraVisMa 2009

120 Communication papers

The algorithm marks each point in S that according
to the above is a point of inflection. Pi is always
marked as it is the start point of the first Bezier patch
B1. Each successive marked point will be used as an
end point of the currently processing Bezier patch
(Bi) and also as the start point of the next Bezier
patch (Bi+1). Furthermore, the algorithm
approximates with a single quadratic rational Bezier
patch all points in S whose unit normal vectors form
at most π/4 angle with the unit normal vector of the
start point. The angle between two vectors is
computed using the dot product:

cosA B A B θ• = or cosA B θ• = for unit

vectors.
The algorithm makes use of a tree structure. Aim of
the tree is to assist in partitioning the point set in as
many partitions as the number of curves that are
needed to approximate the point set. The end of a
partition would imply a change of curve. Each node
of the tree represents a point Pi along with all related
information. A tree node may have at most three
children CW for Clockwise, CCW for
Counterclockwise, CL for Collinear. The tree must
grow in the CW direction when the point’s normal
vectors change clockwise, or in the CCW direction
when the point’s normal vectors change
counterclockwise, or in the CL direction when the
point’s normal vectors do not change. Therefore a
node where there is a direction change represents a
point of inflection - Bezier end point.
In many cases the point set may be very noisy. As a
result, the direction of the normal vectors changes
very frequently and locally thus is creating an
abundance of curve patches. This problem could be
overcome by performing a data smoothing on the
point set prior to using our method but this would
increase the time complexity of the entire method. To
this effect, we use an alternative that achieves better
results by smoothing the normal vectors rather than
the actual point set. This smoothing is succeeded by
computing the normal vector of each point by
averaging the normals of a larger number of
neighbour line segments
The algorithm divides the ordered set of points into
partitions. All points in every partition preserve the
following relation: Pi < Pk for i < k which means that
on an upward concaving partition: 1 1 kUR URi UR UR<i i
for i<k, and on a downward concaving partition

1 1 kUR URi UR UR>i i for i < k.

The above relation is a total order since it preserves

• Antisymmetry: () ()i k k i i kP P P P P P< ∧ < ⇒ =

• Transitivity: () ()i k k m i mP P P P P P< ∧ < ⇒ <

• Totality: () ()i k k iP P P P< ∨ <

The middle control point is the intersection of the
tangent lines to the Bezier curve on the two end
points. These tangent lines may be approximated by
the lines that pass through the first two points of the
partition and the last two points of the partition
respectively. Figure 3illustrates this.

Figure 3: Computation of middle control point

Investigating the efficiency of the algorithm we may
easily conclude that the algorithm takes O(n) for an
n-point set P each point is processed only once when
inserted to the tree structure and only once when
traversing the tree to select the inflection points.

4. LOW DEGREE CURVE FITTING
The Bezier representation is one that is utilized most
frequently in computer graphics and geometric
modelling. Quadratic Bezier curves are often used by
CAGD developers since they do not require complex
computations as other higher degree curves do.
However, in practice it is often desirable to
approximate conic sections which cannot be
represented in Bezier form. Conic sections such as
parabolas hyperbolas and ellipses may be adequately
represented by Rational Bezier curves. Non rational
Bezier curves are a special case of rational Bezier
curves. For these reasons, we will focus on
constructing Rational Quadratic Bezier curves. In
curve theory, a rational quadratic Bezier curve is
defined as follows:

2
2

0
2

2

0

()
() , 0 1

()

k k k
k

k k
k

w p B t
P t t

w B t

=

=

= ≤ ≤
∑

∑

A 2nd degree Bezier curve requires 3 control points
pk: a start point p0, an end point p2, and a 3rd control
point p1 which is obtained by the intersection of the
tangent lines on the end points of the curve (see
Figure 3).
The Bk terms in the above formula represent the 2nd
degree Bernstein polynomials, while the terms wk are
the associated with each control point weights.
Setting all weights equal to one the above formula
represents an ordinary non rational Bezier curve.
Increasing the weight of a control point causes the
curve to move towards the specific control point.
The curve fitting process fits equations of
approximating curves to the raw field data.
Nevertheless, for a given set of data, the fitting

GraVisMa 2009

121 Communication papers

curves of a given type are generally not unique.
Thus, a curve with a minimal deviation from all data
points is desired. For the cases where a rational
Bezier curve is approximated the best-fitting curve
can be obtained by varying the control point weights
(Figure 4a).

 (a) (b)

Figure 4: (a) Point distances from the curve. (b)
Vectors Qi P(ti) and P'(ti) are perpendicular

A rational Bezier curve P(t) that best approximates
the given set of 2D points Q on a specific cross
section is the one that minimizes the sum of the
distances of the points from the curve:

1

() min
n

i i
i

Q P t
=

− =∑

Equation 1: Objective function

Also note (Figure 4b) that each vector ()i iQ P t
JJJJJJJG

 is

normal to the tangent of the curve at ti. That means
that their inner product is zero. Therefore,

, 0... , '() (()) 0i i i iQ i n P t Q P t∀ = − =i
Equation 2: Optimization Constraints

Equation 1 will serve as an objective function while
Equation 2 will give n constraints. Optimizing the
objective function with the constraints may give the
weight values of the rational Bezier curve that best
fits the given set of points.

5. CURVE SEGMENT POINT
RESAMPLING
Point sampling is an important intermediate step for a
variety of computer graphics applications.
Specialized sampling strategies have been developed
to satisfy the requirements of each problem. In this
section, we present a sampling technique for 2D
models. Our sampling domain is the set of points on
a single cross section. Aim of the technique is to
generate evenly spaced samples by subdividing the
sampling domain into non overlapping parts.
In the previous section we fitted a rational Bezier
curve on the points of each cross section. A Rational
Bezier curve ()P t is usually defined over the interval
[0, 1] but it may also be defined over any interval [0,
c]. The part of the curve that corresponds to [0, c]
may also be defined by a Bezier polygon. To
subdivide the curve [Ran08] to k equal length arcs
we would first divide the interval [0, 1] into k

subintervals of length 1/k. The end points of each
arc iR are 1()iP t − and ()iP t where /it i k= and

0...i k= . The length of each chord

1() ()i iP t P t +
converges to the length of the arc iR

between it and 1it + when k is a rather large value.
Consequently, the length of the rational Bezier curve
may be approximated by

1
0

() ()
k

i i
i

P t P t +
=

Λ = −∑

Equation 3: Bezier Curve length

Considering that the size of the sample set S of
points is μ:

1, 0... 1, /i i is S i s sμ μ+∀ ∈ = − = Λ

Figure 5: Sample points (in red)

The last relation ensures that all points in the sample
set S are evenly spaced by a distance of Λ/μ. All
other points that do not satisfy the above relation are
discarded and will not be used in the surface
reconstruction process (Figure 5).

6. CONSTRAINTS FOR REDESIGN
The objective of the entire method is to obtain an
editable CAD model that would assist us in
redesigning the original object. Editability in CAD is
commonly achieved by using geometric constraints.
When using the term constraint in CAD we usually
refer to geometric dimensions and relations (lengths,
angles, tangency, parallelism, perpendicularity, etc.)
used to define accurately a particular solid geometry.
There are two types of constraints that are used in
our method.
The set of constraints associated with the geometric
properties of the contours [Fud96] in a given cross
section will be called Intra-Cross section constraints.
Some of these may be point – line segment
coincidence, tangency, distance from a curve or
point, angle with a curve, parallel – perpendicular
line segments or tangents.
The second category of constraints is associated with
the geometric and topological relationships among
the contours of different cross sections which we will
call Inter – Cross section constraints. Some of these
are point co-linearity, co planar line segments,
equality or relation of distances-angles, curve
translation, curve scaling.
A system of geometric constraints is then built and
the case is treated as a non-linear optimization
problem. To solve this system we employ a local

GraVisMa 2009

122 Communication papers

non-linear optimization algorithm called Interior
Point Optimization. The disadvantage of this method
is that it may be trapped in local minima, which
makes it depending heavily on the initial
configuration. The user is thus advised to make
incremental editing. Using global optimization
methods or other constraint solving techniques is an
interesting research problem [Fud97].

7. MESH RECONSTRUCTION
The task of surface reconstruction deals with the
creation of a ribbon between two adjacent cross
sections. This may be accomplished by performing
triangulation between the sampled sets of vertices
that belong to a pair of adjacent cross sections. In
most real cases the material of interest lies in the
region that separates the adjacent contours.
A rather simple solution that forces a connection of
each vertex of a section with some vertices of the
adjacent sections was proposed by the literature in
the past. However, as the distance between two
cross sections may vary, the chance of missing
important information of the places where
ramifications occur is rather high. As a result, the
reconstructed object does not have the correct shape.
To overcome this problem, we propose a method that
automatically creates intermediate sections.
The projection of the region, which separates the
adjacent cross sections, on an intermediate parallel
plane is the region that is not common to both
contours. We will denote a cross section as a binary
image where the two values represent the
background and the object. This intermediate plane
projection may be expressed as an exclusive OR
(XOR) operation on the binary images of the two
contours [Chr78]. In cases where the adjacent
sections contours intercept, it is required to include
the pixels of the contour boundary where the
interception occurs.

Figure 6: XOR operation on sections A and B

The result of the XOR operation is also a binary
image whose boundary is formed by the contours of
the contiguous sections. Figure 6 shows that the
outer border of the binary image is formed by the
second contour while the inner border is formed by
the first contour.

 (a) (b) (c) (d)

Figure 7: (a) Thinning. (b) Ribbon Construction.
(c) Slanted cylinder slices (d) XOR operation

In many cases we may see portions of the binary
image to have both inner and outer borders formed
by the same contour. This is an indication that in the
particular portion of the material of interest there is a
ramification. For these cases the skeleton of that
portion of the binary image may be used to represent
the place where the ramification occurs at an
intermediate height of the analyzed sections.
Applying a thinning algorithm on the binary image
we may obtain its skeleton (Figure 7a,b). Using the
shortest diagonal algorithm [Far97] we are able to
create two ribbons (one with each slice).
There are cases though where the XOR operation on
the binary images of the contiguous contours does
not result in a correct intermediate plane projection.
Let’s take an example with a slanted cylinder object.
As we see in Figure 7c, slice A and B have a small
region in common. The XOR operation would
derive the region shown in Figure 7d,
Rather than abandoning the method, we will map the
contours onto a unit square prior to XOR operation
(Figure 8). Each contour is mapped in the following
manner:

1. Define a rectangular window which
encloses the contour.

2. Calculate , , ,Δ Χ Δ Υ Χ Υ
3. Map onto a unit square centered at (0,0) by

translating and scaling the contour such that
its window matches the unit square’s
window. The equations for this are:

' () / ,

' () /

X X X X

Y Y Y Y

= − Δ

= − Δ

Using this mapping we may compute correctly the
XOR binary images for slanted and toroidal objects.

Figure 8: Mapping a contour

The supposition made in the beginning of this section
does not cover though all strange cases where the
material of interest does not lie in the region that
separates the two adjacent cross sections.

8. IMPLEMENTATION AND
EXAMPLES
We have implemented and tested the proposed
method using the MS Visual C++ programming
language, the OpenGL graphics libraries, and the
IpOpt optimization software [Thea] and the ACIS by
solid modeling libraries Spatial Corporation [Theb].
The implementation was tested on an MS Windows
platform. The method was tested for several cloud
point sets. Following is an example that illustrates
the effectiveness and efficiency of the method.

GraVisMa 2009

123 Communication papers

To demonstrate how this method works we have
used a 3D point cloud of a screwdriver object
containing 27500 points which was then sliced to
equidistant parallel cross sections (Figure 9). Figure
10a shows part from a cross section of the
screwdriver’s handle containing 437 points.
Thinning and quantization of this cross section
results in a point set with 323 points that form a 1-
point-thick curve boundary.

Figure 9: Slicing the screwdriver point cloud

 (a) (b)

Figure 10: (a) Thinning a cross section. (b)
Concavity change detection

While partitioning (Figure 10b) the thin slice point
set, the algorithm filters out all noisy points. The
final result of the concavity detection process is a set
of contours that have the same concavity direction
and may be approximated by a low degree rational
Bezier curve.
Traversing the point tree, we obtain the end points
for each contour that will serve as start and end
points for the rational Bezier curves. For the above
example, the method processed 323 points and
detected 13 inflection points. Figure 11a illustrates
the inflection points in blue color. The original point
set forms a six peak star shape which is a
symmetrical shape. Therefore, we would expect to
have 12 quadratic rational Bezier curves specified by
12 symmetrically placed end points (first and last end
points coincide). Instead, the method detected 13
points which means that we have 13 curves.

 (a) (b) (c)

Figure 11: (a) Deriving Control Points. (b) Fitting
Rational Bezier Curves. (c) Sampling result.

Figure 11b shows the computation of the middle
control point of all quadratic rational Bezier curves
that we are going to construct.
To compute the weights for each control point we
solve the optimization problem described in section 4

using the IpOpt libraries [Thea]. Figure 11b shows
the set of curves built by the algorithm.
Resampling computes the length of each rational
Bezier segment in the slice. The approximate length
of the entire contour in figure 19b is Λ=95.76.
Setting μ=60, we obtain the distance Λ/μ of each
point from its neighbors to be around 1.596. Figure
11c shows the set of representative points that were
selected.

 (a) (b) (c)

Figure 12: (a) Intra- Constraints: d1=d2=d3, θ1=θ4,
θ2=θ5, θ3=θ6. (b) Inter Constraints: Slice 1 in red,
slice 2 in green. (c) Auto slice generation. Slice 1
in red, slice 2 in green, slice S1 XOR S2 in purple

 (a) (b)

Figure 13:(a) Reconstruction (b) Editing

Our example shows a symmetrical shape of a six
peak star. The distance between two opposite peaks
is equal for all pairs of peaks. Also the angle formed
by the two tangents that intersect on each control
point is equal opposite peak angle. These intra–cross
section constraints are illustrated in Figure 12a.
Figure 12b shows the two adjacent cross sections
where there is a noticeable change in the shape of the
six peak star. Despite this, the centroids of the stars
are on the same axis. This is actually true for the
entire object which makes it a strong inter-cross
section constraint. The respective control points are
also in the same axis and therefore the difference in
the shape is due to the different values of the curve
weights. Figure 12c shows the intermediate slice
generation using the XOR operation. Figure 25a
shows the reconstructed object while 25b shows the
reconstructed object with its handle's thicker and its
shaft longer. To accomplish these edits we increased
the diameter of the handle by a factor of 1.3 and
increased the distance between the cross sections on
the shaft by a factor of 1.4.

9. CONCLUSIONS
We have presented an effective and efficient method
to build an editable 3D CAD model from a given
point cloud representing the surface of an object. Our
method slices the object point cloud into a number of
cross sectional points sets that enable us, after fitting

GraVisMa 2009

124 Communication papers

2D curves, to easily impose intra and inter cross
sectional constraints on the model that describe
accurately the design intent. The constrained model
is then reconstructed using triangulation techniques.
In future work the reconstruction of the model is
done using morphing techniques. Most reverse
engineering methods deal with the surface
reconstruction problem. Primary aim of our
methodology is to create a 3D CAD model that is
suited for redesign. The imposed constraints make
our model editable. We have evaluated the usability
of our method with very good results even for users
with no former CAD software experience. Our
method provides the tools for robust and accurate
editing of the produced CAD model prior to
remanufacturing. Automated detection of an optimal
slicing direction is an addition that can save users a
lot of effort. Finally, the efficiency of the
reconstruction process could be improved for
complicated objects by first decomposing the object
employing convex decomposition methods such as
the ones presented in [Bor96] and [Lie06].

10. REFERENCES
[Au99] C.K. Au and M.M.F. Yuen, Feature-Based

Reverse Engineering of Mannequin for Garment
Design. Computer-Aided Design, 1999. 31, 751-
759.

[Bor96] G. Borgefors , G. Sanniti di Baja, Analyzing
nonconvex 2D and 3D patterns, Computer Vision
and Image Understanding, v.63 n.1, p.145-157,
Jan. 1996

[Che95a]X. Chen and C. M. Hoffmann. On
Editability of Feature – Based Design. Computer
Aided Design, 27(12):905-914, 1995.

[Chr78] H.Christiansen, and T.Sederberg,
Conversion of complex contour line definitions
into polygonal element mosaics. Computer
Graphics 13 1978 187-192

[Dob95] Dobson GT, Waggenspack Jr. WN,
Lamousin HJ. Feature based models for
anatomical data fitting. Computer Aided Design
1995; 27(2):139–46.

[Far97] G. Farin, Curves and Surfaces for Computer
Aided Geometric Design:A Practical Guide,
Boston: Academic Press, 1997.

[Fud96] I. Fudos and C. M. Hoffmann - Constraint-
Based Parametric Conics for CAD - "Computer
Aided Design", Vol. 28, No. 2, pp. 91-100 [01
Jan 1996]

[Fud97] I. Fudos and C. M. Hoffmann - A Graph-
constructive Method to Solving systems of
Geometric Constraints - ACM Trans. of
Graphics, 1997, Vol. 16(2), pp. 179-216

[Hop92] H. Hoppe, T. DeRose, T. Duchamp, J.
McDonald, and W. Stuetzle, “Surface

Reconstruction from Unorganized Points,”
Proceedings of SIGGRAPH 92, pp.71-78, 1992.

[Ko94] Ko H, Kim M-S, Park H-G, Kim S-W. Face
sculpturing robot with recognition capability.
Computer Aided Design 1994;26(11):814–21.

[Lan04] F.C. Langbein, A.D. Marshall, and R.R.
Martin, Choosing Consistent Constraints for
Beautification of Reverse Engineered Geometric
Models. Comp. Aided Design, 2004. 36: 261-
278.

[Lie06] J.M. Lien, J. Keyser, N.M. Amato.
Simultaneous Shape Decomposition and
Skeletonization, In Proc. ACM Solid and
Physical Modeling Symp. (SPM), pp. 219-228,
Cardiff, Wales, UK, Jun 2006.

[Ma98] Ma W, He P. B-spline surface local updating
with unorganised points. Computer Aided Design
1998;30(11):853–62.

[Par94] J.R. Parker, C. Jennings, D. Molaro. A Force
Based Thinning Strategy with Sub-Pixel
Precision. In Proceeding of Vision Interface 94
(Banff, AB, 18-20 May 1994).

[Pin03] J.Pina, and R Alquezar, Reconstruction of
Surfaces from Cross Sections Using Skeleton
Information, CIARP 2003, 180-187

[Ran08] M.Randrianarivony, Arc Length of Rational
Bezier Curves and Use for CAD
Reparametrization. World Academy of Science
Engineering Technology 34, Oct 2008, ISSN
2070-3740

[Sat83] Y. Sato and I. Honda. Pseudodistance
measures for recognition of curved objects. IEEE
Trans. Pattern Anal. Machine Intell. PAMI-5, 4
(July 1983), 362-373

[Thea] The Ipopt - Interior Point Optimizer Project.
https://projects.coin-or.org/Ipopt

[Theb] The 3D ACIS Modeler. ACIS Corporation.
http://www.spatial.com

[Tho96] W.B. Thompson, H. De St. Germain, T.C.
Henderson, and J.C. Owen. Constructing High-
Precision Geometric Models from Sensed
Position Data. in In Proceedings 1996 ARPA
Image Understanding Workshop. 1996.

[Til83] W. Tiller. Rational B-splines for curve and
surface representation. IEEE Comput Graph
Appln 1983;3(6):61–9.

[Wan06] W.Wang, H.Pottmann, and Y.Liu, Fitting
B-spline curves to point clouds by curvature-
based squared distance minimization. ACM
Trans. Graph. 25, 2 (Apr. 2006), 214-238.

[Wer99] N. Werghi, R. Fisher, C. Robertson and A.
Ashbrook. Object Reconstruction by
Incorporating Geometric Constraints in Reverse
Engineering. Computer Aided Design, 31(6):
363-399,19

GraVisMa 2009

125 Communication papers

Shading of Bézier Patches

Jan Bocek

University of Ostrava
30 dubna 22

701 03 Ostrava, Czech Republic

jan.bocek@osu.cz

Alexej Kolcun

IG AS CR
Studentská 1768

702 00 Ostrava, Czech Republic

alexej.kolcun@ugn.cas.cz

ABSTRACT
The comparison of Phong shading method and exact shading method for Bézier patches is presented. It is shown
that even in bilinear case these shading methods can differ substantially, while the computational complexity is
the same. Similar result is presented for quadratic Bézier triangle patches.

Keywords
Beziér patch, shading, normal vector surface.

1. INTRODUCTION

There are well known shading algorithms ([Gour],
[Phong]) for the surface shading. The problem is that
such algorithms just approximate the real shading.

Precise shading algorithms require the values of
normal vectors at all points of rendered surface.
Computation of normal vector for Cartesian and
triangular parametric surfaces is presented in the
paper.

Section 2 describes the computation of the normal
vectors in Cartesian case according to the [Yam].
Moreover relation among the “control normals” is
formulated and proved. In Sec. 3 we present results
for normal patch for triangular Bézier patches.

The comparison of Phong shading and our approach
based on direct computation of normals is presented
in Sec. 4 for both Cartesian and triangular patches.

The discussion about the patches for which the
precise shading is the same as the Phong one, is
presented in Sec.5.

2. NORMAL SURFACES

Let the patch P(s,t) of degree (n,m) is analyzed,

ij
m
j

n

i

m

j

n PsbtbtsP
i

)()(),(
0 0
∑∑

= =

= . (1)

Normal vector at a point of a patch can be described
as follows

t

tsP

s

tsP
tsN

∂
∂×

∂
∂=),(),(

),(. (2)

For partial derivatives of Bézier patch the formulae
below are valid

∑∑
=

−

=
+

− −=
∂

∂ n

i

m

j
jiji

m
j

n
i PPmsbtb

s

tsP

0

1

0
,1,

1)()()(
),(

∑∑
−

= =
+

− −=
∂

∂ 1

0 0
,,1

1)()()(
),(n

i

m

j
jiji

m
j

n
i PPnsbtb

t

tsP

Resulting normal vectors of (1) we express as a
polynomial patch of degree (2n-1,2m-1).

a) b)

Fig. 1. [Yam]

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission
and/or a fee.

GraVisMa 2009

126 Communication papers

Figure 1a) shows a patch and its normal vectors at
points. Moving these points to the origin gives a
normal vector patch – Figure 1b).

ij

n

i

m

j

m
j

n NsptptsN
i

)()(),(
12

0

12

0

1212∑ ∑
−

=

−

=

−−=

We can construct the resulting formula in explicit
Bézier form:

ij
m

j

n

i

m

j

n NsbtbtsN
i

)()(),(12
12

0

12

0

12 −
−

=

−

=

−∑ ∑= (3)








 −







 −








−
−


















−
−









=∑∑

= =

j

m

i

n

nmQ

qj

m

q

m

ri

n

r

n
N ijrq

A

Bq

C

Dr
ij 1212

11

()
()
()
()0,1max

,min

0,1max

,min

+−=
=

+−=
=

niD

niC

mjB

mjA

()qriqriqjrqjrijrq PPPPQ ,,1,1,)(−+−−+− −×−=

Formula

∑∑∑∑
+−=

−

−

==

−

=

=
),min(

)0,1max(

12

00

1

0

nk

nkq
qkq

n

k

k
j

j
i

n

i

n

j

i batbtat

was used for derivation of (3).

The difference between our and [Yam] approach is
that our formula is in explicit form which is better for
implementation.

Observing properties of Bézier normal vector patch
of Cartesian Bézier patch we can formulate following
lemma:

Lemma 1: The control normal vectors ijN fulfil

the equation

0)1(
121212

0

12

0

=−






 −







 − +
−

=

−

=
∑∑ ij

ji
n

i

m

j

N
j

m

i

n
. (4)

Proof:

We can express (1) as:

()
()Tmn

TmTn

ssQtt

ssBPBtttsP

...,1)...,1(

...,1)...,1(),(

⋅=
=⋅⋅⋅=

which is equal to

nm
ij

n

i

m

j

ji QsttsP ∑∑
= =

=
0 0

),((5)

where

kl
lkji

i

k

j

l

nm
ij P

l

j

j

m

k

i

i

n
Q +++

= =

−































= ∑∑)1(

0 0
. (6)

For the case of normal patch of degree (2n-1,2m-1)
the formula (5) is:

12,12
12

0

12

0

),(−−
−

=

−

=
∑∑= mn

ij

n

i

m

j

ji QsttsN

where

kl
lkji

i

k

j

l

mn
ij N

l

j

j

m

k

i

i

n
Q +++

= =

−− −














 −















 −
=∑∑)1(

1212

0 0

12,12
.

Let us analyze the member with the highest degree

12,12
12,12

−−
−−

mn
mnQ .

According to (6) we obtain

kl
lk

n

k

m

l

mn
mn N

l

m

k

n
Q +

−

=

−

=

−−
−− −







 −







 −
= ∑ ∑)1(

121212

0

12

0

12,12
12,12 (7)

Comparing (4) and (7), we can see that we have to
prove that

012,12
12,12 =−−

−−
mn
mnQ (8)

is valid.

Let us express (5) in different way separating
polynomial member of the highest degree:

),(),(tsRQsttsP nm
nm

mn +=

Partial derivatives can be expressed as

s

tsR
Qsmt

s

tsP
u nm

nm
mn

∂
∂+=

∂
∂= −),(),(1

t

tsR
Qsnt

t

tsP
v nm

nm
mn

∂
∂+=

∂
∂= −),(),(1

GraVisMa 2009

127 Communication papers

s

tsR

t

tsR
s

tsR
Qsnt

t

tsR
Qsmt

QQsmntvu

nm
nm

mn

nm
nm

mn

nm
nm

nm
nm

mn

∂
∂×

∂
∂+

+×
∂

∂+

+
∂

∂×+

+×=×

−

−

−−

),(),(

),(

),(

1

1

1212

We can see that the member with the highest degree
in resulting cross product of these derivations is equal
to zero, because

0=× nm
nm

nm
nm QQ

QED.

3. CARTESIAN SURFACES

According to the formula (3) we can see that degree
of Cartesian patch changes from),(mn to

)12,12(−− mn . It means that the normal patch for

bilinear patch is also bilinear one. Using (4) we can
express normal patch for bilinear one as a plane.

This means that the normal vectors of bilinear surface
may be constructed as a linear interpolation of normal
vectors in control points.

The difference between our direct shading and Phong
shading is:

• Phong shading method uses normalized normal
vectors in the corners of the patch, and
interpolates their values,

• we use directly computed unnormalized normal
vectors in all points of the patch.

We, of course, always normalize vectors in both
cases.

a) b)

Fig. 2 Shading of the patch.

a) Phong’s approach, b) our approach(exact shading).

We have shown that computation complexity of
shading is the same for both our and Phong's
approaches in case of Cartesian bilinear surfaces.

The results show, that Phong's approximation of
shading differs significantly from direct (real)
shading. The above mentioned leads to the following:

Lemma 2: Phong shading method is equal to direct
(real) shading for the Cartesian bilinear surface if the
sizes of all normal vectors in corners are equal.

The example of such surface is shown in Fig. 3
(bilinear patch inscribed into orthogonal
parallelepiped).

Fig. 3

Following conditions must be fulfilled for general
(non-planar) bilinear patch:

.sinsinsinsin

,360

αδγβ
δγβα

dacdbcab ===
<+++

Fig. 4

4. TRIANGULAR SURFACES

Consequently, the idea of the presentation of the
normal vector surface for Bézier triangular surface as
a Bézier triangular surface is presented here. Given
Bézier triangle

),,(),,(utsbPutsP
nkji

n
ijkijk∑

=++

=
 (9)

kjin
ijk uts

kji

n
utsb

!!!

!
),,(=

can be transformed (similar way as in Chapter 2) into
polynomial form:

GraVisMa 2009

128 Communication papers

kl
l

n

k

kn

l

k QsttsP ∑∑
=

−

=

=
0 0

),((10)

iji
lkji

l

i

k

j
kl P

j

k

i

l

l

kn

k

n
Q ,

0 0

)1(+
+++

= =

−






















 −








= ∑∑

with ijiijk PP ,+= .

Cross product of partial derivations of (10) represents
normal surface for triangular surface, and can be
expressed as triangular Bézier surface [Boc].
The degree of the resulting normal vector surface is

)22(−n . Control points of this surface can be
calculated according to the following formula:

000000

0 0

,,, llklklllk

B

Ak

D

Cl
klllk STEN −−−++

= =
+ ×= ∑ ∑








 −−







 −










−
+−−








 −−









−
−








 −

=

−−=
−++−=

−=
+−=

l

kn

k

n

ll

kkn

l

kn

kk

n

k

n

E

knlD

kknlC

nkB

nkA

kl 2222

1111
)1,min(

)0,1max(

)1,min(

)0,1max(

0

0

0

0

00

0

0

)(,,1 jijiij PPnT −= +

)(,1,1 jijiij PPnS −= ++

From the point of view of effective visualization,
quadratic Bézier triangles seem to be interesting
because

• they are natural generalization of planar triangles,

• they are able to model smooth surfaces,

• normal vector surface is also quadratic.

As the quadratic Bézier triangle is the simplest
generalization of (planar) triangle, this approach
generalizes Phong shading model.

Similarly as in the Cartesian case, the differences
between our direct shading and Phong shading are:

• Phong shading method uses normalized normal
vectors in the corners of the patch, and then
interpolates linearly.

• We use directly computed unnormalized normal
vectors in all points of the patch. This approach
we can interpret as a quadratic interpolation.

a) b)

Fig. 5 Shading of the patch

a) Phong’s approach, b) exact shading.

5. CONCLUSION

We presented Bézier expression of normal surface in
explicit form for both Cartesian and barycentric case.
We have shown that for the case of bilinear patches
and quadratic triangular patches the computation
complexity for exact shading based on this approach
is comparable to Phong shading method.
Our direct shading can be used as a tool for the
difference analysis of shading models.

6. ACKNOWLEDGMENTS

The paper is supported by grant AVOZ 30860518
and by internal grant of University of Ostrava.

REFERENCES

[Boc] Bocek, J., Effective visualization of Bézier
surfaces, MSc. Thesis, University of Ostrava,
2007. (in Czech)

[Jin] Jin, S., Lewis, R.,R., West, D.: A comparison of
Algorithms for Vertex Normal Computation. The
Visual Computer Vol. 21, No.1-2, 2005 pp.71-82.

[Yam] Yamaguchi, Y. Bézier normal vector surface
and its applications, SMA '97, p.26, 1997.

[Gour] Gouraud, H., Continuous shading of curved
surfaces, IEEE Transactions on Computers,
C20(6):623–629, 1971.

[Phong] Phong, B.T., Illumination for computer
generated images, Comuniactions with the ACM,
1975

GraVisMa 2009

129 Communication papers

Motion Tracking with Geometric Algebra-valued
Particle Filter

Kanta Tachibana

Faculty of Informatics,
Kogakuin University

1-24-2 Nishi-Shinjuku,
 163-8677, Shinjuku-ku, Tokyo

kanta@cc.kogakuin.ac.jp

ABSTRACT
Choice of latent variables and likelihood function are important for three-dimensional time-series tracking. I
propose motion tracking with high order geometric algebra-valued particle filter. The proposed method shows
significant improvement compared to tracking with conventional Euler angles.

Keywords
Geometric Algebra, Motion Tracking, Computer Vision

1. INTRODUCTION
Inference of three-dimensional motion is an
important task for computer vision. In this study, I
discuss inference of rigid body motion when some
feature points are observed by a monocular camera. I
assume that feature points are observed at every
timestep without occlusion but with measurement
noise. For this task, I utilize particle filter (PF), a
sequential Bayesian method. For PF to be applied to
geometric problems, it is important to use appropriate
latent variables. Some studies [e.g. Mar01] utilize
quaternion instead of conventional Euler angels as
latent variables for time-series three-dimensional
inference. However, quaternion’s effect has not been
clarified quantitatively yet. I furthermore introduce a
new resampling step, in which hypotheses are
evaluated, for particle filter. In the new resampling
step, likelihood of hypothesis is calculated using not
only single points but also circles each of which is a
combination of three points. The aim of this study is
to clarify effects of 1) representations of rotation
with rotor components to such geometric inference
and of 2) introducing high-order entities to
resampling step.

2. NUMERICAL EXPERIMENT
Five feature points fixed at a transparent rigid body,
which moves smoothly in 3D space, are assumed to
be observed through 100 timesteps. PFs track these
feature points. One PF uses Euler angles as its latent
variables and the other uses rotor components. The
latter evaluates likelihood of each hypothesis under
distance from hypothetical circles as well as
hypothetical points. Figure 1 shows result of Euler
angle PF (a) and that of my proposal (b). Inference of

depth (shown as horizontal axis) improved. Average
errors were (a) 0.89 (+/- 0.16) vs. (b) 0.59 (+/- 0.05).

-1

-0.5

0

0.5

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

(a) Euler angles

-1

-0.5

0

0.5
9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

(b) Rotor components

Figure 1. True (big marks) and inferred positions
(small marks) projected orthogonally into Depth-

Height plane.

3. REFERENCES
[Mar01] Marins, J. L. et al. An extended Kalman

filter for quaternion-based orientation estimation
using MARG sensors. In Proc. IEEE-RSJ Intl
Conf. on Intelligent Robots and Syst., pp.2003-
2011, 2001

GraVisMa 2009

130 Communication papers

Numerical Method for Accelerated Calculation of
Point Light Source Optical Field

Pavel Zemcik

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
 CZ 612 66, Brno, Czech Republic

zemcik@fit.vutbr.cz

Ivo Hanak

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
 CZ 612 66, Brno, Czech Republic

hanak@fit.vutbr.cz

ABSTRACT
This contribution describes a method for calculation of an optical field generated by a scene illuminated by a

monochromatic coherent point light source. The scene optical field calculation is the key part of hologram

synthesis methods. Contemporary hologram synthesis methods are extremely computationally extensive and

many of them use scene represented through point cloud whose optical field is then rendered using superposition

of point light sources. In a previous work by the authors, an approximation has been introduced that uses fixed

point type most of the time and does not impose distance limitations. Speedup gain with no loss of flexibility was

achieved. In the presented contribution, it is shown that the approximation can be simplified even further and the

resulting error does not impose any additional restrictions and can lead in an additional speedup. Furthermore,

the numerical aspects of the new approach are shown and precision and data format considerations are discussed.

Keywords
Spherical wave, optical field, point light source, differential computational scheme

1. INTRODUCTION
Optical field synthesis is a crucial step in hologram

synthesis. Even though a hologram can be

synthesized directly, the focus of the contribution is

on the scene optical field because it can be used for

generation of several varieties of holograms. In fact,

the only necessary step in between the scene optical

field and hologram is simulation of interference of the

scene optical field and optical field of an appropriate

coherent light source known as reference light source.

This contribution focuses on geometrical aspects of

the problem of the optical field calculation with an

aim to calculate the one sample wide columns of

optical field of a point light source (PLS). Such

calculation is a time-critical part of some optical field

calculation methods and as the optical field synthesis

methods on contemporary computers take typically

several hours or even days to finish their calculation,

any speedup in the implementation is worth the effort.

The target platforms include not only traditional

computers, but also programmable hardware, such as

programmable gate arrays (FPGA) [Bro96] where the

proposed approach goes beyond the known solutions

[Ito05] [Nis05] [Mas06]. The proposed approach can

also be used in optical field computations through

general purpose computation on graphical processing

units (GP-GPUs), or some other suitable platforms.

2. OPTICAL FIELD CALCULATION
In the case concerned, the optical field is represented

through a uniform square grid of optical field samples

nmu , , []1, −−∈ MMm , []1, −−∈ NNn on a regular

square grid on a plane 0: =zκ . Each sample nmu , is

a complex number whose location in the space is

()0,, yxmn nm ∆∆=x , where
yx ∆∆ , are the intervals

between the samples (grid step). It is assumed that the

scene is illuminated only by coherent monochromatic

light. The samples represent amplitude and initial

phase which is enough to completely represent the

optical field under the given conditions [Goo05].

The scene consists of a set of point light sources

(PLS). All sources have location ()ssss zyx ,,=x ,

plus amplitude, and initial phase represented by

complex number ()ss jI ϕexp
2/1 , where sI is intensity

and sϕ the initial phase. See Figure 1.

Figure 1: PLS and optical field samples.

GraVisMa 2009

131 Communication papers

The contribution of each of the PLS to the optical

field sample is can be evaluated using the Rayleigh-

Sommerfeld formula [Goo05], which is often used for

this purpose [Ahr06][Ito05][Mas06][Yos00][Nis05].

For simplicity (without loss of generality), it is

assumed that no obstacles occur in the scene.

(1)

() () 222

, ,cos
2

exp

ssysx

s

s

nm

zynxmr

rj
r

I
u

+−∆+−∆=









=∑ θ

λ

π

where s is a PLS located at ()
ssss zyx ,,=x , θ is the

divergence of direction between sample mnu and the

PLS s from the plane’s normal vector, and λ is the

wavelength of the light source.

The contribution of a PLS to the sample mnu in

the optical field is, therefore, a complex number,

whose phase
sφ and amplitude

sA are shown below.

(2)

() () 2222

2

smnsmns

s

zyyxx

r

+−+−=

==

λ

π
λ

π
φ

.

(3) ()θcos
r

I
A

s

s =

Figure 2 demonstrates the real part of the values of

the optical field on the plane. The projected PLS is,

in this case, in the center of the circles close to the

right side of the image in Figure 2.

Figure 2: Optical field of a PLS

The above formulas (1)(2)(3) are non-linear and they

cannot be approximated directly. However, if the

argument of a complex number and the amplitude are

separated, as shown above, it is possible to

approximate each of the parts using a quadratic

function on a small part of a column (hundreds of

samples). The approximation can be performed using

a differential scheme with fixed point arithmetic as

shown in the previous work of the authors [Han09].

The approach is based on the fact that contribution to

a piece of a line or column of the optical field can be

approximated through quadratic interpolation for the

phase and linear interpolation for the amplitude.

Let us consider only a part of a single column of the

optical field, for which m is constant and ni ranges

from some n0 to nmax-1, where max is the length of the

considered piece of column (max=512 was used in

our experiments). The PLS contribution to the optical

field based on the amplitude and phase can then be

calculated through a component complex number.

(4)
()

() ()
iiii

iii

mnmnmnmn

mnmnmn

jAA

jAu

φφ

φ

sincos

exp

+=

==

where integer number []1max0, −∈ nnni
.

The sin and cos functions from the equation (4) must

also be evaluated. However, for the proposed

purpose, the required precision allows for their

tabulation in a relatively small table.

The method proposed in this contribution further

improves the approximation performance through

reduction of complexity of the algorithm.

3. PROPOSED METHOD
In the proposed method, the approximation of the

phase and amplitude is being calculated through

quadratic and linear scheme.

(5) mnCBAmn nn φφφφφ ≅++=′ 2

(6) mnBAmn AnAAA ≅+=′

where Aφ , Bφ , Cφ , AA , and BA are coefficients of

for quadratic and linear approximations.

The above scheme illustrates the possibility of

approximation but in fact, is not suitable for direct

implementation as the evaluation of each phase and

amplitude is still relatively complex. The scheme can

be expressed in a differential form. The starting

values for the starting point n0 are calculated from the

initial equations (2) (3) precisely.

(7)

000

00

,

,

1

11

mnmnmnmnmn

mnmnmnmnmn

φφφφφ

φφφφφ

∆=′∆∆∆+′∆=′∆

=′′∆+′≅′

+

++

(8) mnmnmnmnmn AAAAA =′∆+′≅′
+ 00

,1

From the above equations (7)(8), it is clear that the

approximation step requires two additions for the

phase and a single addition for the amplitude.

Contribution of a PLS during the approximation is

expressed with a pseudocode depicted in Figure 3.

() ()mnmnmnmnmn AjAu φφ ′⋅′+′⋅′=+ sincos

Figure 3: Contribution of a PLS to optical field

GraVisMa 2009

132 Communication papers

The step requires three additions, two multiplications,

one complex addition, and two table read operations

(for sin and cos). It translates into five additions, two

multiplications and two table read operations.

The proposed method simplifies this step even

further. It is based on the fact that the phase

approximation step shown in the above equation (7)

can be further simplified without significant loss or

precision. The idea of the proposed method is in

simplification of the differential scheme. In k steps of

approximation, the quadratic coefficient
0mnφ∆∆ is

added only once; k should be a small integer, k=4 was

used in our experiments.

(9)





≠

=∆∆⋅
=′′∆∆

∆∆⋅+∆=′′∆

′′∆∆+′′∆=′′∆

≅′′′′∆+′′=′′

+

++

0mod,0

0mod,

,

,

0

000

00

2
1

1

11

kn

knk mn

mn

mnmnmn

mnmnmn

mnmnmnmnmn

φ
φ

φφφ

φφφ

φφφφφ

This modification requires that the initial n is

dividable by k, which is not a problem at all for the

applications. On the other hand, the modification is

quite beneficial due to further simplification – one

addition from the above scheme can be avoided.

The removal on a single addition from the scheme is,

however, beneficial especially from other point of

view. In fact, the quadratic approximation become

piecewise linear approximation.

Note, please, that the quadratic part of the equation is

corrected for the length k as well as the linear part.

The fact that the approximation becomes piecewise

linear, of course, affects the precision of the

interpolation. However, the precision is only affected

within the small linear pieces (see Figure 4). The

figure only illustrates the differences between the two

approximation and parameters are adjusted to enable

their visibility. In reality, the differences are smaller.

Figure 4: Displacement interpolation in squares

The fact that the approximation is made piecewise

linear can further improve the process of calculation

of the contribution due to the fact that the table of sin

and cos can be modified so that it is not parametrized

by the phase mnφ ′′ , but also by the difference mnφ ′′∆ .

The pseudocode for calculation of the contribution is

then treated as one k-tuple piece that calculates k

contributions (see Figure 5).

()
()

()
()

()
()mnmnkmn

mnmnkmnkmn

mnmnmn

mnmnmnmn

mnmnmn

mnmnmnmn

Aj

Au

Aj

Au

Aj

Au

φφ

φφ

φφ

φφ

φφ

φφ

′′∆′′⋅′+

′′∆′′⋅′=

′′∆′′⋅′+

′′∆′′⋅′=

′′∆′′⋅′+

′′∆′′⋅′=+

−

−−+

+

,sin

,cos

,sin

,cos

,sin

,cos

1

11

1

11

0

0

M

Figure 5: k-contribution of a PLS to optical field

Note, please, that sinq and cosq are tables. The format

of the tables is such that q corresponds to the q- th

sample of the linear piece. Note also that e.g. in case

k=4, sin0, sin1, sin2, and sin3 for the same argument

are stored in one memory word so that only a single

table access is required for all of them.

While the step above may seem relatively complex,

the operation per sample is reduced as shown in the

Table 1 below.

Operations

per sample

Quadratic

(old)

Piecewise linear

(new)

Addition 5 4+1/k

Multiplication 2 2

Table access 2 2/k

Table 1: Complexity of the approximation steps

Interestingly, the new approach does not require more

precise data representation than the previous one. On

the contrary, it leads in reduction of the required data

width of the
mnφ ′′∆∆ due to the fact that a larger value

is added to an accumulator and the addition is

occurring more frequently. The data representation

for the other operands remains unchanged.

The data format for the operands is shown in Table 2

below. All the numbers are fixed-point decimal

numbers (represented in the computational engine

with integer numbers).

GraVisMa 2009

133 Communication papers

Order of bit (2
n
) 1 0 - -–1 -–2 -–3 -–4 -–5 -–6 -–7 -–8 -–9 -–10 -–11 -–12 -–13 -–14 -–15 -–16 -–17 -–18 -–19 -–20 -–21 -–22 -–23

mnA′ (unsigned) • • , •

mnA′∆ (signed) ← ← , ← ← ← ← ← ← ← s • • • • • • • • • • • • • • •

mnφ̂ ′′ (signed) , s • • • • • • • • • • • • • • • • •

mnφ̂ ′′∆ (signed) , s • • • • • • • • • • • • • • • • •

mnφ̂ ′′∆∆ (signed) , s • • • • • • • • • • • • • • • • •

Table 2: Data representation format for the approximation step calculation

The format of the data shown in Table 2 is different

for the amplitude
mnA′ , mnA′∆ , and for the phase

related values
mnφ ′′ ,

mnφ ′′∆ , and
mnφ ′′∆∆ . The

amplitude is positive number so that []1,0∈′
mnA .

the mnA′∆ is a signed number whose value should

reflect the difference of the amplitude between the

adjacent optical field samples which is always very

small so the range is approximately []02.0,02.0− .

The representation of the phase related values is

based on the periodicity of the sin and cos functions.

In fact, the representation is substituted and the

substituted values are stored in the computer memory.

(10)

π

π

π

φφ

φφ

φφ

2
1

2
1

2
1

ˆ

ˆ

ˆ

mnmn

mnmn

mnmn

′′∆∆=′′∆∆

′′∆=′′∆

′′=′′

This approach allows for storage of only the

fractional parts of the phase related values. The

integer part can be removed completely as it is never

needed. The range becomes []5.0,5.0− and the sin

and cos tables can be easily adjusted to reflect it.

4. CONCLUSIONS
The goal of this contribution was to introduce a novel

approach that further simplifies the rendering of

optical field of a point light source, which is one of

the critical paths synthesis holography calculations.

The method has been presented and it has been

demonstrated that it can speed up the calculations.

The actual speedup, however, depends on the

implementation and the platform. In the presented

case, the number of operations per sample was

reduced by approximately 25% comparing to the

original solution [Han09]. This suggest a speedup of

calculation around 20%.

Further work will include in-depth evaluation of the

error and its effects on the results and further attempts

to speed up the calculations.

5. ACKNOWLEDGEMENTS
The research has been funded by the “Centre of

Computer Graphics” (CPG-LC06008), Czech

Ministry of Education, Youth, and Sports research

grant.

6. REFERENCES
[Ahr06] L. Ahrenberg, P. Benzie, M. Magnor, J.

Watson, “Computer generated holography using

parallel commodity graphics hardware,” Optics

Express, Vol. 14, No. 17, p. 7636—7641, 2006

[Bro96] Brown, S. and Rose, J. FPGA and CPLD

architectures: A tutorial. IEEE Design and Test of

Computers, pp. 42-57, 1996. IEEE, NY, USA, 1996

[Goo05] J. W. Goodman: Introduction to Fourier

Optics, 3
rd

 edition. Roberts & Company Publishers,

2005, ISBN 0-9747077-2-4

[Han09] Hanák, I., Zemčík, P., Žádník, M., Herout,

A.: Hologram synthesis accelerated in field

programmable gate array by partial quadratic

interpolation, In: Optical Engineering, Vol. 8, No. 48,

2009, US, p. 7, ISSN 0091-3286

[Ito05] T. Ito, N. Masuda, K. Yoshimura, A. Shiraki,

T. Shimobaba, and T. Sugie.: Special-purpose

computer Horn-5 for a real-time electroholography.

Opt. Express, 13(6):1923–1932, 2005.

[Mas06] N. Masuda , T. Ito, T. Tanaka, A. Shiraki,

T. Sugie, “Computer generated holography using a

graphics progressing unit,” Optics Express, Vol. 14,

No. 17, p. 7636—7641. 2006

[Nis05] S. Nishi, K. Shiba, K. Mori, S. Nakayama, S.

Murashima, “Fast Calculation of Computer-

Generated Fresnel Hologram Utilizing Distributed

Parallel Processing and Array Operation”, Optical

Review Vol. 12, No. 4 (2005) 287-292

[Yos00] H. Yoshikawa , S. Iwase, T. Oneda, “Fast

computation of fresnel holograms employing

difference,” in Proceedings of SPIE 3956, 48—55

(2000).

GraVisMa 2009

134 Communication papers

Precise Image Resampling Algorithm

Pavel Zemčík
Faculty of Information Technology

Brno University of Technology
Božetěchova 2

 CZ 612 66, Brno, Czech Republic
zemcik@fit.vutbr.cz

Bronislav Přibyl
Faculty of Information Technology

Brno University of Technology
Božetěchova 2

CZ 612 66, Brno, Czech Republic
xpriby12@stud.fit.vutbr.cz

Adam Herout
Faculty of Information Technology

Brno University of Technology
Božetěchova 2

CZ 612 66, Brno, Czech Republic
herout@stud.fit.vutbr.cz

ABSTRACT
This paper introduces a precise image resampling algorithm intended for corrections of image distortions caused
by lenses or similar devices. The algorithm is designed for correction of small distortions in terms of pixel
displacement but with high subpixel precision. The geometrical description of the correction is through bi-linear
interpolation within each node of a square or rectangular mesh. The paper describes the algorithms itself, its
features, implementation issues and data formats. Specifically discussed are the issues connected with
programmable hardware (FPGA) implementation.

Keywords
Image resampling, subpixel resampling, lens distortion, FIR filter, bilinear interpolation.

INTRODUCTION
Image processing is one of the fields of computer
science and applications that is developing very fast.
The object of image processing is, of course, an
image. Vast majority of image processing methods
assumes that the image is a 2D signal represented
through samples organized in a regular square or
rectangular raster [For02a]. While the contemporary
image acquisition devices and methods acquire
images that relatively well fulfill the above
assumption, in most cases, the images suffer from
small geometrical imperfections caused e.g. by lenses
used with the cameras that acquire the images.
The geometrical imperfections are in some cases not
critical; however, many applications of image
processing exist that suffer from the imperfections
and where it is desirable to correct them. While the
geometrical correction – calculation of new sample
positions in the image – is relatively straightforward
and can be e.g. performed through bi-linear
interpolation within square or rectangular mesh, the
problem remains how to get the new samples’ values
so that the signal properties of the image remain as
much preserved as possible. Unfortunately, the
nearest neighbor method, which completely destroys
the image signal properties, and bi-linear or bi-cubic
interpolation [Gal05a] which can be better but by far
is not ideal, are traditionally used for this purpose.
The main reason is that while the algorithms to
preserve good signal properties, namely frequency

spectrum, are known, they are often considered
prohibitively computationally expensive. This paper
proposes a method that is far better from the point of
view of signal properties than the bi-linear or bi-cubic
interpolation while still preserves relatively low
computational requirements. The limitation of the
proposed method, however, is that it is limited to the
cases where the distortions do not involve significant
angular or scale changes – the method merely
assumes subpixel shift limited to several pixels
displacement [For02a], [Gal05a].

IMAGE RESAMPLING
General image resampling problem is relatively
straightforward mathematically – it is merely a
problem of proper reconstruction of signal values in
2D space and proper application of sampling
theorem. However, the efficient implementation of
such resampling is still quite open problem. In our
approach, we limit the general problem to resampling
in order to correct geometrical imperfections only.
This limitation has the following implications:

• The displacement of pixel location of the
original and resampled images is only units
of pixels,

• no angular distortion is expected, and
• no scaling is expected.

The general approach for resampling in our case is to
scan the output image raster pixel by pixel (sample by
sample) and reconstruct the values from the original

GraVisMa 2009

135 Communication papers

raster based on knowledge of the pixel displacement.
Taking into account the above limitations, it is known
that the sampling theorem cannot be violated and also
it can be assumed that the function is separable.

(1) ()() ()() ()()yxyxdoffyxdofr xyx ,,,,,,, ′′′==
where r is the resampled image,
o is the original image,
d is the displacement function,
f is a resampling function,
and f’ and f’’ are the partial reconstruction
functions after separation.

In our case, the functions f’ and f’’ are implemented
through a bank of FIR filters indexed by subpixel
location of the pixel. Moreover, the sampling is the
same in both directions, so f’ and f’’ are implemented
using the same FIR bank.
The above solution with FIR filters was chosen as it
has well defined features and as it is quite flexible in
terms of exchangeability of the filtering function.

PROPOSED RESAMPLING
The proposed approach to resampling relies on the
separability; however, in addition to the generally
used approach, the separability is applied to both the
resampling function itself and the geometrical
distortion calculation so that the distortion calculation
is separated in vertical and horizontal directions.

(2) ()() ()()yxdyxdoffr yxyx ,,,,, ′′′=
where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
and f’ and f’’ are the partial reconstruction
functions after separation.

The resampling function itself is assumed to be some
suitable filter function and in the presented approach
it is implemented through a bank of FIR (Finite
Impulse Response) filters [Rab78a]. The bank of FIR
filters is indexed through a subpixel position of the
desired sample in the raster. The reason is that the
FIR coefficients are dependent on the subpixel
position of the desired sample location. Of course,
the size of FIR filters is limited. The filters in the
bank can be e.g. Lanczos filters [Theu00a] for
optimal exploitation of the bandwidth of the image
signal given the size of the filter, or other filter design

to achieve the desired image signal properties. The
described approach is, in fact, not dependent on it.

(3) () () ()()() ()()()yxdipyxdipoFIRFIRr xyyfpxfpyx ,,,,, =
where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
FIRt is the function of the bank for position t,
fp is the fractional part of a numerical value,
and ip is the integer part of a numerical value.

The distortion to be corrected is described with
a square mesh with displacement specified for each
node of the mesh. While the displacement in each
node (corner of the squares) of that mesh is known,
the displacement inside the squares is computed via
bi-linear interpolation.
Distortion inside each square is described by means
of the following four pre-calculated coefficients:

• D0 – top left pixel displacement.
• DC0 – difference of displacements between

adjacent pixels in 1st row of the square.
• DR – difference of displacements between

1st pixels of adjacent rows.
• DDC – change in difference of

displacements between pixels of adjacent
rows, that means DCn+1 – DCn.

For more detailed description see Figure 1. Note,
please, that the displacement calculation can be
subdivided into independent calculation of vertical
and horizontal displacements.

Figure 1: Displacement interpolation in squares

The following pseudocode illustrates displacement
calculation resampling algorithm executed in each

GraVisMa 2009

136 Communication papers

square of the mesh. The input of the algorithm is the
original image, distortion description (through the
above mentioned coefficients), and FIR filter; the
output is the resampled pixels within the given
square. Note, please, that two instances of the
algorithm are being used, one for vertical and one for
horizontal displacement and filtering.

var DoR, DC, D;

DoR = D0;

DC = DC0;

(foreach row in square)

{

 D = DoR;

 (foreach pixel in row)

 {

 Output FIR[fp(D)](O,ip(D));

 D += DC;

 }

 DoR += DR;

 DC += DDC;

}

As it can be seen from the pseudocode, three
variables are needed in the algorithm. Their meaning
is as following:

• DoR – displacement of 1st pixel in a row.
• DC – difference of pixel displacements.
• D – displacement of current pixel.

As shown in the algorithm, the displacement is
subdivided into integer and fraction parts. The integer
part is used to determine the pixel placement of the
filter while the fractional part is used to determine the
set of coefficients within the filter bank. When the
number of filters in the bank is N (e.g. 16), the
fractional part is multiplied by N and then rounded to
nearest integer. Then it is used for filter bank index.

FPGA IMPLEMENTATION
An FPGA [Bro96a] implementation of the
resampling algorithm has been prepared as part of the
experiments with the design. The dataflow in the
resampling unit can be seen in Figure 2. The
processing contains four parts which are associated in
two groups. One group handles vertical resampling
while the other handles horizontal resampling. Each
group consists of a FIR module and Displacement
interpolation module.
Data formats used in the algorithm are the fixed
decimal point numbers in order to represent the data

accurately enough while maintaining the design
simple to enable its simple implementation.
The actual data formats used in the experiments are
shown below.

• Pixel data – 16 bit signed or unsigned. The
pixel processing is assumed in 16 bit format
in order to support the standard dynamic
range of contemporary video cameras,
which is 10 to 14 bits, plus an overhead for
absorption of rounding errors of FIR.

• Co-ordinate – 12+4 bits unsigned. The
subpixel resolution is assumed to be 16
subpixel positions which is in practical
terms enough to avoid measurable adverse
effects of granularity in subpixel position.

• Difference of co-ordinates – 2+8 bits signed.
The difference of positions must be precise
enough to represent the change of
displacement.

Figure 2: Dataflow of resampling algorithm.

The experimental design and synthesis of the
resampling unit was performed for Xilinx Virtex-II
xc2v1000 FPGA device. XST version H.38 was
chosen for this task. As the unit is relatively generic,
the following parameters were used: Image size
256 x 1024 px and square size 64 px which results in
square mesh of 4 x 16 squares (and also
displacement coefficient sets). Device utilization with
configuration mentioned above is shown in Table 1.

Items on chip Used Capacity % capacity
Slices 3 947 5 120 77%
Slice Flip Flops 2 212 10 240 21%

4 input LUTs 3 103 10 240 30%

BRAMs 20 40 50%

Table 1: Exploitation of FPGA unit Virtex II-1000
The device clock frequency is up to 105 MHz. While
the resampling unit produces one output pixel per 2

GraVisMa 2009

137 Communication papers

clock cycles, the output resampling data rate for a
single unit is up to 52.5 Mpixels per second. This
demonstrates the real-time potential of the design.

RESULTS
The algorithm has been evaluated with images of
cells obtained through microscopy, synthetic image
with various shapes, and other images not shown.

All the images were resampled using a geometrical
correction of some lens imperfections. Along with the
images themselves, their energy spectrum is shown to
demonstrate very little loss of energy caused with the
actual resampling. The resampling itself was
performed with 7-sample Lanszos filter and the
subpixel resolution was 16. See Figure 3 and Figure 4
for the examples.

Figure 3: Cells – original image and its spectrum (left), resampled image and its spectrum (right)

Figure 4: Shapes – original image and its spectrum (left), resample image and its spectrum (right)

CONCLUSIONS
The goal of the contribution was to present a new
resampling algorithm that is intended for corrections
of geometrical distortions caused during image
acquisition.
A new algorithm has been presented that exploits
separable FIR filters and also separable displacement
calculation for vertical and horizontal directions
while it does not adversely affect the image.
The algorithm has been implemented and prepared
also for FPGA exploitations. Using the Lanczos
filter, the algorithm has also very good results in
terms of quality of image signal. Future work should
include further simplification of the algorithm.

ACKNOWLEDGMENTS
This work was supported by the grant project of the
Ministry of Educatuon, Youth and Sports of CR,
(MSMT 2B06052) project “BioMarker”.

REFERENCES
[Bro96a] Brown, S. and Rose, J. FPGA and CPLD
architectures: A tutorial. IEEE DESIGN and TEST
OF COMPUTERS, pp. 42-57, 1996.
[For02a] Forsyth, D. A. and Ponce, J. Computer
vision: A modern approach. Prentice Hall
Professional Technical Reference, New Jersey, 2002.
[Gal05a] Gallagher, AC. Detection of linear and
cubic interpolation in JPEG compressed images. In
proceedings of The 2nd Canadian Conference on
Computer and Robot Vision, pp. 65-72, Victoria, BC,
Canada, 2005.
[Rab78a] Rabiner, LR and Gold, B. and Yuen, CK.
Theory and application of digital signal processing.
IEEE Transactions on Systems, Man and
Cybernetics, vol. 8, nr. 2, pp. 146, 1978.
[Theu00a] Theußl, T. and Hauser, H. and Gröller, E.
Mastering windows: Improving reconstruction. In
Proceedings of the 2000 IEEE symposium on
Volume visualization, pp. 101-108, ACM New York,
NY, USA, 2000.

GraVisMa 2009

138 Communication papers

Context based controlled Virtual Tours using
Viewpoint Entropy for Virtual Environments

RNDr. Ján Lacko
lacko@sccg.sk

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Mlynská dolina
842 48 Bratislava, Slovakia

 Marian Maričák
marianmaricak@gmail.com

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Mlynská dolina
842 48 Bratislava, Slovakia

ABSTRACT
We describe possibilities of creation of virtual tours for virtual cities using viewpoint entropy method. If we
want to obtain automatic virtual tour over the 3D scene, we can use low level off-line method (without any
semantic information) called viewpoint entropy based on Shannon entropy for obtain the best views around
objects and connect them with respecting of context of 3D scene. In this work we present method of selecting the
best views around the objects in special cases, when the virtual scene is virtual city.

Keywords
Viewpoint entropy, virtual environment, virtual tour.

1. Introduction
In the field of computer graphics, one of the most
important parts is creation of virtual environments. In
the last years there is a big interest in creation of
virtual cities. Man can visit a “real” city using
various services (e.g. Google Earth, Microsoft
Virtual Earth …). There is a question: How to create
an automatic virtual tour with respecting virtual
space of environment and best viewpoints for scene
parts. In our method we combine viewpoint entropy
for obtain the best views and context method for
combine the fist n views into virtual tour through the
scene. In our work we try to find method based on
quality of view from geometrical data without any
semantic information about parts of scene.

2. Quality of view measurement
We can explore 3D objects from different views with
different quality of this views. This quality is very
subjective so that’s the reason why is hard to
quantify this quality [PPB+05]. Until now, there is
no definition of good view in computer graphics, so
there is no common quality criterion for “best
views”. Intuitively we can put together quality of
view with quantity of information from concrete
view [VFSH01].

Figure 1: Two different viewpoints. Left is

canonical. [BET94]

In [SPT06b] there is classification of different
methods:

a) Low level methods: quantitative parameters
of visible object parts

b) Medium level methods: geometric
information about object

c) High level methods: semantic information
about object

2.1 Low level methods
2.1.1 Viewpoint complexity
Plemenos a Benayada [PB96] bring in method based
on number of visible surfaces and amount of visible
surface. In [PS06] was presented simple extension of
this method based on position of light sources in the
scene.
2.1.2 Viewpoint entropy
Viewpoint entropy [VFSH01] is low level method
based on Shannon entropy. Viewpoint entropy is
ratio of relative sizes of visible triangles and surface
of bounding sphere.

Where S is scene, p is viewpoint, Nf is number of
polygons in the scene and Ai/At is visibility of surface
regarding to viewpoint p. In our method we use as
bounding object hemisphere because in the virtual
cities we are limited by ground. In the scenes where
is no visible background is A0 = 0, so Ai/At is
increasing if surface i is visible from better angle and
smaller distance.

GraVisMa 2009

139 Communication papers

2.1.3 Perspective frustum entropy
In many cases there is enough for our purposes to
measure quality of view in one direction, so we don’t
need to project whole scene into the unit sphere.

Figure 2: Perspective frustum entropy [VS02].

In this case we can use Perspective frustum entropy
[VS02].

2.1.4 Relative entropy
In [SPFG05] was presented method based on
Kullback-Leibler distance. The quality of view is
highest when the amount of Kullback-Leiber distance
is the lowest. The amount of KL distance is
increasing in case that dimension of visible surfaces
is the most different from real dimensions. In
opposite to Viewpoint entropy we don’t need to
know number of visible surfaces and dimensions of
background.
2.1.5 Viewpoint potential
This method was presented in [NTJ06]. It is useful
method if we want to compute quality of view based
on different properties such as viewpoint entropy,
chrominance, luminance, weight of object, set of
views and composition change
2.1.6 Visibility ratio
Man can calculate Visibility ratio as ratio between
visible surface and whole surface of object. The goal
is to show as much surface as possible.

2.2 Medium level methods
In low level methods there are important only two
parameters: number of visible surfaces and
quantitative parameters of surfaces. In Medium level
methods we want to know also the curvature of
visible surfaces (Curvature entropy [PPB+05], Mesh
saliency [LVJ05]), silhouette (Silhouette length,
Silhouette entropy and Topological complexity
[PPB+05]).

Figure 3: Curvature entropy [PPB+05]

2.3 High level methods
High level methods are based not only on the
geometric or radiometric properties of objects but
they need to know semantic of the object. For
example in head model we can use segmentation for
definition of which parts of the object represent nose,
mouth, eyes, … Method based on this properties is
Surface entropy of semantic parts. Similar method
was presented in [SP06]. The main idea is to define
relevation of each object or object part.

Figure 4: Surface entropy of semantic parts

[PPB+05]

3. Exploration of virtual worlds
If we have large dataset and we want to automatically
find path through scene, we can use some algorithms
for exploration of 3D scenes. We can navigate
through the scene in different ways. In many cases of
creation of Virtual cities there is possibility to use
panoramas as photorealistic demonstration of real
world, but problem is navigation, because we are
restricted only to jump between viewpoints. This
problem can be solved by use real 3D model.

GraVisMa 2009

140 Communication papers

That’s the reason for automatic method of
exploration of 3D scenes. In [Ple03] these methods
are divided into following groups:

a) On-line methods – user visit virtual world
for the first time and camera path is locating
incrementally. These methods need to
compute camera path in real time.

b) Off-line methods – camera path is pre
computed before visit of user and there is
enough time to plan interesting views in the
scene.

In our work we use Off-line method so we describe
some important of them.

3.1 Global exploration
In global exploration techniques there are virtual
camera still out of scene – at the virtual sphere
around the scene. In [JTP06] is presented off-line
global exploration method. In this method is scene
inside the virtual sphere and is sampled into
viewpoints. For each viewpoint compute quality of
scene as a combination of visible surfaces and visible
objects.
There are also other incremental on-line method
presented in [BDP99] and [Vaz03].

Figure 5: Camera path around virtual office

[SPT06a]

3.2 Local exploration
In case of local exploration, camera can be a part of
scene and can be too close to objects. Example of this
problem is virtual museum. Basic rules for local
exploration can found in [Sok06]:

a) Solution of collisions
b) Camera should visit the most important

parts of scene
c) Quality of view should be the highest

In [VS03] is present method where camera is in
constant height above the terrain and has only some
degrees of freedom for movement. We use viewpoint

entropy but only for surface which were not visible
before and guided tour (virtual tour) is stopped after
exploration of 80-90% of scene.

Figure 6: Berkeley soda hall local exploration

[VS03]

4. Algorithm of context based method
Our algorithm is useful for large datasets of virtual
cities. Today, there is many products for visualization
of virtual cities, e.g. Google Earth, Virtual Earth and
many other local cities e.g. Virtual Bratislava. In our
method we try to present semiautomatic three step
solution of creating virtual tours. We were inspired
by movie techniques and real guided tours for real
tourists.
In opposite to works [VS03] and [GAG04] we
consider dividing of scene into objects as a kind of
information. So we compare quality of view on one
object with another view on the same object.
Our algorithm consist of these three steps:

a) Important scene parts selection
b) Path around each selected object
c) Final guided tour

In each of these steps we need to solve some
problems. Scene is set of 3D objects with baseline in
the same height (due to terrain).

4.1 Important scene part selection
This is manual part of whole process because we
can’t select the importance of objects from
geometrical information. We can find some heuristic
function as a solution of this problem but this is not
good solution. This solution is based on choosing the
biggest bounding box, … In this part we try to have
semantic from geometry, but it is bad solvable
problem.

4.2 Path around each selected object
In this part we compute viewpoint entropy for each
object inside upper hemisphere around the object.
Viewpoint entropy is handled for each camera
position. We use perspective frustum entropy and we
can select first n camera positions with the highest

GraVisMa 2009

141 Communication papers

entropy. We need to have whole object always
visible, so the perimeter of hemisphere is computed
as

,ݐ݆ܾܿ݁݋ሺݐݏ݅ܦ ሻܽݎ݁݉ܽܿ ൌ
.ݐ݆ܾܿ݁݋ ݔ݋ܾܾ
2. tanሺ2/ܸܱܨሻ

Where object.bbox is diagonal of object bounding
box and FOV is field of view for camera. If camera
position at the sampled hemisphere lie inside
bounding box of another object, we delete this
position and we compute new one outside of the
bounding box. In this case we don’t need to have
whole object visible. So we have steps in this part of
algorithm:

a) Compute distance of object and camera
(whole object have to be visible)

b) Sample the upper hemisphere (each sample
represent camera position)

c) Compute quality of view for each camera
position (using viewpoint entropy)

d) Construct path through viewpoints with the
highest viewpoint entropy

4.3 Final guided tour
Last automatic step is join of different paths around
objects into one path through scene. Properties of
final path have to be no-collision with objects, C1
continuous and the shortest. Our method is for two
objects. We can apply this for another pairs of
objects in order. The most important role in this path
planning has Voronoi diagram. If generated points
are objects, then edges of Voronoi diagram are free
path for camera. We consider three different
approaches:

a) Additive weighted Voronoi diagram
b) Voronoi diagram for set of rectangles
c) Voronoi diagram of bounding boxes as

approximation of b)

We choose for option c). So we have in this part
these steps:

a) Create Voronoi diagram
b) Calculate guided tour for each selected

object and test if camera position is not
inside another object in scene.

c) Specify order of objects
d) Connect guided tours using Catmull-Rom

spline curve.
In third step if we want to have the shortest path
between objects we need to find Hamilton path what
is NP complete problem so we use only heuristic for
this problem.
If we want to connect path around selected object and
edge of Voronoi diagram we try to find the shortest
line with respecting camera position.

In our method there is possibility of adding some
information to object (object weight) and for surfaces
(surface weight) and use this information from e.g.
reconstruction process to control the path of virtual
tour through scene.

Figure 7: Shortest line between two vertices of

Voronoi diagram

We use in our work only 2D Voronoi diagram, due to
scene character. Scene is 3D buildings in city blocks.
In fact, streets are edges of Voronoi diagram and
blocks of buildings are generators of Voronoi
diagram. For this reason we don’t need to handle 3D
Voronoi diagram, but if we will have more complex
scene, we can use it for better results of camera path.

5. Results
We tested our algorithm with following computer
specification: Arch Linux 64 bit, procesor AMD
4200+, RAM 2GB, graphic card NVIDIA 7300GT.
We compute in window 512x512 pixels. We test
speed of algorithm for 800 camera positions. Results
are in following table:

Model # of surfaces time
Cube 12 8,44 s
Golfclub 515 8,55 s
Cow 5804 8, 95 s
Sphere 20480 10,30 s
Bunny 69666 14,08 s
Gipshand 273060 25,68 s
Dragon 871414 87,94 s
Buddha 1087716 106,77 s
Table 1: Time of compute the algoritm

As we can see in table time complexity of algorithm
is linearly dependent on number of surfaces.

GraVisMa 2009

142 Communication papers

Figure 8: Graph of computation of viewpoint

entropy for tested models

Figure 9: Final virtual tour through scene consist

of bunny models (for complexity). Red – final
path, green – Voronoi diagram

6. Future work
In future we plan to try different methods for quality
of view based on pure geometrical information and
also pixel based only in image space. Another step is
to find methods for automatic selection of important
scene parts (semantic from shape). Our work was
specialized for virtual cities without another 3D
models of architecture. We plan in the future use
these small 3D models as a parts of generators of
Voronoi diagram for improving camera path in the
scene.

7. Acknowledgements
This paper was supported by VEGA grant
No. 1/0763/09

8. References
[BDP99] P. Barral, G. Dorme, and D. Plemenos.

Visual understanding of ascene by automatic

movement of a camera. GraphiCon, Moscow
(Russia), 1999.

[BET94] Heinrich H. Buelthoff, Shimon Y. Edelman,
and Michael J. Tarr. How are three-deminsional
objects represented in the brain? Technical report,
Cambridge, MA, USA, 1994.

 [GAG04] Carlos Andújar Gran, Pere Pau Vázquez
Alcocer, and Marta Fairén González. Way-finder:
Guided tours through complex walkthrough
models. Comput. Graph. Forum, 23(3):499–508,

[JTP06] Benoit Jaubert, Karim Tamine, and Dimitri
Plemenos. Techniques for off-line scene
exploration using a virtual camera. In
International Conference 3IA’06, Limoges
(France), May 2006.

 [LVJ05] Chang Ha Lee, Amitabh Varshney, and
David W. Jacobs. Mesh saliency. ACM Trans.
Graph., 24(3):659–666, 2005.

 [NTJ06] Machiko Nakagawa, Masami Takata, and
Kazuki Joe. Automatic viewpoint selection for a
visualization i/f in a pse. In E-SCIENCE ’06:
Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing,
page 100, Washington, DC, USA, 2006. IEEE
Computer Society.

[PB96] Dimitri Plemenos and Madjid Benayada.
Intelligent display in scene modeling. New
techniques to automatically compute good views.
In GraphiCon, 1996.

[Ple03] Dimitri Plemenos. Exploring virtual worlds:
Current techniques and future issues. In
International Conference GraphiCon’2003,
Moscow (Russia), September 2003.

[PPB+05] Oleg Polonsky, Giuseppe Patanè, Silvia
Biasotti, Craig Gotsman, and Michela Spagnuolo.
What’s in an image? The Visual Computer, 21(8-
10):840–847, 2005.

[PS06] Dimitri Plemenos and Dmitry Sokolov.
Intelligent scene display and exploration. In
International Conference GraphiCon’2006,
Novosibirsk (Russia), July 2006.

 [Sok06] Dmitry Sokolov. Exploration différéé de
mondes virtuels sur Internet. PhD thesis,
Université de Limoges, France, December 2006.

 [SP06] Dmitry Sokolov and Dimitri Plemenos. High
level methods for scene exploration. Journal of
Virtual Reality and Broadcasting, 3(12), August
2006. urn:nbn:de:0009-6-11144, ISSN 1860-
2037.

[SPFG05] Mateu Sbert, Dimitri Plemenos, Miquel
Feixas, and Francisco González. Viewpoint
quality: Measures and applications. In
Eurographics Symposium on Computational
Aesthetics, pages 185–192, June 2005.

GraVisMa 2009

143 Communication papers

[SPT06a] Dmitry Sokolov, Dimitri Plemenos, and
Karim Tamine. Methods and data structures for
virtual world exploration. The Visual Computer,
22(7):506–516, 2006.

[SPT06b] Dmitry Sokolov, Dimitri Plemenos, and
Karim Tamine. Viewpoint quality and global
scene exploration strategies. In Braz et al.
[BJDM06], pages 184–191.

 [VFSH01] Pere-Pau Vázquez, Miquel Feixas, Mateu
Sbert, and Wolfgang Heidrich. Viewpoint
selection using viewpoint entropy. In VMV ’01:
Proceedings of the Vision Modeling and
Visualization Conference 2001, pages 273–280.
Aka GmbH, 2001.

 [VS02] Pere-Pau Vázquez and Mateu Sbert.
Automatic keyframe selection for high-quality
image-based walkthrough animation using
viewpoint entropy. In WSCG, pages 461–468,
2002.

[VS03] Pere Pau Vázquez and Mateu Sbert.
Automatic indoor scene exploration. In
Proceedings of 6th International Conference on
Computer Graphics and Artificial Intelligence
3IA’2003, pages 13–24, Limoges (France), May
2003.

[Vaz03] Pere-Pau Vázquez. On the Selection of
Good Views and its Application to Computer
Graphics. PhD thesis, Dept. LSI, Technical
University of Catalonia, Barcelona, May 2003

GraVisMa 2009

144 Communication papers

Histogram Smoothing for Bilateral Filter

Michal Seeman

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
 CZ 612 66, Brno, Czech Rep.

seeman@fit.vutbr.cz

Pavel Zemcik

Faculty of Information Technology
Brno University of Technology

Bozetechova 2
 CZ 612 66, Brno, Czech Rep.

zemcik@fit.vutbr.cz

Keywords
bilateral filtering, histogram, signal filtering, resampling

1. INTRODUCTION
Bilateral filtering was described and named by

Tomasi and Manduchi [Tom00a]. The bilateral filter

is a non-linear image filter that converts image into

another image so that each pixel of the result is

calculated as a nonlinear weighted average of the

neighborhood of the corresponding pixel from the

source image, where the weight drops both with

spatial and intensity distance from the pixel from the

source image pixel. In most cases, Gaussian is used

as the weight function for both spatial and intensity

domains.

Bilateral filtering is used in several graphics and

image processing algorithms. One of the most

important applications today is HDR processing

mechanisms, specifically conversion of HDR images

into 8-bit RGB images to allow their exploitation

through standard display technologies..

Such HDR conversion uses bilateral filtering that can

be accelerated through calculations of histograms of

intensity values of local neighborhoods of pixels that

are processed instead of individual pixels. So the

histograms of intensity are gathered from the

neighborhoods, convolved with some suitable

smoothing function, such as Gaussian, and then used

for calculation of pixel values of the output.

Several attempts have been made to accelerate

bilateral filter computation [Dur00a], [Wei00a],

[Por00a]. In our approach, we attempted using

features of pixel local neighborhood. The essential

part of the method is computing nonlinear filter

approximation by using the local histogram

convolution with the original filter’s intensity domain

Gaussian.

2. HISTOGRAM PROCESSING
Let H(p) be histogram of a neighborhood ε of a pixel

p. Although we assume any bit depth of the source

image, possibly even continuous (represented as

floating point) values, the histogram can only be

gathered into discrete bins which fact can potentially

cause error. In our approach, the pixel contribution is

subdivided into two nearest bins through linear

interpolation. The error is discussed below.

Histogram Convolution
In the above mentioned application, the histogram

H(p) should be convolved with Gaussian.

(1)

The traditional approach is to implement the

convolution through direct numerical convolution

with a convolution kernel corresponding to the

Gaussian. However, in applications, where

computational time is critical, such implementation is

not suitable and can be improved. In the proposed

approach the convolution with a Gaussian is

approximated by the Exponential Moving Average

(EMA).

(2)

EMA [Law00a] is a convolution of the function f(n)

and an exponential curve . The EMA

convolution can be computed in linear time as shown

below.

(3)

Note, that this definition of EMA is convolution with

an exponential curve normalized by the first element,

not by the sum of the elements.

The histograms have finite number of bins. As the

proposed convolution core is defined from , it

may seem that it would be required to expand the f

definition and copy the first value f(0) to all

undefined positions till -∞ so that the initiation of the

algorithm is done properly.

(4)

Such expansion is, in fact, not needed as the infinite

sum can be evaluated analytically and the EMA(0)

can be easily precalculated.

(5)

GraVisMa 2009

145 Communication papers

The complexity class of EMA is O(n) (where n is the

number of histogram bins) comparing to the

traditional convolution with a kernel whose

complexity class is O(m×n) (where n is the number

of histogram bins and m is the size of the convolution

kernel). More importantly, the real computational

time is much shorter than with the traditional

approach.. This technique enables for computing

convolution with a single exponential curve by a

single and very simple loop through all items of f(n).

In fact, operation similar to convolution can be

performed also in the reverse direction to compute

convolution with an exponential curve mirrored

along the y axis, such as: . If the result of

the mirrored function is moved one item forward and

added to the non-mirrored result of EMA, the result

is very close to the convolution with a symmetrical

(mirror reflected) exponential curve.

(6)

A single symmetrical EMA described above can be

used to roughly approximate the convolution with

Gaussian (as illustrated in Figure 1).

Figure 1. Gaussian σ=2 (continuous) and EMA2

α=0.5 (discrete)

Several instances of EMA can be used

simultaneously in order to achieve even better

results. As an example, let us present a method that

exploits combination of three EMA2 convolutions

through superposition to precisely approximate

convolution with a Gaussian using σ=10.0 (see

Figure2).

(7)

The coefficients have been obtained through simple

numerical minimization of error. Although the

method is not perfect and could be possibly still

improved, it already achieves very good results.

Figure 2. Gaussian σ=10 and it’s approximation

by 3EMA

The drawback of the presented method is that the

convolution core center is between two samples

(histogram bins), or more precisely, between the first

two EMA samples in the mirror reflected core. It

means that the convolution cannot be centered to the

samples as it would be desired. This drawback,

however, does not have too adverse practical

implications.

As the histogram H is discrete, to obtain value of the

convolved histogram for any value, an interpolation

is be used. For our case, linear interpolation has been

used. Possibly a better interpolation function that

better reconstructs the discretized histogram values

can be used, (e.g. Lanczos filter); however, the error

caused by the simple interpolation is acceptable as

shown further.

3. HISTOGRAM AND SAMPLING
As mentioned earlier, apart from the small error

caused by imperfections in the Gaussian

approximation, the histogram is also affected by the

error caused by its discretization. To evaluate the

error, let us describe the histogram processing using a

processing pipeline.

Figure 3. Signal pipeline

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 -5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gauss

3 EMA

Convolution Sampling Interpolation

GraVisMa 2009

146 Communication papers

Both the initial sampling of the histogram with linear

splitting to the bins and the final linear interpolation

are approximately equal to convolution with a

triangular core. Therefore, the result can be seen as a

result of a sequence of convolutions. As this

operation can be expressed in spectral domain using

a point by point multiplication, the whole operation

behavior can be illustrated by the spectra.

The Gaussian spectrum, as shown in Figure 5, is

clearly a spectrum of a low pass filter. This is, in fact,

the feature that enables discretization and

subsampling of the histogram at all. As the result of

convolution with Gaussian is a signal not containing

too high frequencies, according to the sampling

theorem [Nyq00a] it can be represented with

relatively low number of samples whose density that

correspond to the highest needed frequency in the

signal – the sampling frequency must be over double

of the maximum frequency contained in the signal.

The minimum sampling frequency is, therefore,

dependent on the parameters of the Gaussian. The

question is, how does the initial distribution of the

entries into the histogram among the samples and the

final linear interpolation between the discrete

Figure 4 Triangle core spectra, frequency 1 wavelength is the bin spacing

for linear interpolation – half of the triangle diameter(d)

Figure 5. Compared spectra of 3EMA(σ=10), 2 bins wide triangle core and

their product.The product is visually at the top of 3EMA

0

0.2

0.4

0.6

0.8

1

0 1 2
Frequency [1/(d/2)]

0

0.2

0.4

0.6

0.8

1

0 1 2
Frequency [1/σ]

3EMA

Triangle

Mult

GraVisMa 2009

147 Communication papers

convolved histogram values affect the result.

Fortunately, as seen from the Figure 4 and Figure 5,

the passband frequency of the Gaussian tends to be

lower than that of the triangular core and as the result

of the whole processing pipeline can be described in

the spectral domain by point by point multiplication,

it is clear that the result will not be affected

significantly – the imperfections of the interpolation

function in the spectra are not affecting the result as

they fall into the part of the spectrum where they are

multiplied with very close to zero values of the

Gaussian itself.

4. PERFORMANCE
The proposed function 3EMA is an approximation of

convolution with Gaussian with σ=10. It is important

that the method doesn’t approximate the convolution

itself, but computes a precise convolution with an

approximated core. There are two reasons:

1. In the mentioned HDR algorithm, two

number sequences are to be convolved with

Gaussian. The sequences are then merged.

Possibly any Gaussian-like core could be

used which would change the result quality

according to the core accuracy. But it is

essential to convolve both sequences with

exactly same function.

2. To measure the method quality only the core

quality has to be examined.

The core quality was measured as an average

difference square (average of squares of differences

between original Gaussian value and approximated

core value). The average difference square for the

3EMA method measured on 128 item sequence (-64

to +63) is 3.26·10
-4

.

Different combination of EMAs can be designed for

specific maximum error required. The number of the

histogram bins is then computed from the designed

Gaussian σ size. The computation time is product of

EMA curve count and signal sample count. Each

EMA sample is computed using two multiplications

and one addition; therefore the presented

implementation of convolution is computed faster

than the direct convolution implementation and also

faster than the fast convolution techniques (that

exploit the FFT and IFFT) [Nus00a].

5. CONCLUSIONS
This paper presented a novel approach high

performance implementation of calculation of

histogram convolved with Gaussian. Such

calculations are essential e.g. for fast manipulation

with high dynamic range images.

The new approach is based on the idea of

subsampling of the histogram and implementation of

the convolution core using exponential functions

which lead into very fast implementation that

outperforms the known solutions.

The new algorithm is of a O(n) class of complexity

and generates very little error comparing to the

traditional methods.

6. ACKNOWLEDGMENTS
This work was supported by the grant project of the

Ministry of Educatuon, Youth and Sports of CR,

(MSMT 2B06052) project “BioMarker”.

7. REFERENCES
[Tom00a] Tomasi, C., Manduchi, R. Bilateral

Filtering for Gray and Color Images. in

proceedings of the International Conference on

Computer Vision, pages 839-846. IEEE, 1998

[Law00a] Lawrance, A., J., Lewis, P. A. W. An

Exponential Moving-Average Sequence and Point

Process (EMA1), Journal of Applied Probability,

Vol. 14, No. 1 (Mar., 1977), pp. 98-113, Applied

Probability Trust

[Dur00a] Durand, F., Dorsey, J.: Fast bilateral

filtering for the display of high-dynamic-range

images. ACM Trans. on Graphics 21 (2002) Proc.

of SIGGRAPH conference

[Wei00a] Weiss, B.. Fast median and bilateral

filtering. ACM Transactions on Graphics, 25(3),

519-526. Proceedings of the ACM SIGGRAPH

conference, 2006.

[Por00a] Porikli, F., Constant Time O(1) Bilateral

Filtering, IEEE Computer Society Conference on

Computer Vision and Pattern Recognition

(CVPR), June 2008 (IEEE Xplore, TR2008-030)

[Nyq00a] Nyquist, H., Certain topics in telegraph

transmission theory, Trans. AIEE, vol. 47, p. 617-

644, Apr. 1928

[Nus00a] Nussbaumer, H., J., Fast Fourier transform

and convolution algorithms, Springer Series in

Information Sciences, vol. 2, p. 287, 1982

GraVisMa 2009

148 Communication papers

Hypergraph-based software visualization

Peter Kapec

Faculty of Informatics and Information Technologies
Slovak University of Technology

Ilkovi ova 3č
 842 16, Bratislava, Slovakia

kapec@fiit.stuba.sk

ABSTRACT

In this paper an alternative approach to software visualization is presented based on hypergraph representation
of software artifacts. Our approach builds upon known techniques that rely on graphs for visualization. Using
hypergraph formalism offers significant advantages not only in the visualization process but also in data
preparation, filtering and context retrieval. Our aim is to create a unified graphical environment capable
to visualize relations between various levels of software related artifacts, from source code up to the project
management tasks.

Keywords
Software visualization, software mining, hypergraph, zoomable user interface

1. INTRODUCTION

Understanding software systems is becoming more
difficult due to the increasing complexity of currently
developed systems. Because of intangibility of
software, comprehending important aspects
of software is difficult and often time-consuming.
Software visualization tries to make software more
“tangible” by providing visual representations. Using
interactive visualizations we can achieve a better
insight into software and probably reveal new and
important information that would be difficult
to obtain from textual source code.

Software is not only source code, but consist of many
artifacts including data, algorithms, documentations,
user interfaces etc. and all possible documents related
to software development. These software artifacts
occur in the whole development process. In current
development environments it is difficult to track these
artifacts and relations between them. Graphs and their
visualizations are often used in the software
visualization field, however approaches using
hypergraphs are not very common. Our aim is
to utilize hypergraphs to represent software artifacts,
visualize these hypergraphs in an interactive way and
to build an development environment based
on hypergraphs.

2. SOFTWARE VISUALIZATION

Software visualization is an ongoing research
direction. The usage of visualization of software can
be tracked back to the beginnings of computer
science. Early in the 1940-ties Goldstein and
Neumann presented possible advantages of using
flow-charts [Gol47]. The 1970-ties were mostly
dedicated to Nassi-Schneiderman-Diagrams as
an alternative to flow-charts. In the 1980-ties, when
graphical workstations became available, new and
more robust visualization systems could be
developed. The 1990-ties were dominated by the
attempt to utilize the third dimension. Although in
past twenty-thirty years many software visualization
systems were created, current software engineers still
program in textual languages and use standard 2D
GUI interfaces. Only few visualization systems
managed to move from research projects to practice,
which is mainly the problem of their evaluation in
practice. However semantic software visualization is
one of open challenges also mentioned in Koschke's
study [Kos03].

Visual programming languages, a subfield of
software visualization, often try to represent the
source code through visual objects with some
interconnections, which is similar to software
visualization based on graphs. It has been shown that
graph and hypergraph grammars can be used to
define the syntax of visual languages [Bar99].

The contribution of software visualization in software
comprehension was already shown [Lew02], but the
usability of visual programming languages is very
questionable [Gre92].

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted
without fee provided that copies are not made or
distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific
permission and/or a fee.

GraVisMa 2009

149 Communication papers

3. HYPERGRAPHS
Hypergraphs are generalized graphs in which an edge
can connect more than two nodes. A formal definition
of hypergraph follows:

Definition 1. Let V= {v1 , ,vn } be a finite set,

whose members are called nodes. A hypergraph on V

is pair H= V,ε  where ε is a family E i i∈ I of

subsets of V. The members of ε are called edges.

Graphs are often used to describe and visualize
structured information where graph nodes represent
information entities and edges represent relations
between entity pairs. However in practice relations
are often more complicated, often involving more
than two entities and representing them trough graphs
becomes difficult. Hypergraph edges allow to
represent more complicated relations between several
objects for those standard graphs would require
several additional nodes and edges. Using
hypergraphs it is possible to store knowledge about
any domain – in our approach software is the domain.
Knowledge representation deals with subjects and
relations between them – in hypergraph terminology
subjects can be represented using nodes and relations
translate to hyperedges.

Usually hypergraphs are often represented using
sparse incidence matrices with following definition:

Definition 2. Let H= V,ε  be a hypergraph with
m=∣ε∣ | edges and n=∣V∣ nodes. The edge-node

incidence matrix of H is: M H∈M m×n  {0,1 } 

and defined as: mi,j={1 ifv j∈E i

0 else }
However we can modify the edge-node incidence
matrix in definition 2 so that it does not contain just
values 0 or 1. Replacing the 1 value with elements
called incidences we get an alternative hypergraph
definition that uses incidences [Aui02]:

Definition 3. A hypergraph is a five-tuple
H= V,λV ,E,λE ,I  where V, E, I are disjoint

finite sets and we call V the vertex set of H, E the
edge set of H, I the incidence set of H and
λV :V P  I  is a mapping that satisfies

following conditions:

v ∀ ≠ v' λV(v) ∩ λV(v') = 0 ∪v V∈ λV(v) = I

and λE : E  P  I  is mapping that satisfies the

following conditions:

e ∀ ≠ e' λE(e) ∩ λE(e') = 0 ∪e E∈ λE(e) = I

Using this alternative hypergraph definition we can
store additional information into incidences.
Hyperedges usually represent undirected relations,

however an incidence can specify a role the node
plays in a relation. This hypergraph representation
was used to formally define popular knowledge
representation formats RDF and Topic Maps [Aui02]
and similar concepts can be found in graph storage
formats GLX [Hol00] and GraphML.

Using hypergraphs allows us to look at software as
a knowledge repository with query functionality
similar to databases. In our approach hypergraph
nodes represent different software artifacts and
hypergraph edges represent different relations
between software artifacts. Nodes can represent
source code artifact such as functions, classes,
variables, types and other language constructs and
documentations related to them, but can also
represent subjects from development process such as
developer names, specification documents, UML
diagram entities, user interfaces, revisions, test data
etc. As can be seen these artifacts are very different
and even currently most complex development
environments do not fully integrate them – usually
they are stored in different file formats.

Mentioned artifacts are important, but for developers
are relations between these artifacts more important.
Looking at source code developers are interested in
class inheritance, decomposition into modules,
function call-graph, related documentations etc.
However more important relations are not directly
visible such as which developer implemented or
modified what, how the specification influenced
UML diagrams or e.g. how the function call-graph is
related to class inheritance tree. Even more
complicated relations can occur at program runtime
or program debugging.

Currently heterogeneous programming environments
are very common in development. Developers use
more than one language for specific parts of the
produced software. Using this approach programmers
can leverage the execution efficiency of compiled
languages, e.g. C/C++, while enjoying rapid
development and flexibility of scripting languages.
Often higher level interpreted languages access
implementations in compiled languages and this
crossing of language boundaries complicates software
comprehension. As might be expected such
approaches even more contribute to software
complexity and make software comprehension
difficult.

A hypergraph-based software artifact representation
is capable to store also knowledge found in such
heterogeneous environments by adding appropriate
relations. The Figure 1 illustrates a hypergraph
representation of a call-graph between three functions
f1, f2, f3, where function f1 calls functions f2 and f3,
and function f3 calls f1 and f2. Red spheres represent
hyperedges representing calls relations, yellow
spheres represent function nodes and green spheres
represent incidences. Using incidences it is possible

GraVisMa 2009

150 Communication papers

to distinguish the caller/calle roles in an undirected
calls relation. The hypergraph representation hides
the actual language implementation of mentioned
functions, but captures their call relations.

Figure 1. Call-graph between functions f1, f2, f3.

Similarly other software artifacts and relations
of existing systems can be modeled.

4. HYPERGRAPH QUERIES
Displaying very large hypergraphs can be very
confusing and not comprehensible, so some filtering
is needed. We could use common graph traversal
algorithms to filter graphs, but querying hypergraphs
similarly to database queries offers more possibilities.
We can define a hypergraph query language to query
hypergraphs where query results are also
hypergraphs. A query hypergraph consist of
conditions for nodes, incidences and edges, and these
conditions are searched in the queried hypergraph.

The query system is based on edge-queries, because
edges represent important relations. However
defining query hypergraphs visually would be time-
consuming, it is possible to define queries in textual
form. A notation in the form E(I1 : N1, I2 : N2, …)
represents a one hyperedge query. In this textual
representation E is the hyperedge name, I1 represents
the incidence connected to E and to node N1, and
similarly for other Ii : Ni incidence-node pairs. The
conditions can be regular expressions allowing
complex search patterns.

To obtain the resulting hypergraph we follow a
simple algorithm. For each edge in the query
hypergraph we are searching for edges in the queried
hypergraph. Edges are replicated to the result
hypergraph only with the matching nodes and
incidences that match with the query hypergraph. If
any edge does not match the return hypergraph is
empty. The Figure 4 shows a query hypergraph and
results of this query.

5. VISUALIZATION
In our approach software artifacts and their relations
represented through hypergraphs are visualized using
spheres and lines in 2D space in which the user can
navigate. Direct hypergraph visualization requires
modifications to existing graph layout algorithms,
however hypergraphs can be transformed into
bipartite graphs using following definition:

Definition 4. For a hypergraph H= V,ε  with an

incidence matrix M H the bipartite incidence

graph BH=N V∪N ε ,E  is defined as follows:

E= {{mi ,n j }:mi∈N ε ,n j∈N v ,mi,j=1 }
N ε={mi : E i∈ε }
N v={n j :v j∈V }

This transformation allows to utilize well known
graph layout algorithms to visualize hypergraphs. In
our approach we use a slightly modified force-based
algorithm based on Fruchterman and Reingold graph
layout algorithm [Fru91]. The modifications allow to
pause the layout algorithm and to process only
selected nodes independently. This allows the user to
interactively interact with the visualization to place
nodes of interest into preferred positions.

Hypergraph-based GUI
For programming tasks we need access to the
underlying source code. For these tasks the interface
can change individual nodes into floating billboards
containing a 2D textual editor. The user can
dynamically zoom into these billboards to perform
programming tasks.

Figure 4 shows a hypergraph fragment containing the
installPackage function and function's parameters.
The function's node displays a text-editor with source
code of the function that can be modified.

From software artifacts displayed in these billboards
links to other nodes or billboards show different
relations. Billboards are also affected by the force-
directed algorithm, but can be forced into specified
positions using meta-nodes and meta-edges that are
user controlled and are not part of the visualized
hypergraph. This allows to force position of e.g.
documentation nodes to upper part of a window,
billboards containing source code metrics e.g. into
left window part and software artifact revisions into
right window part. Other placements can be
interactively created by user.

Example visualization of a system
To demonstrate the possibilities of hypergraph-based
software visualization we analyzed a relatively small
open-source project (80kB), but well documented
and written in Lua language. We focused on
obtaining not directly visible relations involving
function call-graph, separation into modules, details
about function parameters and return values and
documentations related to these artifacts. Our initial
analysis searched for only ten different node types
and seven different hyperedge types. We extracted
around 1200 nodes and 400 hyperedges, what are for
such a small project relatively high numbers.
Searching more node or hyperedge types would
certainly dramatically increase the number of
extracted artifacts and relations. For large projects we

GraVisMa 2009

151 Communication papers

can expect even higher numbers of artifacts and
relations.

A visualization of the whole extracted hypergraph is
shown in Figure 3. This overview visualization is not
very comprehensible, but we can see several highly
connected hyperedges in figure middle part and a
cluster. Focusing on this cluster reveals the core
modules and functions responsible for main
functionality. The highly connected hyperedges
represent mostly is-instance-of relations, so naturally
they connect nearly all nodes.

The figure 2 shows a filtered hypergraph containing
only functions – result of the query
is-instance-of(instance : * , type : function).

Figure 2. Filtered hypergraph.

The Figure 5 displays a query hypergraph (a) and
results of this query (b). The query hypergraph
receives all parameters of installPackage function
and documentations related to this function and
parameters. The query can be written in textual form
as:

has-parameters(* :installPackage, parameter:*) and

is-documented(function : installPackage, short-
description:*) and

is-documented(function : installPackage,
parameter : *, description : *)

Using similar queries it is possible to obtain other
visualizations of software.

6. CONCLUSIONS
The presented work is not necessary new and was
inspired by several similar concepts. The Hypergraph
Data Model [McB98] offers also a hypergraph-based
storage of information, but uses two different
hyperedge types and does not use a generic solution
based on incidences. The Topic Maps knowledge
representation format can be formally defined by
hypergraphs, but it focuses mostly on semantic web.
However hypergraph-based software visualization is
not common. We presented visualizations of an
existing software system and showed possibilities of
hypergraph querying to obtain important information.

Current work is dedicated to the development of an
hypergraph-based IDE that provides seamless
integration of hypergraph visualization and
conventional textual programming. Ideas for future
work include hypergraph visualization in 3D with
different hypergraph layout algorithms and
visualization of programs at runtime. Other possible
research directions include collaborative hypergraph
editing in virtual environments.

7. REFERENCES
[Aui02] Auillans, et al., A formal model for topic

maps. In ISWC’02: Proceedings of the First
International Semantic Web Conference on The
Semantic Web, Springer Verlag, pp. 69-83, 2002

[Bar99] Bardohl, R., Minas, M., Schurr, A.,
Taentzer, G. Application of graph transformation
to visual languages, 1999.

[Gre92] Green, T.R.G., Petre, M. When Visual
Programs are Harder to Read than Textual
Programs. In: Human-Computer Interaction:
Tasks and Organisation, Proceedings ECCE-6
(6th European Conference Cognitive
Ergonomics), 1992.

[Fru91] Fruchterman, T. M. J., Reingold, E. M.
Graph drawing by force-directed placement.
Software – Practice & Experience, 21(11):1129–
1164, 1991.

[Gol47] Goldstein, H. H., Neumann., J. von. Planning
and Coding Problems of an Electronic Computing
Instrument. In: Taub, A.H., von Neumann, J.,
Collected Works, pp. Conclusions 80-151,
McMillan, New York, 1947.

[Hol00] Holt, R. C., Winter, A., Schurr, A. GXL:
Towards a Standard Exchange Format Universitat
Koblenz-Landau, Institut fur Informatik, Rheinau
1, D-56075 Koblenz, 2000

[Kos03] Koschke, R. Software Visualization in
Software Maintenance, Reverse Engineering, and
Reengineering: A Research Survey. In Journal on
Software Maintenance and Evolution, John Wiley
& Sons, Ltd., Vol. 15, No. 2, pp. 87-109, 2003.

[Lew02] Lewerentz, C., Simon, F. Metrics-based 3D
Visualization of Large Object-Oriented Programs.
Proceedings of the First International Workshop
on Visualizing Software for Understanding and
Analysis (VISSOFT02), 2002.

[McB98] McBrien, P., Poulovassilis, A. A General
Formal Framework for Schema Transformation.
Data and Knowledge Engineering 28, pp. 47–71
1998

GraVisMa 2009

152 Communication papers

Figure 3. Visualization of whole extracted hypergraph.

Figure 4. (a) Text editor attached to a node.

Figure 5. (a) Query hypergraph (b) results of query hypergraph.

GraVisMa 2009

153 Communication papers

GraVisMa 2009

154 Communication papers

	!_2009_GraVisMa_Title_page.pdf
	!_2009_GraVisMa-Forewor&Contents.pdf
	!_2009-GraVisMa-Full.pdf
	A31-full.pdf
	A37-full.pdf
	A59-full.pdf
	A79-full.pdf
	A83-full.pdf
	A89-full.pdf
	A97-full.pdf
	1. INTRODUCTION
	This document presents GPU speed-up on entropy contribution as image preprocessing method based on Shannon's entropy. The method is developed specially for microscopy images captured in phase-contrast mode. But it can be used in many others applications. Illustrative description of using entropy is proposed in the paper and advantages are discussed. Performance of individual methods is illustrated. Finally, implementation on graphics cards to overpass higher computation requirements of the algorithm is described. The total speed-up of the processing is about 3600x.
	2. Methods
	5. CONCLUSION
	6. ACKNOWLEDGMENTS
	7. REFERENCES

	B03-full.pdf
	B29-full.pdf
	B31-full.pdf
	B37-full.pdf
	B73-full.pdf
	Introduction
	Vector Spaces
	Tangential Vectors
	Co-Vectors
	Tensors
	Exterior Product
	Visualizing Exterior Products
	Geometric Algebra

	Newman-Penrose formalism
	Newman-Penrose tetrad
	Reflections
	Rotations
	Boosts

	Electromagnetic waves
	Gravitational waves

	Implementing Vectors in C++
	Class Hierarchy
	Camera Navigation using GA
	Relativistic observers in the BHFS
	The BHFS
	Lorentz rotors in the BHFS
	Simplicity of Lorentz rotors

	Vectors on the Hard Disk
	Meta-Data on Vector Types
	Storing Vector Types in HDF5
	Storing Multi-Vector Types in HDF5

	Conclusion
	References

	B83-full.pdf
	C31-full.pdf
	C53-full.pdf

	!_2009-GraVisMa-short.pdf
	A67-full.pdf
	B19-full.pdf
	B79-full.pdf
	B97-full.pdf
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. NUMERICAL EXPERIMENT
	3. REFERENCES

	C05-full.pdf
	C13-full.pdf
	Precise Image Resampling Algorithm
	ABSTRACT
	Keywords

	INTRODUCTION
	IMAGE RESAMPLING
	PROPOSED RESAMPLING
	FPGA IMPLEMENTATION
	RESULTS
	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

	C17-full.pdf
	C29-full.pdf
	C59-full.pdf
	1. INTRODUCTION
	2. SOFTWARE VISUALIZATION
	3. HYPERGRAPHS
	4. HYPERGRAPH QUERIES
	5. VISUALIZATION
	Example visualization of a system
	6. CONCLUSIONS
	7. REFERENCES

